S1 Derivation of the difference recurrence relations and proof of the bounding

formulae

The semi-global alignment problem (Equation 1 in the main text) is defined for ¢ > 0 and j > 0. In the following subsections,
we use simplified formulae, where ¢ > 1 and j > 1, to describe the process of derivation of the difference recurrence relations

and proof of the bounding formulae.

S[Z — 1,j — 1] —+ S(aifl,bjfl)

Sli,j) =max{ E[i —1,5] — Gey

Fli,j—1] -G

S[Zvj] - GOH

eV

EﬁJ]=nmx{ e e

S[7‘7.]] - CTVOV

Fli,j] = max{ Flij—1]~G

The initial conditions (where ¢ = 0 or j = 0) are as follows:

0
Sli,jl = —Goy —3j - Gey,
—Gopy — i Gepy
. —Gopy —1-Ge
Blii) = { “Gar Tt e

Fli,j] = { ey TI Gy

ev

(i=0,j =0)
(i=0.j #0)
(i#0,7=0)
(7=0)
(i=0)
(i =0)
(=0

S1.1 Derivation of the difference recurrence relations
Difference values AH[i, j] are defined for ¢ > 1, and AV[i, j] for j > 1. AE[i,j] and AF[i, j] are defined across the cells in

the whole DP matrices (¢ > 0 and j > 0).

AH, j] = S[i, j] — Sli — 1, ]
AVi,j] = S[i, j] = S[i,5 — 1]
AE[i, j] = E[i, j] — S[i, j]
AF[i, j] = Fli, j] — S[i, j]

(i=1)
(G=1)



S1.1.1 AH and AV
First, we derive the update formulae of AH by substituting the right-hand sides of the update formula of S (Eq 4) into
S[¢, j] in the definition of AH (Eq 10).
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A is defined the same as in the main text:

s(aj—1,b5-1)
Ali,j] = max{ AE[i—1,§] + AV[i — 1,5] — Ge,, (15)
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The update formula for AV is derived similarly:
AV, j] = Ali, j] — AH[i,j — 1] (16)

S1.1.2 AFE and AF
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The update formula for AF is obtained in a similar fashion:
—_— —Goy,
ARl = ma"{ AFi,j — 1] = AV[i,j] - Ge, (18)

S1.1.3 Initial conditions

These are defined across the cells in the left edge column ¢ = 0 and the top edge row j = 0. From Equation 4, the initial
conditions for AH are derived as follows:
AHIi ] = STiyj] = Sli—1,5] = { Gon T Cenr =1,7=0) (19)
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For the initial conditions for AV:
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The initial conditions for AE and AF are defined as shown below. The differences from the —inf value are clipped to
—Goy and —Go,,, which are the minimum values of AE and AF, as we prove in Section S1.2.3. This modification does
not cause a gap penalization error at the edges as pointed out by Flouri et al. (2015) because this setting guarantees
E[0,7] = Gey < 5[0,4] = Gog — Gey and F[i,0] — Gey, < S[4,0] — Goy, — Gey, for the first updates of AE (where ¢ = 1)
and AF (j = 1), respectively.
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S1.2 Proof of the bounding formulae

We use the following lemma in the proof:

Lemma 1 If p = max{q,r}, then p > q and p > r always hold.

S1.2.1 Lower bounds of AF and AF

According to Equation 5 and Lemma 1, E[i, j] > S[i,j] — Gop always holds for any ¢ > 1 and j > 1. Then, the following
inequality is instantly derived:

AEl, j] = Efi, 5] — S[i,5] 2 —=Goy (23)
A similar process is applicable to AF:
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S1.2.2 Upper bounds of AE and AF
From Equation 4 and 5, the following transformation is obtained:
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A new variable, Bys[i, j], is introduced to replace the ternary minimum block in the formula. The variable is evaluated by
means of Lemma 1:

max { ~Goy (25)

=S[i—1,5 = 1]+ E[i — 1,j] — s(a;i—1,bj—1) — Gey
Byli,j] =min{ 0 <0 (26)
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Thus, variable AE[i, j] is bounded from above:
AE[i,5] <0 (27)
Similar derivation is applicable to AF:

AF[i,j] <0 (28)



S1.2.3 Lower bounds of AH and AV

From Equations 4 and 5, it follows that S[i,j] > E[i — 1, j] — Ge, and Eli, j| > S[i, j] — Goy always hold for any ¢ and j,
respectively. Thus, the following inequality is obtained according to Lemma 1:

Sli,j] > Eli —1,5] — Geyy > St —1,5] — Goyy — Geyy (29)
Thus:
AHJi,j] = Sli,j] — S[i — 1,5] > —Goy — Geyy (30)
Similar reasoning applies to AV:
AV[i,j] = S[i, 5] — S[i,j — 1] > —Goy — Gey, (31)

S1.2.4 Upper bounds of AH and AV
We first postulate the following lemma:

Lemma 2
Sli,j] = Sli—k,jl > —Goy — k- Gey foranyi>1, j>1, and 1 <k <i. (horizontal)
Sli,j] = Sli,5 =1 > —Goy —1-Gey foranyi>1,5>1, and 1 <1< j. (vertical)

Proof: The update formula for S is defined as in Equation 4 for ¢ > 1 and j > 1. Then the following transformation
logically follows:
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In the last transformation, we used Lemma 1. Hence,
Sli,j] — St —k,j] > —Gopy — k- Gey; where 1 <k <1 (33)

Similarly, for the vertical:

Sli,j] = S[i,5 —1] > —Goy, —1-Gey, where 1 <1< j (34)



Using Lemma 2, we next prove the following lemma, which postulates that the diagonal difference is always bounded by
the maximum value in the substitution matrix:

Lemma 3 S[i,j]—S[i — 1,7 —1] < M foranyi>1andj>1

Proof: Let us assume that the following inequality holds for any 1 < s <7 and 1 <t < j except for the s =7 and t = j
pair:

S[s,f] = S[s—1,t—1] <M (35)
Then, we evaluate the upper bound of the S[¢, j] value using the following transformation and three resulting terms (i)—(iii):
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Case (i): When the first term (i) reaches the maximum of the ternary maximum block, the equation below holds for S|z, j]
and S[i — 1,5 —1]:

Sli,j] = Sli— 1,7 — 1] < maxs(p,q) = M (37)
D.a
Thus, Equation 35 is also true at (¢,7) in this case.

Case (ii): When the second term (ii) reaches the maximum, the case is further subdivided into the following two subcases

(a) and (b):
S[e, j] = 1212%3[2'7 k,jl — Gogy — k- Gey

_ max{ 5[0,5] — Gog — i Gey (k=1) (a)

maxy<h<it Sli— kyj] — oy — k- Geyy (1<k<i—1) (b) (38)

The first term (a), where k = 4, is evaluated as follows by means of Equation 35, Lemma 2(horizontal), and the maximum
of the initial conditions for AV (Eq 20):
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The second term (b), where 1 < k <14 — 1, is evaluated as follows:
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Thus, Equation 35 also holds at (¢,7) in this case:
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Case (iii): Similar to Case (ii), with Lemma 2 (vertical).

S1.2.5

Next, we evaluate another antidiagonal interlayer difference (i.e., the difference between a pair of cells at the same coordinates
in the DP matrices) to state another lemma:

Lemma 4
Eli—1,7] =S}, —1] < M +2Gey foranyi>1,j>1.
Fli,j—1] = S[i—1,5] < M + 2Ge,, for anyi>1, j > 1.

Proof:
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Case (i): The first term (i) is evaluated from above by means of the maximum value of the initial conditions for AV and
Lemma 2 as shown below:

810,41 = Gopy = (1 = 1) - Geyy = S[0,] + (S[0,5 — 1] = 5[0, = 1]) + (S[i, 5 — 1] = S[,j = 1]) = Gop — (i = 1) - Gep
= (5[0,4] = S[0,5 = 1]) + (S[0,5 = 1] = S[i,5 = 1)) + S[i;j = 1] = Gopy — (i = 1) - Gey
< —Gey +Goy +i-Gepy 4+ 8[i,j —1] = Gopy — (i — 1) - Geyy
= —Gey +Gepy + S[i,5 — 1] (43)

Case (ii): The second term (ii) is evaluated using Lemma 2 and 3:
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The proof is similar for F":
Fli,j —1] = S[li—1,7] < M + 2Ge,, (46)



S1.2.6
Finally, we derive the upper bound of AH using Equation 27 and Lemmas 2 and 4:

AHJi,j) = S[i, 4] — S[i — 1, 7]

}_
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Hence,
AH[i,j] < M + Goy, + Gey,
Similarly, for AV, j]:
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S1.3 Derivation of the offsetted difference recurrence relation

The definitions of the difference DP matrices with an offset and of the substitution matrix with an offset are the same as in

the main text:
AHG[ivj] = AH[i,j] + GOH + GEH
AVgli, 5] = AV[i, j] + Goy + Gey,
AEG[i, 5] = AE[i, j] + AV[i, j] + Gog + Goy + Gey
AFSli,j) = AF[i, ] + AH[i, §] + Goy + Gogy + Gey
sg(x,y) = s(x,y) + Goy + Gey +Goy + Gey,

S1.3.1 AHg and AVg

AHgli,jl = AH[i,jl + Gopyy + Geyy
= A, 7] — AV[i — 1,5] + Goy + Gepy
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=max{ AE[i—1,j]4+ AVli—1,j] = Gepy § — AV[i— 1,51+ Gopy + Geyy
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AFli,j — 1]+ AH[i,j — 1] + Gogy + Geyy + Gy,
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AFg[i, 4]
= Agli,j] — AVgli — 1, 4]
Acli, j] is defined as in the main text:

sg(ai—1,b5-1)
Agli, j) = Ali, j] + Goy + Gey + Goy + Gey, = max AE/G[z —1,4]

Similarly, for AVg|s, j]:
AVgli,jl = Agli,j] — AHgli, j — 1]

S1.3.2 AE[, and AF(,
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AE[i—1,5] — A1, j] + AV[i = 1, 5] — Gey

{

| s

{ Ali, ] + Goy + Gey,
{

{

max } + AV[i, jl + Gogy + Goy + Gey

max

_AH[Zv.j - 1]
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AE[i —1,5] + AV[i — 1,5] + 2Goy + Goy + Gey,

max
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Likewise, for AF(,[i, 5]:

AG[ivj]
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G[Zvj] max{ AF,G[%]_I]‘FGOV } VG[Z 7.]}
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(55)

(56)

(57)

(58)

(59)



S1.4 Bounding formulae for difference DP matrices with an offset
S1.4.1 AHG and AVG
The bounds of AHg instantly follow from Inequality 30 and 48 after addition of the gap penalty offsets:

0 < AHgG[4,j] < M+ Gop + Gey + Goy + Gey, (60)
Similarly, for AV, from Inequality 31 and 49, we get

0 < AVG[i,j] M+ Goy + Geyy + Goy + Geyy (61)

S1.4.2 AE[, and AF(,

From Lemmas 2 and 4, the upper bound of AE’G is derived in the following way:

AEG[i, ] = AE[i, ] + AV[i, j] + Gop + Goy + Gey

= E[i,j] — S[i,5 — 1]+ Goy + Goy + Gey,

— S[’i:.ﬂfGoH ..

—max{ Eli—1,j] 2 Ge, —S[i,j =1+ Gopy + Goy + Gey,

— max S[Z,j}—S[Z,]—l]—‘rGOV +Gev
E[i_lvj]_s[ivj_l}'i‘GoH_GeH +Gov +G5V
M+ Gogy + Geyy + Goy + Gey

Smax{ M + Goy + Gey + Goy + Gey,

=M+ Gopy +Gey +Goy +Gey, (62)

The lower bound is instantly obtained from Inequality 23 via addition of the gap penalty offsets. The complete bounding
formulae are shown below:

0 < AEL[i,j] < M + Gopy + Gepy + Goy + Gey (63)
In a similar fashion for AF/:

0 < AFL[E, 5] S M + Goy + Geyy + Goy + Gy, (64)

S2 Library design and implementation details

The library is implemented in the pure C programming language in an object-oriented manner. Given that the C language
does not explicitly support classes or object-specialized functions (class methods), we designed APIs to take a pointer to an
object instance as the first argument to treat a C function call as a class method call. The return object and other reference
arguments are also handled by pointers, and thus we consider an object instance and the pointer to an instance equivalent
in the context of argument passing in the description below.

S2.1 Target architectures

The library implies 64-bit little-endian architectures with 128- or 256-bit-wide SIMD instruction and unaligned load/store
capability. The possible targets are x86-64 with SSE4.1 or AVX2 (Intel Corporation (2016), Advanced Micro Devices Inc.
(2013)), AArch64 with NEON (ARM Ltd. (2017)), and 64-bit PowerPC with AltiVec instructions (in little-endian mode;
OpenPOWER Foundation (2017)). The library currently supports only the x86_64 architecture, whereas the architecture-
dependent operations are separated from the algorithm implementation into headers, which are specified to provide several
abstract vector types (e.g., v32i8_t, v16i8_t, and v2i64._t), operations on them, and several bit manipulation operations like
popent and trailing zero count. We provided two variants, SSE4.1 and AVX2, in the current implementation.

S2.2 API design

The library is supposed to be a component of seed-and-extend—style alignment algorithms, that is, the library supports only
the semi-global extension alignment (not local or global alignment). We also regard the library as thread-safe, with a global
immutable configuration context and the thread-local DP matrix context. The global context is initialized with a set of
substitution matrix, gap penalties, and several other parameters like the X-drop threshold. The local context is generated
from the global object, inheriting the configuration and initializing its own DP matrix and memory arena. The memory
management in the local context is not designed to be interthread-portable; thus, the users must not pass any derived object
of a local context (an object that is returned from a function that takes a local context as the first argument) to another
local context. The following code snippet shows the signature of the two context initialization functions: global and local.l
The two boundary arguments, alim and blim, are added to inform the library at the tail address of the user space, which is
utilized to index reverse-complemented sequences. A sequence pointer that leads to an address larger than the boundary is

1Because this document is not a manual for the library, the detailed description of the parameters and behavior of the APIs is omitted.



treated as a “phantom sequence,” and the reverse-complemented one at the mirrored address is used. This behavior enables
library users to save memory for sequences, where only forward ones are kept in memory and reverse-complemented ones
are distinguished by mirrored pointers.

/* global context initialization function */
gaba_t *gaba_init (
gaba_params_t const *params);

/% local context initialization function */
gaba_dp_t *gaba_dp_init(

gaba_t const *global_context,

uint8_t const *alim,

uint8_t const *blim);

The alignment function takes three arguments—“tail object” of the previous band and reference side and query side
sequences—and tries to extend alignment after the tail object with two input sequences. The function returns a new
tail object with at least one of the following three states: X-drop termination, reference-side sequence depletion, or query
side sequence depletion. This behavior enables us to handle the input sequence as a linear concatenation (or list) of subse-
quences. This feature is introduced to make the API compatible with circular or graphically structured genomic sequences
like string graphs. The fill_root function is provided to start the banded alignment, which internally creates an “empty” tail
object and pass it to the normal matrix fill-in function. The following code snippet is a simple linear-to-linear alignment
calculation with a 32-base-long “margin” sequence, which is generally an array of zeros, to ensure that the ends of the input
sequences are covered by the band, where r and ¢ are pointers to the reference side and the query side sequence segments,
and m is a pointer to the margin, whereas rsp and ¢sp are respectively start positions in the reference and query. Note
that each subsequence is distinguished by a “sequence ID,” which is a 32-bit unsigned number uniquely assigned to the
subsequences.

/* build section structs */

gaba_section_t rsec = gaba_build_section(0, r, 0x800000000000);
gaba_section_t gsec = gaba_build_section(0, g, 0x800000000000);
gaba_section_t msec = gaba_build_section(0, m, 0x800000000000);
/% keep current pointers on Tp and gp */

gaba_section_t const *rp = &rsec, *qp = &Qgsec;

/* fill-in the body of the banded matriz */
gaba_fill_t *f = gaba_dp_fill_root(
dp, rp, TSP, QP, 4sp);

/* keep section with the mazimum cell value on m */
gaba_fill_t *m = f;

/% fill-4in the tail of the banded matriz */
uint32_t flag = GABA_STATUS_TERM;
do {
if (f->status & GABA_STATUS_UPDATE_A) {
rp = &msec;

}
if (f->status & GABA_STATUS_UPDATE_B) {
qp = &msec;
}
flag |= f->status & (
GABA_STATUS_UPDATE_A | GABA_STATUS_UPDATE_B
);
f = gaba_dp_fill(dp, f, rp, qp);
m = (f->max > m->max)? f : m;
} while (!(flag & f->status));

/% fill-in stage is dome, m holds block with the mazimum */

The tail object also keeps information on the maximum-scoring cell in the band. The search_max function returns a set of
reference side and query side sequence IDs and local positions within the subsequences.

gaba_pos_pair_t gaba_dp_search_max(
gaba_dp_t *local_context,
gaba_fill_t const *section);

The traceback function is designed to handle seed-and-extend—style alignment efficiently accepting two tail objects: forward
and reverse. The resulting paths are concatenated at their root in opposite directions to generate the complete (full-length)
alignment path. It is also possible to insert short matches between the two roots as the seed sequence of the alignment.
Passing tail objects to the function results in an alignment object, which contains the score of the alignment, alignment
path, and a list of the corresponding sections and breakpoint coordinates for them.

gaba_alignment_t *gaba_dp_trace(
gaba_dp_t *local_context,
gaba_fill_t const *fw_tail,
gaba_fill_t const *rv_tail,
gaba_trace_params_t const *params);

S3 Results for SSE 4.1 variants

Our libgaba and the other SIMD implementations (non-diff and diff-raw) support both SSE4.1 128-bit-wide and AVX2 256-
bit-wide vectorizations. We compared the performance of the two vectorization variants on several combinations of CPU
microarchitectures and compilers. The detailed configurations of the four machines are listed in Table S1, and the results
are shown in Table S2. We tested two additional variants in instruction encoding, REX- and VEX-prefix encoded, for the
SSEA4.1 ones to investigate the effect of the instruction encoding on performance.
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The results showed that the libgaba implementation was generally as fast as or slightly slower than editdist in all the
other tested environments when the AVX2 instruction was enabled, regardless of the compiler and its version, indicating
that the design of the algorithm and data structures and tuning applied to the library were generally effective for x86_64
processors. It is also noteworthy that the acceleration ratio trends were roughly consistent with the results on the Skylake
system, which are presented in the main text.

Table S1: Specifications of the four systems.

CPU arch. Model Clock DRAM speed OS Compilers Description

Ivy Bridge Core i5-3230M 2.6GHz DDR3-1600 Mac OS X 10.11.6 Apple clang, clang-4.0, gcc-5.4.0 MacBook Pro Retina 13" early 2013
Haswell Xeon E5-2670v3  2.3GHz DDR3-1600  Red Hat Enterprise Linux 6.8 gcc-4.9.3, Intel C compiler 16.0.3 (icc-16.0.3) Shirokane3 at Human Genome Center
Skylake Core i5-6260U 2.8GHz @ boost DDR4-2133  Ubuntu 16.04.2 LTS clang-3.8, gcc-5.4.1 Intel NUC 6i5SYH

Zen Ryzen 7-1700 3.7GHz @ boost DDR4-2400  Ubuntu 17.04 clang-3.8, gcc-6.3.0 Personal Desktop

The systems are distinguished by their CPU microarchitectures and the other components (DRAM, OS, and available
compilers). The Haswell system is a single node of the Shirokane3 cluster at the Human Genome Center, the University of
Tokyo. All the others are personal.
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Table S2: Results of the speed benchmark of REX- and VEX-encoded SSE4.1 and of AVX2 variants on four systems.

Implementation CPU arch. Model Clock DRAM speed  Vectorization Compiler Arch. flags Fill (ms)  Trace (ms) Conv(ms) Total (ms)
editdist Ivy Bridge Core i5-3230M  2.6GHz DDR3-1600 64-bit GP reg.  Apple clang -march=native 0.462 0.135 0.089 0.686
64-bit GP reg.  clang-4.0 -march=native 0.460 0.134 0.089 0.683

64-bit GP reg.  gcc-5.4.0 -march=native 0.463 0.136 0.090 0.689

Haswell Xeon E5-2670 v3 2.3GHz DDR3-1600 64-bit GP reg.  gcc-4.9.3 -march=native 0.373 0.103 0.107 0.583
64-bit GP reg.  icc-16.0.3  -march=native 0.372 0.103 0.108 0.583

Skylake Core i5-6260U 2.8GHz DDR4-2133 64-bit GP reg.  clang-3.8 -march=native 0.456 0.110 0.080 0.646
64-bit GP reg.  gcc-5.4.1 -march=native 0.438 0.106 0.077 0.621

Zen Ryzen 7-1700 3.7GHz DDR4-2400 64-bit GP reg.  clang-3.8 -march=native 0.279 0.082 0.095 0.455
64-bit GP reg.  gcc-6.3.0 -march=native 0.278 0.082 0.094 0.454

non-diff Ivy Bridge Core i5-3230M 2.6GHz DDR3-1600 SSE4.1 Apple clang -msse4.2 1.266 0.702 0.081 2.049
SSE4.1 (VEX) Apple clang -march=native 1.189 0.701 0.075 1.965

SSE4.1 clang-4.0 -msse4.2 1.280 0.705 0.082 2.067

SSE4.1 (VEX) clang-4.0 -march=native 1.179 0.701 0.074 1.954

SSE4.1 gce-5.4.0 -msse4.2 1.313 0.718 0.083 2.115

SSE4.1 (VEX) gcc-5.4.0 -march=native 1.196 0.704 0.076 1.976

Haswell Xeon E5-2670 v3 2.3GHz DDR3-1600 SSE4.1 gce-4.9.3 -msse4.2 0.979 0.238 0.103 1.320
SSE4.1 (VEX) gcc-4.9.3 -mavx 0.978 0.245 0.104 1.326

AVX2 gcc-4.9.3 -march=native 0.593 0.239 0.101 0.933

SSE4.1 icc-16.0.3 -msse4.2 1.006 0.250 0.106 1.362

SSE4.1 (VEX) icc-16.0.3 -mavx 0.983 0.239 0.105 1.327

AVX2 icc-16.0.3  -march=native 0.593 0.244 0.100 0.937

Skylake Core i5-6260U 2.8GHz DDR4-2133 SSE4.1 clang-3.8 -msse4.2 1.208 0.391 0.074 1.673
SSE4.1 (VEX) clang-3.8  -mavx 0.913 0.389 0.072 1.374

AVX2 clang-3.8 -march=native 0.558 0.388 0.074 1.020

SSE4.1 gce-5.4.1 -msse4.2 1.184 0.404 0.073 1.661

SSE4.1 (VEX) gcc-5.4.1 -mavx 1.054 0.404 0.076 1.533

AVX2 gee-5.4.1 -march=native 0.577 0.410 0.075 1.061

Zen Ryzen 7-1700 3.7GHz DDR4-2400 SSE4.1 clang-3.8 -msse4.2 0.765 0.363 0.095 1.223
SSE4.1 (VEX) clang-3.8 -mavx 0.719 0.362 0.094 1.175

AVX2 clang-3.8 -march=native 0.589 0.368 0.093 1.050

SSE4.1 gce-6.3.0 -msse4.2 0.722 0.353 0.095 1.170

SSE4.1 (VEX) gcc-6.3.0 -mavx 0.720 0.362 0.094 1.176

AVX2 gce-6.3.0 -march=native 0.590 0.356 0.093 1.039

diff-raw Ivy Bridge Core i5-3230M  2.6GHz DDR3-1600 SSE4.1 Apple clang -msse4.2 0.786 0.500 0.078 1.364
SSE4.1 (VEX) Apple clang -march=native 0.746 0.500 0.068 1.314

SSE4.1 clang-4.0 -msse4.2 0.787 0.500 0.078 1.365

SSE4.1 (VEX) clang-4.0 -march=native 0.764 0.503 0.070 1.337

SSE4.1 gce-5.4.0 -msse4.2 0.888 0.547 0.095 1.530

SSE4.1 (VEX) gcc-5.4.0 -march=native 0.762 0.505 0.070 1.338

Haswell Xeon E5-2670 v3 2.3GHz DDR-1600 SSE4.1 gce-4.9.3 -msse4.2 0.654 0.207 0.107 0.968
SSE4.1 (VEX) gcc-4.9.3  -mavx 0.614 0.214 0.103 0.931

AVX2 gcc-4.9.3 -march=native 0.504 0.206 0.102 0.813

SSE4.1 icc-16.0.3 -msse4.2 0.668 0.217 0.109 0.994

SSE4.1 (VEX) icc-16.0.3 -mavx 0.607 0.207 0.104 0.918

AVX2 icc-16.0.3  -march=native 0.511 0.212 0.102 0.825

Skylake Core i5-6260U 2.8GHz DDR4-2133 SSE4.1 clang-3.8 -msse4.2 0.885 0.325 0.077 1.287
SSE4.1 (VEX) clang-3.8 -mavx 0.664 0.316 0.073 1.053

AVX2 clang-3.8 -march=native 0.525 0.328 0.076 0.929

SSE4.1 gee-5.4.1 -msse4.2 0.860 0.327 0.075 1.262

SSE4.1 (VEX) gcc-5.4.1 -mavx 0.708 0.329 0.076 1.113

AVX2 gce-5.4.1 -march=native 0.535 0.327 0.077 0.938

Zen Ryzen 7-1700 3.7GHz DDR4-2400 SSE4.1 clang-3.8 -msse4.2 0.497 0.135 0.093 0.725
SSE4.1 (VEX) clang-3.8 -mavx 0.463 0.131 0.096 0.690

AVX2 clang-3.8 -march=native 0.461 0.143 0.095 0.699

SSE4.1 gce-6.3.0 -msse4.2 0.495 0.143 0.093 0.730

SSE4.1 (VEX) gcc-6.3.0 -mavx 0.465 0.137 0.096 0.698

AVX2 gce-6.3.0 -march=native 0.461 0.144 0.095 0.701

libgaba Ivy Bridge Core i5-3230M  2.6GHz DDR3-1600 SSE4.1 Apple clang -msse4.2 0.531 0.091 0.032 0.654
SSE4.1 (VEX) Apple clang -march=native 0.528 0.090 0.033 0.651

SSE4.1 clang-4.0 -msse4.2 0.530 0.091 0.032 0.653

SSE4.1 (VEX) clang-4.0 -march=native 0.518 0.088 0.033 0.638

SSE4.1 gce-5.4.0 -msse4.2 0.610 0.099 0.034 0.743

SSE4.1 (VEX) gcc-5.4.0 -march=native 0.523 0.089 0.033 0.646

Haswell Xeon E5-2670 v3 2.3GHz DDR3-1600 SSE4.1 gce-4.9.3 -msse4.2 0.611 0.088 0.031 0.730
SSE4.1 (VEX) gcc-4.9.3  -mavx 0.533 0.091 0.032 0.655

AVX2 gce-4.9.3 -march=native 0.386 0.094 0.029 0.509

SSE4.1 icc-16.0.3 -msse4.2 0.622 0.089 0.032 0.743

SSE4.1 (VEX) icc-16.0.3 -mavx 0.543 0.090 0.032 0.665

AVX2 icc-16.0.3 -march=native 0.384 0.094 0.029 0.506

Skylake Core i5-6260U 2.8GHz DDR4-2133 SSE4.1 clang-3.8 -msse4.2 0.723 0.099 0.033 0.856
SSE4.1 (VEX) clang-3.8 -mavx 0.508 0.099 0.034 0.640

AVX2 clang-3.8 -march=native 0.395 0.102 0.030 0.527

SSE4.1 gee-5.4.1 -msse4.2 0.720 0.098 0.033 0.851

SSE4.1 (VEX) gcc-5.4.1 -mavx 0.512 0.100 0.033 0.645

AVX2 gee-5.4.1 -march=native 0.377 0.098 0.028 0.503

Zen Ryzen 7-1700 3.7GHz DDR4-2400 SSE4.1 clang-3.8 -msse4.2 0.440 0.069 0.022 0.532
SSE4.1 (VEX) clang-3.8 -mavx 0.404 0.072 0.022 0.498

AVX2 clang-3.8 -march=native 0.374 0.075 0.022 0.471

SSE4.1 gce-6.3.0 -msse4.2 0.439 0.069 0.022 0.531

SSE4.1 (VEX) gcc-6.3.0  -mavx 0.403 0.072 0.022 0.496

AVX2 gce-6.3.0 -march=native 0.374 0.075 0.022 0.471

The benchmark setting and the definitions of the Fill, Trace, Conv, and Total columns are the same as in the main text. The
detailed specifications of the systems are listed in Table S1. The boldfaced numbers show the fastest variant for each pair
system-stage (column). The REX-encoded binaries were generated using architecture flag -msse4.2 to enable both SSE4.1
instructions and the popent instruction (included in SSE 4.2). The VEX-encoded binaries were generated with the -mavx
flag, where SSE 4.1 instructions were used in the explicit vectorizations and several AVX instructions (e.g., vinovaps) were
employed in the automatic loop vectorization and some libc functions like memset and memcpy. The -march=native flag
was applied to enable all the available instructions and optimizations as the fastest baselines on each system.
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