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MCMC sampling strategies for each parameter and hyper-parameter 1 

 2 

(1) Joint posterior densities of the SSGBLUP, SS-BayesA and 3 

SS-BayesB models 4 

The joint posterior density for SSGBLUP was as below: 5 
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 7 

Here, y  was the vector of phenotype of all animals, β  was the fixed effects vector, 8 

j  was the marker effects of the jth marker, ε  was the imputation residuals vector 9 

for the non-genotyped animals, 
2

g  and 2

  were the polygenic variance and SNP 10 

effects’ variance, 2

e  was the residual variance,   and 2

s  were degree of 11 

freedom and scale of the scaled inverse chi-square prior of the SNP effects’ variance, 12 

g  and 
2

gs  were degree of freedom and scale of the scaled inverse chi-square prior 13 

for the polygenic variance, e  and 2

es  were degree of freedom and scale of the 14 

scaled inverse chi-square prior for the residual variance. x , w and u were the 15 

corresponding design matrices or vectors for fixed effects, SNP effects and imputation 16 

residuals, n  was the total number of genotyped and non-genotyped animals, m  17 

was the total number of markers, 1q  was the number of non-genotyped animals, and 18 

 
1

11 1

11 12 22 12 '


 A A A A A .  19 
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The joint posterior density of SS-BayesA was 20 
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 22 

Here, 
2

j was the jth marker’s marker-specific effect variance, the prior for the 23 

degree of freedom ( v ) was  
 21

1




v

vp


  [1], and the prior of scale ( 2

s ) was a 24 

scaled inverse chi-square distribution   2
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The joint posterior density of SS-BayesB was 26 
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 28 

Here, m  was the proportion of markers which had non-zero effects, 1m was the 29 

number of non-zero effect SNP, m  had a beta distribution prior with30 

    11
1


  
 mmmp , and 2

s  had a gamma prior of31 
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 33 

(2) Sampling of polygenic variance for all three single-step models 34 

Fernando et al. [2] assumed that the polygenic variance was independent with marker 35 

effects’ variances. They used a scaled inverse chi-square prior on the polygenic 36 

variance. The full conditional density (FCD) of polygenic variance then also followed 37 

a scaled inverse chi-square distribution: 38 
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where 
g

 and 
2

g
s  were the degree of freedom and scale of the prior, and 

1
q  was the 40 

total number of ungenotyped animals. This FCD of polygenic variance was used for 41 

all the three models (SSGBLUP, SS-BayesA and SS-BayesB). 42 

 43 

(3) Sampling of imputation residuals for all three single-step models 44 

The FCD of imputation residuals are the same for SSGBLUP, SS-BayesA and 45 

SS-BayesB models. The joint FCD of the imputation residuals can be written as 46 

follow: 47 

                          εε Σ,με NE L S Ep |  48 

where  
1

11 '

1 1 1 1 *g


 '

ε
μ Z Z A Z y , and  

1
11 2

1 1 g e
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 '

ε
Σ Z Z A . 49 

where  1 1 1 1*  y y X β Wα , 
2 2/g e g   , and 1y is the vector of phenotype of 50 

ungenotyped animals. The block-Gibbs sampler could be used to sample from this 51 
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multivariate normal distribution [2, 3]. 52 

 53 

(4) Sampling of marker effects and their variance for SSGBLUP and 54 

SS-BayesA 55 

With a scaled inverse chi-square prior  2 2,s
 

  , the FCD of marker effects’ 56 

variance for the SSGBLUP model is 57 
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which is also a scaled inverse chi-square distribution. For the SS-BayesA model, each 59 

marker has its specific effect’s variance. The FCD of 2

j
 for the j

th
 marker in the 60 

SS-BayesA model is                       61 

                                        62 
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This is also a scaled inverse chi-square distribution. The FCD of markers effects for 64 

both SSGBLUP and SS-BayesA follow normal distributions [2] with 65 
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where 
ijw is the ith row and jth column of the incidence matrix W of (3). For the 68 

SSGBLUP model, marker effects variance 
2

j  is the same for all markers. For the 69 

SS-BayesA and model, 
2

j  are unequal for different markers.  70 

 71 

(5) Sampling of marker effects and their variance for SS-BayesB  72 

The FCD of marker effects’ variance for the jth marker in the SS-BayesB model is 73 
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' 2 2

jj j j e  V w w I and  2 2| , ,
j mp s      is 75 

the prior density. This FCD is not recognizable, and we adopted the 76 

Metropolis-Hasting algorithm. We used the prior  2 2| , ,
j mp s      as the proposal 77 

(driver) density [4], where the prior is a scaled inverse chi-square distribution. Then, 78 

the Metropolis-Hastings acceptance ratio (for jth marker) of the new proposal 2*

j  is: 79 
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 80 

This ratio is further equal to: 81 
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where ' *
j j

r w y ,  
2

2 2

ij e
v


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j j j j
w w w w , and the proposal density is 83 
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Then, we can accept 2*

j
  with the probability of 

  
1

2 2*,
jj t   


. If the accepted 2*

j
  85 

is not zero, then SNP effect of marker j is sampled from its FCD, which is the same as 86 

in the SS-BayesA model; if the new accepted 2*

j
  is zero, then SNP effect of marker 87 

j is also zero. During the MCMC sampling procedure, the latest estimates of 88 

msv   , , 2  were used in the proposal density.  89 

 90 

(6) Sampling of scale (
2s


) and degree of freedom (


 )) in SS-BayesA 91 

Sampling of scale (
2s


) 92 

For 
2s


, we used a scaled inverse chi-square prior 2 2( 1, 0)
s s

s     . Then, the FCD 93 

of 
2s


 is: 94 
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It can be further simplified by integrating out marker effects’ variances [5], then 96 

2

2

1
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2
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1

1
2 22

1
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1
( | ) 1

s ssm
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        
  



. 97 
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This FCD is not recognizable. Therefore, we used the Metropolis-Hasting sampling 98 

strategy with a truncated normal distribution as the proposal density to draw samples 99 

on 
2s
  

[6].  100 

Sampling of degree of freedom (


 ) 101 

The FCD of 


 with a vaguely informative prior of  
 

2

1

1
p 









 [1] is as follow: 102 
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j
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vpsvpELSEvp
j

, 103 

where m is the total number of markers. As this FCD is not recognizable, we also used 104 

Metropolis-Hasting sampling strategy with a truncated normal distribution as the 105 

proposal density to sample 


 . 106 

(7) Sampling of hyper-parameters (
2s


, 


  and m ) in SS-BayesB  107 

Sampling of sacle (
2s


)  108 

We used a conjugate gamma prior  
 

 
 
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 of 109 
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 112 

where 
1

m is the number of markers with non-zero effects. It is again a gamma 113 
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distribution. A Gibbs sampler was applied here to draw MCMC samples. 114 

Sampling of degree of freedom (


 )  115 

For   of SS-BayesB, its FCD was 116 
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 118 

Similar to SS-BayesA, Metropolis-Hasting sampling strategy with a normal 119 

distribution proposal density was used to sample  . 120 

Sampling of m   121 

A beta prior  1, 10beta
 

    was used for m , and its FCD was  122 

    11
11

1
m mm

m m mp 
  

   
  . 123 

It was still a beta distribution, and Gibbs sampling was used here to sample from this 124 

beta distribution. 125 

We used  
2 2

2
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0
21
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

 (a gamma density distribution) as the 126 

proposal density in the Metropolis-Hasting sampling strategy for 
2s


 here. 127 

 128 
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