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Text S1: Determining the threshold for partitioning responders from 
non-responders. 

The partitioning threshold used to distinguish responders from non-responders was chosen as 
follows.  The observed response frequency distribution for all cAMP doses used in the 
experiments was fitted twice, first to a single Gaussian and then to two Gaussian distributions 
(Fig. T1).   The ratio of the reduced Chi-squared values, correcting for the reduction in the 
degrees of freedom for the two Gaussians fit, are shown in the figures.  The quality of the fits 
improved substantially when two, rather than a single Gaussian distribution were used for 
fitting, supporting the existence of two distinct sets of responses.    The intersection point of 
the two fitted Gaussians was then used to set the partition threshold. 

 

 

Fig. T1.  The observed response frequency distribution for all cAMP doses used in the 
experiments was fitted twice, first to a single Gaussian and then to two Gaussian distributions.  
The intersection point, 1.15, is the threshold used to partition responders from non-responders. 

 

 



Text S2. Comparing the responses of single integral feedback and feedforward 
loops to ramp input. 

Both the incoherent feed-forward and integral feedback systems are capable of resetting to 
baseline in response to a single-step disturbance (1). The integral feedback control type circuits 
achieves perfect adaptation by continuously monitoring the difference between input and 
output, therefore a single circuit will fail to adapt to a linear ramp stimuli (Fig. T2) (2).  
Therefore, at least two integral feedback circuits coupled in sequence are required to achieve 
perfect adaptation to linear ramp stimuli, with the first converting the stimulus into a persistent 
output and the second circuit converting this persistent output into a transient response 
returning to the baseline (2).  In comparison, only a single incoherent feed-forward circuit is 
required to adapt to a linear ramp, because it determines the degree of resetting by directly 
monitoring the input (Fig. T2).  The adaptation responses we measured when cells are exposed 
to cAMP suggest either a single incoherent feed-forward circuit (such as LEGI) is present, or 
alternatively, at least two sequential integral feedback circuits. Due to its relative simplicity, we 
have continued using the feedforward scheme in the aLEGI model throughout the study.  



 

Fig. T2. Integral feedback response to a ramp stimulation. Two possible three-node network 
motifs for perfect adaptation were considered: Integral negative feedback and incoherent 
feedforward loop. Both network topologies are capable of resetting to baseline in response to a 
single-step disturbance. C1. Integral control feedback circuit response to step input.  A directly 
mirrors the input (L) concentration, B is the negative inhibitor, and C is the negative feedback 
response element.  The following parameter values were used in the Mathematica simulation: 
Kcb = 0.01, KFbb = 0.01, kcb = 0.2, Fb = 1.0, kFbb = 0.1, kac = 1.0, Kac = 1.0, kbc = 2.0, Kbc = 0.1.    C2. 
Integral control type circuits achieves perfect adaptation by continuously monitoring the 
difference between input and the output, therefore single integral feedback loop fails to adapt 
to a linearly increasing stimuli (upper left and right panels).  This result is robust against 
parameter variation. The feedforward adaptation circuit can adapt to a linear ramp because it 
determines the degree of resetting by directly monitoring the input.  Lower right panels: the 
result of aLEGI originally presented in Fig. 4C is reproduced here for the convenience of 
comparison. 



Text S3: Method for gradient sensing analysis. 

The main drawback of the LEGI module as a stand-alone model is its failure to generate the 
experimentally observed switch-like polarization response in the gradient of the intraceullar 
signaling.  Mechanisms such as the  “balanced inactivation” scheme have been proposed as a 
potential modification of the LEGI model to address this shortcoming (3). However, the 
balanced inactivation model has the essential drawback of being unable to explain the 
apparently absent response in absence of complete resetting of the sensitivity of the pathway 
(for example, the refractory period observed in this study). As shown in the main text, the aLEGI 
model can also allow for a strong amplification of the response gradient.  The LEGI module 
transforms the extracellular gradients of cAMP into a gradient of LEGI responses, the slope of 
which mirrors the external gradient closely if the inhibitor’s diffusion coefficient is sufficiently 
high.  However, in the context of the aLEGI model, the amplifier module can convert the more 
graded input from LEGI to a more switch-like response, in a manner dependent on the θ values 
of the individual cells (Fig. 5A).   

The gain of the intracellular gradient amplification for various extracellular gradient and θ values was 
estimated using the following metric: 

ValueGradientlarExtracellu
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Text S4: Setup and development of the collective cell response model. 

Below we list the assumptions underlying the simple model of collective cell responses. We 
note that although are model is conceptually similar to a study by Vasieva et al. (4), the details 
are sufficiently different to qualify the present model as completely distinct. The assumptions 
are consistent with the aLEGI model properties, including the differential sensitivity to both 
spatially homogeneous and spatially graded cAMP inputs across the cell population, as 
discussed in the main text.  

1) An N x N simulation grid is used with K cells seeded on it, one of which is selected as the 
pulsing source of the cAMP signal with a period P; 

2) Each cell is in one of three states: Unstimulated, Responding, or Recovering in sensitivity 
(based on the cell memory discussed in the main text); 

3) Cell-cell communication is characterized by the spatial signaling radius is R, that is a 
resting cell within a radius of R from a Responding cell (assumed to be secreting the 
cAMP signal; cAMP secretion is equal for all Responding cells) can becomes itself 
Responding at the next time step, and then move by a displacement distance S in the 
direction of maximum input concentration.  Once excited, cells stay in the Recovering 
mode for a period of F time steps, defined by the cell memory. As specified below, 



whether a cell responds or not depends on its response threshold (per aLEGI model), 
expressed in terms of different effective spatial signaling radius. 

 
In this model implementation, we simplified the analysis by simulation of a dual threshold 
response by assigning each cell in the population one of two effective spatial signaling radius 
values, R1 or R2.  For instance, the cells with a lower threshold for responding to cAMP will have 
the larger value R2. We implemented this simple multicellular model in Mathematica (Wolfram) 
with the following parameters: N = 300; K = 1089; P = 6; F = 3; S = 5.  The R values used are 
specified in the figures.  We used this modified model to study the temporal progression of the 
spatial patterns of the reorganizing cell population as a function of the heterogeneity of the 
population.  

Fig. 6A of the main text shows the examples of heterogeneous and homogeneous populations, 
and illustrates different temporal evolutions for these two population types.  The effective 
spatial signaling radius (Reff) used in Fig. 6 is defined as follows:  

Reff = f1 R1 + (1-f1)R2, 

where f1 is the fraction of the population that has the higher threshold, and R1 and R2 are 
defined above. f1 was allowed to vary from 0 to 1, 1 corresponding to a homogeneous 
population with a high threshold, 0 to a homogeneous population with a low threshold.  In Fig. 
6A, the heterogeneous population was constructed to have an identical effective spatial 
signaling radii as that of the homogeneous population (Rhomog = Reff).  The behaviors of these 
two populations are then quantified in Fig. 6B, by plotting the asymptotic time against the 
effective spatial signaling radius, where the asymptotic time is defined to be the time at which 
90% of the cells have stopped streaming towards the pulsing source.  The results suggest that, 
even though the heterogeneous and homogeneous populations have the same average 
effective spatial signaling radius values, the heterogeneous population converges more rapidly 
to a defined pattern compared to the homogeneous one.   

 

 

 

 

 

 

 



Text S5: Mathematical description of the aLEGI model. 



 



Figure S1. The microfluidic function generator.  

a. A photograph of the device and b. design layout.  The custom microfabricated PDMS device 
was bonded to a glass coverslip and filled with food dyes to facilitate visualization. The chip 
contained two layers. The bottom layer (visualized with red food dye) contained a cell culture 
chamber connected by a mixing channel to the two signal inlets, and a separate set of channels 
for waste output and cell introduction.  Two upper control channels (visualized with green food 
dye) controlled stimuli entry and exit, the remaining partitions the cell culture chamber into 
multiple compartments, allowing independent experimentation in subsets of the chamber. 

c. Stimulation profile of oscillatory square waveform with arbitrary periods and duty cycles was 
generated by selectively actuating the valves gating the inlets containing the washing buffer 
and the stimuli.   

d. Arbitrary stimuli concentration profiles were produced by mixing the washing buffer and the 
stimuli flowing at different relative volumetric flow rates (designated as V in the diagram).  
Ramp stimuli and pulsatile waves were generated based on similar principle, except the relative 
volumetric flow rate dynamically changed with respect to time instead of remaining fixed.  

 

 

 





 



Figure S2. The properties of aLEGI model.  

a. Simulated single cell dose response.  Peak aLEGI responses to different combinations of 
threshold and ligand amounts plotted as a density plot.  Red line: responder value.  

b. Simulation of cells stimulated with square wave trains with periods of 140 s, 70 s, 30 s, 18 s 
(from top to bottom).  The input profiles are shown in red, and the aLEGI responses in black. 

 



 

Figure S3.  Schematic mechanism of increased rate of cAMP wave propagation as a function of 
the colony heterogeneity.  The red circles were identical for each corresponding snapshot of the 
two populations.  Cells outside of the red circle get excited because they have a larger sensing 
radius.  This process repeats itself at every pulse, thus efficiently recruiting more cells that are 
farther away from the pulsing center. 

 

 



 

Figure S4.  Simulation of the average dose response dynamics  

 



 

Figure S5.  Dependence of PIP3 responses on probe expression. Peak PIP3 translocation 
responses to a step input of cAMP for doses 1 to 100 nM in a single cell compared to basal 
PHcrac-GFP expression.  The scattered plot is fitted to a line and the R-square value is 0.008.  

 



 

Figure S6.   Distribution of cell responses to step stimulation at two different developmental 
stages.  Top, Reproduction of Fig. 1C for comparison with the bottom figure.  Bottom, histogram 
of the peak responses to a step input of 1nM cAMP after the cells were developed for 7 hours.  

 

 



 

Figure S7.  Responses after latrunculin A treatment.  Histogram of the peak responses to a step 
input of 1 µM cAMP after the cells were developed for 4 hours then treated with latrunculin A 
(Lat-A) prior to stimulation.    
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Movie S1. Translocation kinetics of PHcrac-GFP in response to 10 nM cAMP.   

Movie S2. Translocation kinetics of PHcrac-GFP in response to 1 nM cAMP.   

Movie S3. Translocation kinetics of PHcrac-GFP in response to 1 pM cAMP, example 1.   

Movie S4. Translocation kinetics of PHcrac-GFP in response to 1 pM cAMP, example 2.   

Movie S5. Translocation kinetics of PHcrac-GFP in response to 1 pM cAMP stimulation for 5 
min, then 1 µm cAMP for another 5 min.  

Movie S6. Translocation kinetics of PHcrac-GFP in response to 100 nM cAMP stimulation for 5 
min, washed with buffer for 20 s, re-stimulated with 100 nM cAMP for another 5 min.  

Movie S7. Translocation kinetics of PHcrac-GFP in response to 100 nM cAMP stimulation for 5 
min, washed with buffer for 1 min, re-stimulated with 100 nM cAMP for another 5 min. 

Movie S8. Translocation kinetics of PHcrac-GFP in response to 100 nM cAMP stimulation for 5 
min, washed with buffer for 2 min, re-stimulated with 100 nM cAMP for another 5 min. 

Movie S9. Translocation kinetics of PHcrac-GFP in response to 100 nM cAMP stimulation for 5 
min, washed with buffer for 4 min, re-stimulated with 100 nM cAMP for another 5 min. 

Movie S10. Translocation kinetics of PHcrac-GFP in cells stimulated with pulse trains of 100 nM 
cAMP at 56 mHz.  

Movie S11. Translocation kinetics of PHcrac-GFP in cells stimulated with pulse trains of 100 nM 
cAMP at 40 mHz. 

Movie S12. Translocation kinetics of PHcrac-GFP in cells stimulated with pulse trains of 100 nM 
cAMP at 14 mHz. 

Movie S13. Translocation kinetics of PHcrac-GFP in cells stimulated with pulse trains of 100 nM 
cAMP at 7 mHz. 

Movie S14. Translocation kinetics of PHcrac-GFP in cells stimulated with 10 nM cAMP for 5 min, 
washed with buffer for 10 min, then stimulated with ramp stimuli of 0.2 nM/min.  

 

 




