Supporting information

The phospholipid-repair system LpIT/Aas in Gram-negative bacteria protects the bacterial membrane envelope from host phospholipase A₂ attack

Yibin Lin^{*}, Mikhail Bogdanov[#], Shuo Lu^{*}, Ziqiang Guan^{**}, William Margolin^{##}, Jerrold Weiss^{***}, Lei Zheng^{*}

From the Center for Membrane Biology, Department of Biochemistry and Molecular Biology, the University of Texas Health Science Center at Houston McGovern Medical School^{*} Department of Biochemistry and Molecular Biology, University of Texas McGovern Medical School[#] Department of Biochemistry, Duke University School of Medicine^{**} Department of Microbiology and Molecular Genetics, University of Texas McGovern Medical School^{##} Inflammation Program and Departments of Internal Medicine and Microbiology, University of Iowa Carver College of Medicine^{***}

Content:

- I. Table S1-S2
- II. Figures S1-S9

I. Tables

Primers	Sequences (5' – 3')*				
In IT has also at formula	<u>GTGAGTCAGTGCACACTAACACTTCGTTGTGGTCGAAGGGGATGAA</u>				
lp11-knockout-forward	AGCGATGGGAATTAGCCATGGTCC				
InIT Impolyout reverse	<u>GCCAATGCCAATGGGCACGACCGGGATGCCTATCATTACCGCCAGC</u>				
ipi i -knockout-ieverse	<u>GAG</u> TGTAGGCTGGAGCTGCTTCG				
and transformer formuland	AATCTCCCTCCATTCGCTTTTACTGAATCAGAGCAAAGGGAGTTGGA				
ads-knockout-torward	<u>ATG</u> ATGGGAATTAGCCATGGTCC				
and transformer manage	<u>GCATTTCGCCAGCGATTTTGCGACGGTCACGGGCACGCGGCGCATCC</u>				
aas-knockout-reverse	<u>GG</u> TGTAGGCTGGAGCTGCTTCG				
InIT Kn aadh farward	GATGAGTGAGTCAGTGCACACTAACACTTCGTTGTGGTCGAAGGGG				
ipi i -Kii-cedo-loi wald	<u>ATG</u> ATAGGAACTTCAAGATCC				
InIT Kn and hravaran	CGGCGCTGCCAGATCCACAGCGCCGTTATTGCCAGCGCAAACAGCG				
Ipi I -KII-ccdb-levelse	<u>CACC</u> TTATATTCCCCAGAACATCAGG				
and Kn and forward	AATCTCCCTCCATTCGCTTTTACTGAATCAGAGCAAAGGGAGTTGGA				
aas-KII-ccub-lolwalu	<u>ATG</u> ATAGGAACTTCAAGATCC				
aas Kn oodh ravarsa	CAGCCCTTTTACCCCGGCAGTGTAGTTCATCATTGCGGGCATGCGGC				
aas-KII-eeub-reverse	<u>GAC</u> TTATATTCCCCAGAACATCAGG				
aas-H36A-forward	CGTTCTAATTACGCCTAAT <mark>GC</mark> CGTCTCTTTTATTGATGG				
aas-H36A-reverse	CCATCAATAAAAGAGACG <mark>GC</mark> ATTAGGCGTAATTAGAACG				
lplT-D30A-forward	CTGCGTTTGGCG <mark>C</mark> TAATGCCCTACTG				
lplT-D30A-reverse	CAGTAGGGCATTA <mark>G</mark> CGCCAAACGCAG				
lplT-knockin-forward	ATGAGTGAGTCAGTGCACACTAACACTTCG				
lplT-knockin-reverse	TTAATGACGGCGCTGCCAGATCCACAGCG				
aas-knockin-forward	ATGCTTTTTAGCTTTTTTCGAAATTTG				
aas-knockin-reverse	CATCGTGTTGTTCCGCTTCGTCTACC				

Table S1. Primer sequences used in this study

* Bold red letters show the nucleotides mutated. Underlined letters represent the homologue arms

Strain	Treatme nt	Time (min)	CL	PE	PG	MCL	LPE	LPG
W3110	+ AF	0	7.54	66.25	18.62	3.58	2.2	1.81
		10	7.55	66.99	18.51	3.43	1.9	1.69
		20	7.53	67.08	18.66	3.33	1.79	1.6
		30	7.85	67.52	18.12	3.29	1.68	1.54
		60	7.66	67.51	18.4	3.2	1.67	1.57
		120	7.82	67.56	18.37	3.07	1.61	1.48
W3110	+ AF + psPLA ₂	0	7.94	65.25	19.39	3.55	2.18	3.87
		10	6.95	67.85	18.21	3.28	1.34	3.71
		20	7.21	67.12	18.38	3.41	1.58	3.88
		30	7.39	67.49	19.56	3.32	1.95	2.24
		60	6.96	67.96	18.28	3.21	1.38	3.59
		120	7.32	67.49	18.99	3.24	1.36	2.96
$\Delta lplT$	+ AF	0	8.96	57.88	19.66	4.76	3.58	5.17
		10	9.3	57.71	19.33	4.91	3.43	5.31
		20	9.22	58.18	19.32	4.66	3.38	5.24
		30	9.03	58.16	19.36	4.82	3.44	5.2
		60	8.93	58.17	19.4	4.65	3.4	4.86
		120	8.74	59.05	19.36	4.79	3.3	4.75
$\Delta lplT^*$	+ AF	0	7.61	64.58	18.82	3.36	3.07	2.56
	+ nsPL A	10	12.46	52.14	9.51	3.76	16.23	5.9
		20	14.77	45.63	4.31	6.94	22.3	6.03
		30	13.48	44	4.11	10.88	21.65	5.88
		60	12.54	41.77	4.5	14.43	18.23	8.52
		120	11.02	38.26	6.21	20.68	12.51	11.32
∆ <i>aas</i>	+ AF	0	7.7	60.06	21.98	3.53	2.81	3.92
		10	5.29	62.2	24.21	2.9	2.56	2.84
		20	4.99	63.55	25.02	2.5	1.97	1.99
		30	5.2	65.71	23.82	2.03	1.71	1.53
		60	5.63	65.3	24.12	1.97	1.48	1.5
		120	6.28	64.62	23.74	2.17	1.53	1.66
∆ <i>aas</i>	+ AF + psPLA ₂	0	10.76	50.74	16.52	7.46	7.28	7.24
		10	11.58	48.11	10.21	6.79	15.64	7.67
		20	13.11	42.21	6.62	9.48	20.27	8.32
		30	12.41	39.62	7.1	12.51	19.23	9.13
		60	12.36	36.53	8.31	15.02	16.97	10.82
		120	12.21	32.7	9.85	18.26	13.52	13.46

Table S2. PL compositions in psPLA₂-treated *E. coli* W3110 WT, $\triangle lplT$, $\triangle aas$ and $\triangle aas/lplT$ cells*

∆aas/lplT	+ AF	0	8.91	58.36	22.55	3.78	2.8	3.61
		10	10	59.67	21.66	3.3	2.39	2.98
		20	8.28	59.11	25.08	2.89	2.07	2.58
		30	8.53	59.19	25.39	2.49	2.08	2.32
		60	10.56	55.8	23.51	3.57	3.26	3.29
		120	11.48	56.87	22.41	3.1	2.95	3.18
∆aas/lplT	+ AF	0	10.76	50.74	16.52	2.46	2.28	2.24
	psPLA ₂	10	11.58	48.11	10.21	6.79	15.64	7.67
	1 - 2	20	13.11	42.21	6.62	9.48	20.27	8.32
		30	12.41	39.62	7.1	12.51	19.23	9.13
		60	12.36	36.53	8.31	15.02	16.97	10.82
		120	12.21	32.7	9.85	18.26	13.52	13.46

Note:

*Data were obtained from scanned TLC images shown at Fig. 4a and Fig. S6 and expressed as mol% of the total PL in each sample.

**: A minor band appearing above the origin in Figure 4a was considered as a contaminant of lipid extraction and was not included in the table since it was not found in the $\Delta lplT$ control (+AF only) (Fig. S6).

II. Figures

Fig. S1. Generation of *lplT* **or/and** *aas* **gene knockout strains of** *E. coli.* a) scheme of the *aas-lplT* operon in *E. coli*. The genes of *aas* and *lplT* were under control of the same promoter and have an overlapping sequence of five terminal nucleotides. The deletion region in $\Delta lplT$, Δaas or $\Delta aas/lplT$ strain was highlighted with wide downward diagonal. The DNA splice junctions were confirmed by DNA sequencing as shown in the chromatography traces.; b) growth curve of *E. coli* W3110 WT, $\Delta lplT$, Δaas and $\Delta aas/lplT$ strains. The four *E. coli* strains were incubated in LB broth at 37 °C with shaking and absorbance was measured at OD₆₀₀ at indicated times.

Treated with 1% Triton X-100

Fig. S2. LPE acylation assays. a) TLC images of $[^{32}P]$ LPE acylation reactions using spheroplasts generated from *E. coli* WT, $\Delta lplT$, Δaas , aas^{H36A} and $lplT^{D30A}$ cells. The reactions were sampled at indicated times for lipid extraction and TLC analysis. b) TLC analysis of the reactions performed using spheroplasts solubilized by 1% Triton X-100. c) $[^{32}P]$ LPE substrate used in the assays and $[^{32}P]$ PE extracted from *E. coli* UE54 strain.

Fig. S3. Viability tests of *E. coli* WT, $\Delta lplT$ and Δaas with three different AF. ~10⁶ of *E. coli* cells harvested at log phase were treated with 12 units psPLA₂ and 20 µL of each AF: C6, RA or R4 for 90 min. Data are expressed as percentage of CFU compared to that of W3110 WT (- AF, - psPLA₂). Values are means ± S.D. of 3 or more repeated experiments.

Fig. S4. Viability tests of *E. coli* WT, $\Delta lplT$ and Δaas at different cell growth stages. ~10⁶ of *E. coli* cells harvested at lag, log or stationary phase were treated with 12 units psPLA₂ and 20 µl of AF for 90 min. Data are expressed as percentage of CFU compared to that of W3110 WT (- AF, - psPLA₂). Values are means ± S.D. of 3 or more repeated experiments.

Fig. S5. Determination of PL species in sPLA₂-mediated bactericidal reaction by TLC. 1) [³²P] PE extracted from *E. coli* strain UE54; 2) [³²P] LPE generated by digestion of the sample 1 using venom PLA₂; 3) total lipid extract from ~10⁶ $\Delta lplT$ cells treated with 12 units of psPLA₂ and 20 µl AF for 30 min at 37 °C; 4) [³²P] PG purified from *E. coli* AL95 strain; 5) [³²P] LPG generated by digestion of the sample 4 using venom PLA₂; 6) [³²P] CL purified from *E. coli* AL95 strain; the samples 7-9 are CL lysoderivatives generated by venom PLA₂ from the sample 6 and separated by TLC. The bands corresponding to triacyl-CL (7), diacyl-CL (8), or monoacyl-CL (9) were scraped from the TLC plate, extracted using chloroform.

Fig. S6. TLC images of PL extracted from [³²P] labeled *E. coli* cells of W3110 *E. coli* WT, $\Delta lplT$, Δaas and $\Delta aas/lplT$ strains in the absence of psPLA₂. The cells were treated with 20 µl of AF for indicated times prior to lipid extraction as described in Experimental Approaches. Individual PL content is expressed as mol% of total PL in each sample.

Fig. S7. Cell viability vs degradation of individual PL in the psPLA2-mediatd bactericidal reactions. a) $\Delta lplT$ strain; b) Δaas strain. Each LPL (LPE, LPG or monoacyl-CL (MCL)) was expressed as mol% in the total radiolabeled PL pool. The data were obtained from Table S2. The viability (%) was calculated by comparing CFU of W3110 WT control (- AF, - psPLA₂).

Fig. S8. No detectable free fatty acid released from *E. coli* WT, $\Delta lplT$ or Δaas strain in the absence of sPLA₂. Free fatty acid release assay of *E. coli* W3110 WT, $\Delta lplT$ and Δaas cells. ~10⁶ *E. coli* cells labelled with [¹⁴C] oleic acid were incubated with 20 µL AF for indicated times. The radioactivity in the supernatant fraction was determined by scintillation counting. PL degradation is expressed as the % of total [¹⁴C] radioactivity.

Fig. S9. LC-ESI mass spec analysis of lipid A isolated from *E. coli. a)* W3110 WT; b) $\Delta lplT$; c) Δaas strain. d) the chemical structure of lipid A based on mass spec results.