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Supplementary Notes  

 An overview of the key steps for implementing the full MSP analytical model, including the 
significance of each step and a summary of how each step was implemented within this case 
study analysis, is found in Supplementary Table 1. In the following supplementary notes, we 
provide additional details about the component models used in our case study analysis.  

Supplementary Note 1.  

Ocean Circulation Model: A three-dimensional ocean circulation model (OCM) contributed to 
multiple parts of this study. The OCM is a high-resolution Regional Ocean Modeling System 
(ROMS) applied to the SCB region1,2. Implemented by Dong and McWilliams2, the OCM is 
driven by realistic boundary conditions extracted from a nested ROMS solution for the U.S. 
West Coast with high-resolution air-sea forcing. Detailed information on the lateral and surface 
boundary conditions and model validation can be found in Dong and McWilliams2 and Dong et 
al.3. The OCM has a 1-km horizontal grid and 40 vertical	levels and covers the same area as the 
study domain. Results from the OCM consist of three-dimensional flow fields and temperature 
and two-dimensional mixed layer depth, which contributed to the aquaculture models, the larval 
dispersal component of the halibut fishery model, and the disease model. For the halibut model 
(Supplementary Note 9) and the disease risk model (Supplementary Note 13), the OCM was run 
from 1996-2002. For the aquaculture models, the OCM was run using environmental data from 
2000 to 2001. This time period was chosen because it was a neutral-condition El Niño Southern 
Oscillation (ENSO) period4, and thus represents “average” oceanographic conditions. 

Supplementary Note 2.  

     Introduction to Aquaculture Production and Cost Models: To estimate the value of the three 
types of aquaculture farms (mussel, finfish, and kelp) we developed separate spatially-explicit 
bioeconomic models for each, then evaluated the models for sites that met the fixed constraints 
to aquaculture development. Each aquaculture model contains a production and a cost model. 
Production models estimate annual yield of a given aquaculture type (given a specified farm 
design for each type of aquaculture, described in detail below) within a site based on 
environmental conditions in that location (e.g. water temperature, currents, productivity, etc.). 
We then multiply that yield by a market price to determine annual revenue. Cost models 
incorporate effects of environmental conditions (e.g., wave height, depth) and geographic 
location (e.g., distance from port, depth) on operational and maintenance costs of the farm. Farm 
designs and cost estimates were based on aquaculture development plans from industry, which 
we then scaled to a 1-km2 farm size. When necessary to respect confidentiality, we only report 
aggregated cost data. Additionally, much of the economic information provided by industry was 
preliminary, outdated and/or highly aggregated. Therefore, while the exact cost numbers are 
uncertain, they are internally consistent within an aquaculture type and thus are appropriate for 
evaluating spatial variation in aquaculture value. Given that offshore aquaculture is a relatively 
new industry (particularly for finfish), we expect significant technological improvements and 
knowledge acquisition over the coming years that are likely to change the productive output and 
operational costs of aquaculture. As for many new industries, we expect that in most cases these 
developments will make the industry more productive and more cost-effective, increasing the 
number of sites that would be profitable and providing a larger number of options for developing 
aquaculture while minimizing impacts and tradeoffs. Our models can be adjusted for these new 
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scenarios in the future, and because of the rapidly evolving nature of the industry, we focus on 
spatial variation in productivity and profitability rather than absolute numbers.  

For all farms, we assumed that costs (e.g., of fuel, labor) would not change over the 10-year 
evaluation period and that the farm equipment has a lifespan of at least 10 years. Since there is 
currently no cost for leases in federal waters, we excluded any lease cost in our models. There 
are costs associated with a lease in state waters5, but we treated all sites equally in this respect so 
as to not bias development in favor of federal water sites. Deeper sites may have a larger bottom 
footprint due to the anchoring system design and therefore may be more difficult and costly to 
permit – issues that we do not explicitly address in our model. Some costs, especially 
administrative and maintenance costs, could decrease if the same company had farms in multiple 
sites, but we assumed that each farm is a separate, individually functioning entity and did not 
consider economies of scale.   

 For each aquaculture type, sites with negative value (NPV and annuity) were assumed to be 
undevelopable. These economic constraints, in addition to the logistical and regulatory spatial 
constraints (see Methods in main paper), restricted aquaculture development to 1,061 sites 
(Supplementary Fig. 1; 1,011 for mussel, 392 for finfish, and 325 for kelp). All calculations, 
unless otherwise indicated, were conducted using Microsoft Excel or MATLAB (MATLAB and 
Statistics Toolbox Release 2013a, The MathWorks, Inc., Natick, Massachusetts, United States). 

Supplementary Note 3.  

 Mussel Aquaculture Production Model: The layout of modeled mussel farms was developed 
to reflect a feasible farm design for a 1-km2 area based on industry practice within the Southern 
California region (Pers. Comm., B. Friedman, Santa Barbara Mariculture; Pers. Comm. P. 
Cruver, Catalina Sea Ranch).  Specifically, each farm contains 100 longlines, each 210 m long 
and spaced 30 m apart. Each longline has 3,962 meters of fuzzy rope to which individual 
juvenile mussels are attached for grow-out; 328 individual mussels are seeded per meter of fuzzy 
rope. Thus, each farm consists of ~130,000,000 individual mussels. Growth of individuals in the 
production model continues until the summed weight of all individuals reaches 2,948,350 kg (an 
average of 0.023 kg per whole mussel), at which point a harvesting event occurs. Harvesting was 
assumed to be continuous throughout the year, meaning that lines are re-stocked immediately 
following harvest. We assumed farms can operate at full capacity every year over the 10-year 
evaluation period. Average annual yield for a farm was multiplied by an assumed wholesale 
price of farmed mussels of $3.30/kg to estimate the farm’s annual revenue (Supplementary Fig. 
2a). The wholesale price was approximated based on informal discussions with industry 
representatives, and is consistent with the ex-vessel value of Mytlius edulis landings in 2016 of 
$3.71/kg based on National Marine Fisheries Service commercial landings statistics 
(https://www.st.nmfs.noaa.gov/commercial-fisheries/commercial-landings/annual-
landings/index).    

 We used a dynamic energy budget model (DEB) to predict mussel growth6. DEB models have 
been used in ecological literature to describe energy fluxes in individuals, and have previously 
been applied to the growth of species under aquaculture conditions7-9. We parameterized the 
model based on the Mediterranean mussel (Mytilus galloprovincialis), since this is the only 
commercially grown mussel in southern California and is the most likely target species for future 
shellfish aquaculture development in the region10. The DEB model describes the rates at which 
an individual mussel consumes food and uses energy for growth, somatic maintenance, 
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reproduction, and development. We assumed no natural re-seeding of the lines from mussel 
reproduction; spat procurement was included in the farm cost model. The rate of food 
consumption is primarily dependent on the size of the individual, food availability, and energy 
requirements at a given time. Growth parameters for the species followed Montalto et al.11 and 
Kooijman et al.12. Food availability was determined using MODIS and SeaWiFS satellite derived 
spatial data to estimate the particulate organic carbon (POC) concentration in each developable 
site13-15. The OCM (Supplementary Note 1) also provided model inputs for each developable site 
including monthly average surface temperature, mixed layer depth, and current magnitude in the 
mixed layer, over years 2000 and 2001 neutral-condition El Niño Southern Oscillation years; 4. 
See Supplementary Data 2 for a full list of model parameters. 

 The DEB model developed by Muller and Nisbet6 was extrapolated to estimate the potential 
yield of an entire mussel farm. The DEB model estimates individual mussel growth as a function 
of food-carbon availability (for our purposes POC, measured in mgC). To apply this model to all 
mussels on a farm, we first modeled the dynamics of food availability within the entire farm 
array using a simple box-model approach. Using this method, the dynamics of food availability 
(and consequently mussel growth) are characterized by the input supply of POC into the volume 
occupied by the farm (the ‘box’) from the surrounding ocean, the consumption of POC by 
mussels within the farm, and the flux of POC out of the farm into the surrounding ocean. Next 
we made the following assumptions: 1) all mussels experience the same food availability 
regardless of position in the farm array, 2) POC concentration is uniform in the mixed layer, and 
3) flux of water is constant throughout the volume occupied by the farm. Under these 
assumptions, the individual DEB model of mussel growth was applied to each mussel in the 
fixed-design farm array described above. The box-model of POC dynamics within the mussel 
farm is described as follows. 

 Under assumption (2) above, the rate of POC supply (in mgC s-1), Fin, is calculated as the 
surface concentration of POC (in mgC m-3), Xc(0), multiplied by the flux of water (m3 s-1) entering 
the farm, r,  

rXF cin )0( ,              (Sup Equ. 1) 

Where r is calculated as current speed, V (measured in m s-1), multiplied by the cross-sectional 
area of the farm (measured in m2), Farea,    

areaVFr  ,                                      (Sup Equ. 2) 

And the cross-sectional area of the farm is computed as the width, W, of the site in which the 
farm is located (1,000m for 1km2 sites) multiplied by the mixed layer, mld. 

WmldFarea  ,                  (Sup Equ. 3) 

Under assumption (3) above, Fin describes the rate of POC supply within each ‘Farea x 1m’ 
volume of the farm (in units of mgC). Given that the length of each site is 1000 m, the total POC 
input supply rate (in mgC s-1) into the volume occupied by the entire farm array is 1000 x Fin.     
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The population of mussels within a given farm then consume available POC at a rate determined 
by, 

xnJC  ,                      (Sup Equ. 4) 

where n is the number of mussels within a farm, and Jx is the scaled individual rate of food 
consumption, in mgC s-1 (parameter values and references are listed in Supplementary Data 2). 
Unconsumed POC then flows out of the farm at a rate, Xc, determined by mass balance at time 
(t). Therefore, under assumption (1), and using Sup Equ. 1-3, the dynamics of food availability 
over time (t) within the farm are governed by Sup Equ. 5, which states that the rate of change in 
total POC is the rate of supply minus the rate of consumption and the rate of outflow.  

)(1000)(1000 )()0( trXnJtrX
t

POC
tcxc 




, (Sup Equ. 5) 

Given this transition equation and the requisite input data (surface POC concentration, mixed 
layer depth, current speed), as well as mixed layer temperature (which is used in the DEB 
model), the time path of POC completely determines individual mussel growth, which (under all 
the previously stated assumptions) also completely determines farm-level yield and revenues.  

Supplementary Note 4.  

 Mussel Aquaculture Cost Model: We developed a mussel cost model based on various 
industry projections for each 1-km2 farm site that included both starting costs (including 
construction and equipment costs for the farm and hatchery) and annual operating costs (Pers. 
Comm., B. Friedman, Santa Barbara Mariculture; Pers. Comm. P. Cruver, Catalina Sea Ranch). 
Starting costs were assumed to be constant across locations and only incurred during the first 
year of production. Annual operating costs included two categories: fixed operating costs that are 
not sensitive to location, including vessel maintenance, vessel docking, and monitoring costs, 
and variable costs that vary in relation to farm location (described below). Fixed and variable 
operating costs then were combined into a single annual operating cost for each site and were 
combined with the starting costs in year one to estimate total average annual cost of the farm 
(Supplementary Fig. 3a). Annual revenue and costs were then used to calculate NPV and 
equivalent annuities (Eq. 1-2). 

Variable (i.e. location-specific) operating costs, including fuel, labor, operations and 
maintenance costs, were estimated as follows. Fuel used for transport to the farm site was 
adjusted to account for distance from port. Locations of major fishing ports (San Diego, Mission 
Bay, Oceanside, Dana Point, Newport Beach, Long Beach, Redondo Beach, Marina del Rey, 
Port Hueneme/Channel Islands Harbor, Ventura, Santa Barbara, and Avalon on Catalina 
Island)16 were digitized using Google Earth and their point locations imported into ArcGIS 10.2 
(Supplementary Data 1). Distance to port was calculated for each site in the planning grid using 
the ArcGIS 10.2 Cost Distance tool, which calculates the distance to the nearest source (port) for 
each site in the raster, based on the least-accumulative cost over a cost surface (in this case, over-
water sites are equally weighted and over-land sites are excluded so that travel is required to go 
around islands and headlands). We assumed two identical farm boats making trips to each farm: 
one going 5 days a week and one 3 days a week, resulting in 416 round trips to the farm site each 
year. Annual fuel costs (AFC) were thus approximated as: 



5 
 

 

AFC 
TDportFePf

s
,                                      (Sup Equ. 6) 

 
where T is the number of trips, Dport is the distance from port to the farm, s is the average boat 
speed, Fe is the fuel efficiency of the boat, and Pf  is fuel price; see Supplementary Data 2 for 
parameter values.  

Labor costs, Lt, were adjusted to account for the extra time it would take for transport to the 
farm site based on distance from port. We assumed that labor for each farm requires 8 workers to 
visit and service the farm 5 days a week, totaling 2080 worker days per year, and that each 
laborer would be paid $11 per hour, including for transport time to get to the farm site. Labor 
costs thus consist of fixed costs (8 hours per day for 2080 worker days) plus variable costs 
(transport time for every worker day), with labor costs increasing with distance from port to 
farm.  

Operations and maintenance costs were adjusted to account for the increased costs associated 
with farming in locations with higher wave energy17,18. In order to account for this increased 
cost, we multiplied on-farm operations and maintenance costs (primarily consisting of labor 
costs; not including transport, seed, or hatchery costs) by a factor of 1.5 for sites which have a 
mean significant wave height greater than 1 m. While the exact relationship between waves and 
costs is not known and likely varies across operations, we based this estimate on the best 
available information from industry reports18,19.  

Total costs for on-farm operations and maintenance were also increased by 10% for farms 
located in greater than 50 meters depth. This cost increase  accounts for SCUBA diving depth 
limits, which would likely result in higher costs for servicing to the anchoring systems or benthic 
monitoring (which is only a small part of total operational expenses) for farms located in deeper 
waters. Finally, the operational hatchery and seed costs were multiplied by the average number 
of growing cycles at each site per year (which depended on the productivity of the location). 
Taking all of these factors into account, the cost of operations amount to $2,123,576 to 
$3,219,202 per farm site per year, depending on the site.  

Supplementary Note 5.  

 Kelp Aquaculture Production Model: There are no commercial kelp farms or kelp farm 
proposals in California, and thus our model of kelp aquaculture in Southern California is based 
on extrapolations from best estimates in the literature and from kelp aquaculture operations 
elsewhere. Most of our information on practices and design of kelp farms was informed by the 
kelp aquaculture industry20 and a report issued by Irish Sea Fisheries Board on development and 
demonstration of seaweed aquaculture methodologies21. We parameterized our model based on 
the brown algae (kelp) Saccharina latissima, also known as Laminaria saccharina. Its farming 
methods are well known20, and there is a proven high-end market for this product22.  

 To model the growth and biomass production of kelp farms we used a dynamic individual 
growth model of S. latissima developed by Broch and Slagstad23. Parameters derived from 
Feldman and McClain14 and OCM data were used to vary environmental conditions across sites 
(see Supplementary Data 2 for full parameter list). Additionally, we assumed that all kelp plants 
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have access to the same amount of nutrients regardless of their placement within the farm, i.e., 
growth rates are the same for all individuals within a single farm24.  

 We used a similar farm design for the kelp as was used in the mussel production model, with 
some notable exceptions. We assumed that kelp lines could be grown closer together than 
mussels, as they are generally cultivated closer to the surface, and do not require fuzzy rope for 
cultivation. As a result, we assumed that each kelp farm would consist of 200 lines, each 210 m 
long and set 20 m apart.  

The overall start date and end date of a growing season was dependent on the seasonal 
availability of nitrate in each site. The growing season could potentially start as early as 1 
October and end as late as 15 April of each simulated year (197 days). We chose to end the 
growing season mid-April because encrusting by bryozoans later in the season would likely 
decrease the value of farmed kelp25. Depending on the environmental conditions, the kelp may 
reach a maximum size before the end of the growing season. In this case, each individual kelp 
was trimmed by 75% and allowed to continue to grow until the end of the harvest season where 
it was subject to a final harvest. The trimmed plant area was then treated as harvested biomass 
and calculated for all sites. 

 There are two main markets for kelp – as a premium food product and as an ingredient in a 
diversity of products such as animal feeds and fertilizer, and as an emulsifying or stabilizing 
additive in products such as cosmetics and ice cream; 26,27. There are also emerging markets such 
as the potential use of kelp for biofuels and in certain aquaculture feeds28. Currently the market 
for premium food products brings the highest prices26. However, it unclear how big this market 
is and at what level of production this market would become saturated. The type of operation that 
we modeled will only be profitable if a premium market is available. As a result we used a fixed 
market price of $3 per kg for all farms to calculate annual revenue (Supplementary Fig. 2b), 
acknowledging that this price may not be accurate if the premium market becomes saturated.  

Supplementary Note 6.  

 Kelp Aquaculture Cost Model: Because of similarities in construction and servicing of kelp 
and mussel farms, the kelp cost model (Supplementary Fig. 3b) was based on the mussel cost 
model, and unless otherwise noted uses the same parameters, structure, and assumptions.  For 
representing operational procedures particular to kelp farming20-23, we made the following 
adjustments to the mussel cost model: 

1. Starting costs were adjusted in three ways: 

 Spacing: Because kelp lines are placed more closely together than the mussel lines, 
starting costs were adjusted to account for the increased number of lines per farm. 

 Longline gear and harvesting equipment reduced: Loops of fuzzy rope are not needed for 
kelp farming, thus we eliminated the cost of the fuzzy rope from the equipment costs. 

 Hatchery costs: We approximated the start-up seed and hatchery costs based on the best 
available information. The Irish Sea Fisheries Board estimates the cost of setting up a 
hatchery to be $45,00021. This value was converted to US dollars at the rate of 1.43 
dollars/Euro, which was the exchange rate in May of 2011 when the report was 
published. Since their case study farm is only 1/3 the size of the one used in our model, 
we multiplied this cost by three in order to represent potential farms in SCB in our model. 
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2. Labor needs for the farm were divided into the amount of labor required for seeding, 
maintenance, and harvest. The labor required for seeding was the same at all locations, but the 
amount of labor days needed for harvest depends on the amount of kelp produced (including 
final harvest and “trimming”). This harvest labor was calculated at the rate of 4 tons per day per 
person. The additional labor cost for transport was calculated in the same way as the mussel 
model.    

3. Since our kelp model did not require multiple seeding events in a single year, operational seed 
and hatchery costs do not vary among farms, and thus were included in fixed rather than variable 
operational costs.   

4. We removed the cost of mussel seed from the operating costs (since all kelp propagation is 
done in the hatchery). 

5. We changed the yearly operational costs of the hatchery (included in fixed operating costs) to 
reflect the different hatchery process required for kelp. Costs were based on the Irish Sea 
Fisheries report, which estimates hatchery costs to be $130,871 annually21. We multiplied this 
cost by three (since our farm design is producing approximately three times the production of the 
Irish farm) to estimate the annual cost of a kelp hatchery.   

Supplementary Note 7.  

 Finfish Aquaculture Production Model: To estimate the production of finfish aquaculture in 
the SCB, we used AquaModel29-32, an advanced, proprietary, GIS-based modeling proprietary 
software package with a track record of being used by several domestic and foreign government 
agencies to estimate site-specific finfish aquaculture production and the associated benthic and 
water column environmental effects. AquaModel simulates the growth (based on a Von 
Bertalanffy growth function) and metabolic activity of cultured fish as well as the three-
dimensional flow and transformation of nutrients, oxygen, and particulate wastes in adjacent 
waters and sediments. The fish growth and physiology components of the model consist of a 
nutrient budget for carbon, oxygen, and nitrogen, based on functions describing metabolism, 
ingestion, egestion, assimilation, respiration and growth as determined by the size of the fish, 
water temperature, dissolved oxygen concentration, swimming speed, feed rate and 
composition33. We focused on striped bass, Morone saxatilis, as the farmed species for finfish 
aquaculture because it has been modeled previously in AquaModel and was being considered for 
offshore aquaculture in southern California at the time of this study34,35.   

  In our model, farm design and cost is based on a previous proposal by Hubbs-SeaWorld 
Research Institute 34 to develop a farm off the coast of San Diego in the SCB, and informed by 
personal communication with Hubbs-SeaWorld Research Institute aquaculture experts (Pers. 
Comm., D. Kent, Hubbs-SeaWorld Research Institute). Within a planning site we modeled one 
farm consisting of two rows of 25 m long by 25 m wide by 14.4 m deep surface cages in two 
rows of twelve cages each, for a total of 24 cages. The cages were stocked to a density of 0.2 kg 
fish per m3 cage volume, with individual juvenile fish weighing 20 g at the time of stocking. Fish 
are then grown in the cages for 18 months (‘grow-out period’). Environmental inputs into 
AquaModel that affect fish growth and vary for each location are monthly average surface and 
bottom temperature and mixed layer depth, annual average inorganic nitrate concentration 
calculated based on temperature36, bathymetry, and the 3D continuous ocean currents through the 
farm, which are estimated by the OCM. The OCM flow fields consisted of 6-hour averaged 
three-dimensional horizontal velocity and temperature for every day between April 2000 and 
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October 2001. Oceanographic and biogeochemical parameters besides those mentioned above 
were held constant throughout our study domain. These constant input parameters were based on 
the default values for the striped bass module within AquaModel and adjusted as needed to 
reflect local conditions of the Southern California Bight (Supplementary Data 2). 

 AquaModel is a computationally-intensive program requiring a high speed computer or long 
processing times on normal desktop computers (it takes several hours on a desktop computer to 
simulate one farm, as model time steps are hourly or less in most cases). Therefore, it was 
impractical for us to run the model for all 913 potential finfish sites (of the 1,134 sites developed 
for aquaculture, 913 fell within the 30-100 m depth limits assumed for finfish aquaculture) in our 
study domain. To overcome this issue, we estimated biomass production based on the 
environmental conditions of a subset of the potential sites, and then extrapolated the results to the 
remaining sites. In order to choose sites that represented the full breadth of environmental 
conditions experienced in the SCB, we grouped similar sites together using cluster analysis based 
on average summer sea surface temperature, surface current, bottom current, and depth. We 
restricted temperature data to summer months for two reasons: (1) summer is the time of highest 
growth rates and greater environmental impact, and (2) summer and winter temperatures were 
highly correlated but summer temperature showed more differentiation among spatial locations. 
Previous studies have reported a strong relationship between temperature, metabolism, and fish 
growth 37, thus in our analysis we weighted temperature more strongly (40%) than the other three 
3 variables (20% each for surface current, bottom current, and depth). The cluster analysis used 
the squared Euclidian distance and between groups linkage, calculated using SPSS statistical 
software, resulting in the 913 sites being grouped into 36 clusters. We chose this level of 
clustering because it balanced capturing differences in environmental conditions among sites 
with the time required to run the model for each site. We then randomly selected two sites from 
each cluster group to run in AquaModel (except for one group that only contained a single site). 

 Using the output from the 71 model runs, we used ordinary least squares regression, 
implemented in EViews8 software, to estimate finfish aquaculture farm production for the 
remaining 842 sites. We randomly divided the two observations of each cluster into a training 
and test set. The training set observations, along with relevant environmental conditions (mean 
surface summer temperature, mean surface summer current, mean bottom summer temperature, 
mean bottom summer current, average annual inorganic nitrate concentration, mean winter 
mixed layer depth, and depth of the seafloor beneath the aquaculture farm) were inputted into a 
forward stepwise regression model algorithm in order of highest correlation coefficient to 
identify potential linear models for forecasting finfish biomass in a given site. We then 
performed cross validation with the test data set to evaluate the accuracy of each model and 
determine the best number of predictors; the predicted values were compared to the test set’s 
actual values by calculating the test mean squared error, which was used as the primary 
performance indicator. We then selected the model with the lowest test mean squared error as 
our final model for predicting finfish biomass.  

 The final regression equation included mean summer surface current, mean summer surface 
temperature, mean winter layer depth, and inorganic nitrate as predictors for estimating finfish 
biomass production in the remaining 842 sites (R2 = 0.983, SE = 80948.03; see Supplementary 
Data 2 for predictor coefficients). 

  We assumed that the grow-out period from stocked juveniles to harvestable adults was 1.5 
years. As a result, the estimated biomass was divided by 1.5 in order to calculate the average 
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annual production of each developable site. We assumed that farms were not fallowed following 
harvest because our conservative farm design, water depths in which farms were sited, and 
current speeds in the Southern California Bight should preclude the need for fallowing. The 
model could be adjusted to include fallow years for contexts where that is the regulatory 
standard, which would result in far fewer sites being profitable for finfish aquaculture 
development.  

The average annual production was then multiplied by a price of $8 per kg to determine 
average annual revenue (Supplementary Fig. 2c). This fixed price was based on price estimations 
of farmed striped bass38.  

Supplementary Note 8.  

 Finfish Aquaculture Cost Model: Costs for the finfish model were approximated based on 
projections for a previous industry proposal for southern California (Pers. Comm., D. Kent, 
Hubbs-SeaWorld Research Institute). The structure, parameters and assumptions of the fish cost 
model are consistent with the mussel cost model, with the following exceptions, many of which 
were determined by the aggregation level at which the data were shared with us (Supplementary 
Data 2; Supplementary Fig. 3c). 

1. Starting costs were not calculated separately, but were instead incorporated into the annual 
operating expenses. This is due to the way that the fish cost data were aggregated, which 
integrated capital costs into yearly expenditures. 

2. Since the proposed location of the farm for which we were basing our calculations was 
located in an area deeper than 50 m, we decreased the costs by 10% for all sites shallower than 
50 m rather than adding costs for the deep sites (as was done with the mussel model). 

3. All fish were harvested after 1.5 years, so there was no difference in the number of production 
cycles at each farm.   

4. We estimated annual fuel costs directly as a function of distance from port (rather than 
estimating fuel consumption as we did with the mussel and kelp models). We calculated the 
annual cost of fuel at a rate of $15.00 per meter from port.  

5. The production payroll costs were estimated to increase by $25.48 per meter from port. This 
was derived by multiplying estimated total labor costs by the percentage of employee time that 
would be taken up by transport to the site, and then dividing this by the distance from port.  

Supplementary Note 9. 

      Halibut Fishery Biological Model: Aquaculture farms in the SCB could displace wild-capture 
fisheries. This conflict may be particularly strong (i.e., complete exclusion) for fisheries that use 
non-fixed gear (e.g., hook-and-line, trawls) to target fish that associate with nearshore soft-
bottom habitat, as this type of activity would be prohibited in and around the farm because of 
concerns about gear entanglement. To represent this potential conflict, we modeled the 
Paralichthys californicus, or California halibut, fishery as it interacts with aquaculture 
development. P. californicus (hereafter referred to as halibut) is a flounder (Family 
Pleuronectidae) that associates with nearshore soft and mixed-sediment benthic habitat39,40. It is 
an important sport and commercial fishery species that is typically caught via hook-and-line, 
trawl, set gill net and trolling, and marketed as fresh fillet41,42. Commercial and recreational 
fishing occurs throughout much of the nearshore region of the SCB, except in marine protected 
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areas and other designated restriction zones (e.g., military, anchorage, navigation). Overall, the 
SCB halibut fishery is considered to be well-managed at a population level approximately equal 
to that associated with maximum sustainable yield (MSY)41.  

      We developed an age-structured population growth model to simulate the growth, natural 
mortality, movement and recruitment of individual halibut. We then integrated the population 
model with a halibut fishery fleet model containing spatial, size limit and fishing effort level 
regulations. In the resulting coupled bioeconomic model, fishery profit is a function of revenue 
from harvest and market price, less the cost of fishing in relation to fishing effort, local stock 
density and site distance from port. Model initial conditions were calibrated relative to current 
estimated mean distribution of halibut biomass in the SCB. In order to represent fishery values 
important to both the commercial and recreational halibut fishery, we focused on fishery yield as 
the metric of annual value. Values to parameters described below are listed in Supplementary 
Data 2.  

      The model contains 4,518 1-km2 nearshore sites in the SCB covering all soft and mixed-
sediment benthic areas within halibut’s preferred depth range (≤90 m)42,43. Experimental trawling 
in the SCB determined halibut abundance to be highest in shallow habitats and to decline to near 
zero at 90 m depth 43. To approximate that pattern, we fit a set of functions (linear, logarithmic, 
exponential and power univariate functions) to the abundance-depth data and chose the function 
with the highest fit, the logarithmic function (y=a*Ln(x) + b, where x=depth and y=frequency of 
halibut occurrence; R2=0.97; Supplementary Data 2). For each site in the model we multiplied 
the value of the function at the site’s mean depth by the area of soft and mixed-sediment habitat 
in the site to generate a relative index of habitat availability, or Hi=Ai*yi, where Ai is area of soft 
and mixed-sediment habitat in site i and yi is the depth at the centroid of site i (see 
Supplementary Fig. 4a for a map of relative habitat indices).  

      The population model kept track of the number of post-recruit fish of each age class in each 
site and year, and their size (total length; cm) and weight (biomass; kg) in accordance with Von 
Bertalanffy growth44 and allometric weight-at-length functions: 

 

tL 
L 1 K (tt0 )

e  ,  and    (Sup Equ. 7) 

W  aLb
 ,         (Sup Equ. 8) 

where t is age in years, L∞ is the asymptotic fish length (i.e., mean maximum size), κ is fish 
intrinsic growth rate, and t0 is theoretical fish age at size zero (Supplementary Data 2). The 
parameters a and b determine the multiplicative and exponential effect of fish length on biomass, 
respectively (Supplementary Data 2). Sexual maturity is reached for halibut at ~4 years old16, 
and each year larvae are produced by reproductive-aged individuals at a rate proportional to their 
mass.  

      Halibut larval dispersal and site-to-site connectivity was estimated using a three-dimensional 
biophysical model, which consisted of the OCM (Supplementary Note 1) and a particle tracking 
model (PTM). The PTM was driven by six-hour averaged flow fields produced by the OCM that 
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moved particles forward in time using a fourth-order accurate Adams-Bashforth-Moulton 
predictor-corrector method45,46. The PTM was validated against observational data from drifter 
experiments47.  

      Larval connectivity was quantified statistically using the Lagrangian probability density 
function (PDF) method46,48 that estimates larval connectivity from a source site to a destination 
site by quantifying the probability of particle displacement over a specified time period. To 
incorporate the larval life history of halibut, the particles were tracked for 25 days, the PLD of 
halibut larvae, and released from May through December, the spawning period for halibut41. 
Additionally, halibut larvae have been documented to perform diel vertical migrations40, which 
was programmed into the PTM. The particle release frequency was set at 12 hours to meet the 
criteria for robustness in PTMs49. Following the methods in Mitarai et al.46, the coastline of the 
SCB was evenly divided into 135 coastal sites of approximately 75 km2 each. Annual 
connectivity matrices were calculated between the coastal sites for each spawning season from 
1996-2002 and then averaged over all years. The individual 1-km2 halibut sites were assigned the 
connectivity values for the nearest coastal sites, producing a 6,425 site by 6,425 site dispersal 
kernel, a subset of which covers all 4,518 sites in the halibut fishery model.  

     Populations in the model are regulated by density dependent mortality occurring between 
larval settlement and recruitment50. Site-specific settler-recruit relationships are regulated by a 
Beverton-Holt function51. Each year the number of ‘age one’ fish recruiting in site i, Ni1, is 
dependent on number of settling larvae arriving into the site according to the OCM-generated 
dispersal kernal, Si, and parameters α, representing the maximum recruit survival rate, and βi, 
which regulates the maximum number of recruits possible in that site: 

i,1N 
iS iR ,                         (Sup Equ. 9) 

where  

iR  
1 Sii

                      (Sup Equ. 10) 

and 

i
  

RmaxHi ,
                                                (Sup Equ. 11)

 

and Rmax equals the maximum number of recruits possible per unit habitat, and Hi is the habitat 
availability index in the site. 

      Jointly, α and Rmax set the strength of density dependence and affect fish population biomass 
and potential yield biomass levels in the whole system. Thus, we chose α and Rmax to achieve 
empirically-estimated levels of density dependence and biomass levels of halibut in the SCB. We 
used the compensation ratio (CR) as our measure of density dependence52,53, where CR describes 
the ratio between the maximum possible larval survival and larval survival in the unfished state, 
and is estimated to be CR=16 (corresponding with a steepness parameter h=0.8) for Family 
Pleuronectidae41,54.  
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      The commercial and recreational SCB halibut fishery, in the aggregate, is considered to be 
well-managed and approximately achieving maximum sustainable yield (MSY)41. Also, 
empirical records exist of annual commercial and recreational halibut landings in the SCB.  
Thus, we set Rmax to generate, under MSY management conditions, a biomass yield equal to that 
measured empirically for the fishery in the SCB. In the model, MSY management was achieved 
by setting total allowable fishing effort (TAE), regulated across the entire study domain and 
distributed among fishable sites in accordance with a fishery fleet model (see below), to the level 
that maximized total sustainable yield. Empirical measurements of halibut biomass yield in the 
SCB were determined using the stock assessment by Maunder et al.41. Total abundance of halibut 
landed per year in the SCB by the recreational fishery (Table B1.6.1 in Maunder et al.41 was 
multiplied by the average weight of a landed halibut by the recreational fishery (2.7686 kg; the 
mean of the PDF of recreational landings by fish weight; Fig. B2.8.2 in Maunder et al.41). These 
annual estimates of recreational fishery biomass yield were added to the annual biomass yield for 
the commercial fishery (Table B1.6.1 in Maunder et al.41). Total annual biomass yields were then 
averaged across 2004-2010 to estimate an average total halibut fishery yield in the SCB (177,779 
kg per year). We focused our evaluation on the the most recent years in Maunder et al.41, 2004-
2010, because they are the closest to the present and these years represent the fishery when it is 
estimated to have been highly stable and at near-MSY conditions. Thus, in the bioeconomic 
model and given a total allowable fishing effort level generating MSY, Rmax was set to return a 
total equilibrium annual yield equivalent to 177,779 kg per year. 

Movement of post-recruit halibut among sites was simulated using a 2-D diffusion model 
parameterized with data from a mark-recapture study of halibut in and around the SCB. The 2-D 
diffusion model was modified to account for preferential movement in relation to habitat quality. 
For the diffusion model we used a normalized Gaussian function of a 2-D probability distribution 
that quantifies probability of movement from focal site i=x to destination site i=y in relation to 
the rate of diffusivity of the species, D, distance between the sites, rx,y, and elapsed time, d. The 
probability of movement is assumed uniform in all horizontal directions; the analytical solution 
to this 2-D isotropic diffusion equation is known as Green’s function55,56: 

Gx,y 
e

rx ,y
2 4Dt 

4Dd ,        (Sup Equ. 12) 

where d=365 days/year and rx,y is the distance between the centroids of sites i=x and i=y. For 
calculating site fidelity within a site, y=x. We assumed the system was closed with respect to 
halibut movement, and thus standardized Sup Equ. 12 so that the probability of movement from 
each focal site to all sites in the domain sums to one: 

Gx,y
S 

Gx,y

Gx,y

y1

Y

               (Sup Equ. 13) 
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      When exhibiting directed movement, animals generally have higher movement rates toward 
sites of higher habitat quality (and/or will stay in their current site if it is of higher habitat quality 
than nearby sites). Following Cheung et al.57, we modeled such behavior by incorporating a 
hyperbolic function into the calculation of halibut movement: 

Gx,y
S,k 

kGx,y
S

K Hiy Hix
,      (Sup Equ. 14) 

where k is a scaling factor representing the sensitivity of the calculated movement rate to 
changes in habitat quality58, which is indicated in the denominator by the ratio of habitat quality 
relative to the focal site. Small values of k (e.g., k=0.1) result in high sensitivity to the habitat 
ratio, while large values (e.g., k=10) render adult movement rate insensitive to the habitat ratio. 
We used an intermediate value, k=2, used previously in the literature for marine fishery 
species57. Finally, to maintain a closed system of adult movement we rescaled the solution to 

obtain the realized rate of movement, , that we used in the population model: 

Mix,iy
a 

Gx,y
S,k

Gx,y
S,k

y1

Y

 ,       (Sup Equ. 15) 

      We used the exponential survival function for calculating post-recruit halibut mortality in 
relation to instantaneous natural mortality rate, M, and fishing mortality rate, Fi , which is equal 
to site-specific fishing effort multiplied by a catchability coefficient, Eiq, and applied only to 
legally-harvestable halibut age classes. Without loss of generality, we set q equal to 1. Legal-to-
harvest age limit was set to 5 years old, corresponding with the legal-to-harvest size limit of 22 
inches in total length for the SCB halibut fishery and the conversion from size to age determined 
by Sup Equ. 7-8. Instantaneous natural mortality rate was set to M=0.25, the average of female 
and male rates used in the stock assessment of the species in southern California by Maunder et 
al.41. Fishing effort (Ei) was determined in relation to TAE and the fleet model. 

In site i, the number of fish of age j+1 at the end of the year, Ni,j+1_end, is a function of the natural 
and fishing mortality rates in the site and of the population of fish age j at the beginning of the 
year: 

 
)(

_,_1,
MF

beginningjiendji
ieNN 

     (Sup Equ. 16)  

where Fi equals zero for all age classes j that are not legal to harvest.   

      For each legally harvestable age class, the site-specific proportional biomass loss due to 
mortality is equal to 1 e(FiM ) .  Of this mortality loss, the amount attributable to the fishery (as 
opposed to natural mortality) is proportional to the relative rate of fishing versus natural 

a
iiM ,
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mortality in that site, Fi /(Fi + M). Thus, in each year fishery yield per site per fishable age class j 
is: 

Yi, j  Ni, j _ beginning (1 e(FiM ) )(Fi Fi M )   (Sup Equ. 17) 

      Halibut also have a maximum age of ~27 years41, although very few individuals reach it. At 
the maximum age, natural mortality is 100%. 

Given the above parameter values, Supplementary Fig. 4b illustrates the model estimate of 
equilibrium virgin (unfished) spawning stock biomass of halibut across the study domain with 
Fi=0. At MSY our model estimated spawning stock biomass to be 24.24% of virgin spawning 
stock biomass; this has been considered a reasonable reference point of sustainable halibut 
fisheries management41 and thus a indication that our model is representing the status of the 
fishery resonably well. 

Supplementary Note 10.  

      Halibut Fishery Economics and Fleet Model: Commercial and recreational halibut fishing is 
restricted by numerous conservation, military, navigation and other regulated zones across the 
study domain. Thus in our model we restricted positive fishing effort from all sites within those 
areas (Fig. 1a).  

      In order to represent fishery values important to both the commercial and recreational halibut 
fishery, we focused on fishery yield as the metric of annual value (for calculating net present 
value and annuity), and, given that the fishery is considered to be well-managed and 
approximately achieving maximum sustainable yield (MSY)41, in our model we set total 
allowable fishing effort (TAE) to the level that generated MSY. However, it is also of interest to 
know the potential economic value of the fishery in terms of profit. Fishery profit is a function of 
total revenue from harvest (TR) less the total cost of fishing (TC):  

  (TRi TCi )
i

 ,                                (Sup Equ. 18) 

Total revenue is a function of market price and yield, 

TRi  pYi                                                  (Sup Equ. 19) 

      We set price to p=$10.67 per kg ($4.84 per lb), equal to the ex-vessel dollar value divided by 
biomass landings of commercial halibut in southern California by year, averaged across 2004-
2011, the years when the halibut stock assessment confirmed the catch and biomass to be 
relatively stable41. Linear and exponential regression of annual price in relation to biomass 
landings did not reveal a significant relationship that would be indicative of the presence of an 
inelastic demand curve (i.e., reduction in price with increased supply). We also used regression 
analysis to test for a negative relationship between annual price of halibut and biomass landings 
of California white seabass (white weakfish; Atractoscion nobilis)41, which is a high-value 
seafood species with a mild, firm and flaky white meat that is marketed as fish fillet and is 
similar to the striped bass, Morone saxatilis, represented by our aquaculture finfish model. This 
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regression analysis also returned non-significant results. Consequently, we assumed halibut price 
to be constant in our model analysis.  

      In our model, cost of fishing per unit area in each site was initially calculated in relation to 
the change in stock density in the site over the fishing period due to fishing (and natural) 
mortality. 
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(Sup Equ. 20) 

where si is the biomass density of legal-to-harvest fish in site i. Marginal cost, c(si), is a 
decreasing function of resource stock density in the site (i.e., c’(si)<0; i.e., higher fish stock 
density reduces per-unit harvest cost). We modelled marginal cost of fishing to be inversely 
proportional to local fish density, c(si) = θ/si, where parameter θ determines the stock density 
below which marginal cost equals price and thus fishing is expected to naturally cease (higher 
values of θ represent species that are intrinsically more expensive to harvest)59,60. Fishing cost 
and its effect on fishing behavior are difficult to quantify61, but in general it is sometimes 
assumed that marginal cost equals price when the legal-to-harvest fish stock is reduced to 10% of 
its virgin carrying capacity, and at this level represents the “break even” stock density below 
which it is unprofitable to fish and the fishing naturally ceases16,60. Ten percent of virgin stock 
density also is commonly considered to indicate collapse of a stock and its associated fishery62. 
Consequently, we set θ in order to produce a marginal cost equal to price at a fish stock density 
equal to 10% of the mean virgin legal-to-harvest stock density across the study domain. Cost was 
then converted from per unit area to per unit site, TCi

p  TCi
aHi.  

      Cost of fishing also is expected to be a function of travel distance to the fishing ground63. To 
include this factor, cost of fishing in a site was modulated in relation to its level of isolation,  

TCi
  TCi

p (1Diport ),   (Sup Equ. 21) 

      Where γ is a scaling parameter and Di-port is the distance in meters from site i to its nearest 
port. Finally, cost is incurred by the fishery to the extent that the observed reduction in stock 
density is due to fishing effort, as opposed to natural mortality. Consequently, the cost in a site to 
the fishery is a function of the proportion of morality in the site due to fishing versus natural 
mortality,  

 
 

TCi  TCi
 Fi

Fi M
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    (Sup Equ. 22) 

      Empirical data on the spatial distribution of halibut landings were used to set the travel cost 
scaling parameter γ. Empirical measurements of commercial and recreational halibut fishery 
yield in the SCB were determined using Pacific Coast Fishery Geographic Information Systems 
fisheries landings data (“PacCoastFisheryGIS” data) generated under the California Department 
of Fish and Wildlife Statewide Marine Protected Area Management Project. The spatial 
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resolution of the data corresponds with the California Department of Fish and Wildlife 1’ (~10 
km) fishing blocks, of which there are 87 in the SCB in our model domain. Overall, the empirical 
data indicates halibut landings to be concentrated along the mainland and near ports 
(Supplementary Fig. 5a), supporting the assumption that travel cost influences the spatial 
distribution of fishing effort63.  

      Using the PacCoastFisheryGIS data, we “tuned” γ in order to minimize the sum of squared 
error (SSE) between the empirical data and our model estimate of the proportion of total biomass 
landings in the study domain from each reporting block. The tuning procedure generated 
minimum SSE=0.017113, and linear correlation between the empirical and model values of 
R2=0.62. The resulting model estimate of the spatial distribution of landings is shown in 
Supplementary Fig. 5b. Given the tuned value of γ (6.0708e-05), travel costs increased total 
annual fishing cost in a site by a factor of ~0-4 along the mainland and ~2-7 at the Channel 
Islands, depending on their specific distances from the nearest port.  

      In the California halibut fishery and other limited-entry fisheries, the spatial pattern of fishing 
effort (e.g., fishermen, boats) among sites is expected to be a function of the relative value of the 
sites; this pattern can be estimated using a fleet model16,64,65. Consequently, we determined the 
spatial allocation of the total allowable effort (TAE) by the fishery using an ideal free 
distribution66 fleet model, such that average profits (profit per unit effort) were equal among all 
fishable sites (i.e., those that contain halibut and are non-MPA, non-military, aquaculture, etc. 
sites; Supplementary Figs. 1 and 4a). Note that this behavioral model of fleet dynamics, while 
potentially representative of the actual relationship between vessel and resource distributions in 
fisheries67,68, is not necessarily expected to produce the optimal pattern of spatial effort 
distribution (e.g., by a sole owner or fishery cooperative) that maximizes the total value of the 
fishery69. MSY management was achieved by setting total allowable fishing effort (TAE), 
regulated across the entire study domain and distributed among fishable sites in accordance with 
the fleet model, to the level that maximized total equilibrium yield. As explained above, 
parameter Rmax was set to achieve a MSY matching that estimated empirically (177,779 kg per 
year).  

 Equilibrium MSY management was used as the initial conditions in the model when 
evaluating effects of aquaculture development on the halibut fishery. Given an aquaculture 
development plan, sites with aquaculture were closed to halibut fishing immediately (i.e., in year 
1) and continuing through year 10 (the end of the evaluation time horizon), and Net Present 
Value of the halibut fishery was calculated in response to this closure (Eq. 1-2). 

 In order to make the halibut bioeconomic model compatible with the tradeoff model 
framework, which required static models for our optimization approach, we assumed fisheries 
value in each of the 10 years following aquaculture development to be represented by the yield 
values generated under MSY conditions, but with zero yield in the new closures due to the 
aquaculture farms. This simplification excludes the ecological dynamics of larval dispersal and 
fish spillover, and socioeconomic dynamics affecting changes in the spatial distribution of 
fishing effort among fishable sites, that are present in our dynamic model and could occur in 
response to new closures from aquaculture farms. However, our focus on static model values is 
not expected to generate significantly different results compared with if the fully dynamic model 
were incorporated into the tradeoff analysis, for two reasons. First, the halibut fishery already is 
managed at MSY, and thus there are unlikely to be dramatic ecological or fleet behavior changes 
from closing some sites to fishing. Second, the time horizon is short (10 years), limiting the 
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development of a long-term dynamic response to a change in management decision; i.e., the 
short-term dynamic response is not much different than the static response estimate. Both of 
these reasons are supported by Brown et al.70, which specifically compared dynamic and static 
models for conducting MSP. Nonetheless, in order to provide the most accurate estimates 
possible, once an MSP solution (i.e., aquaculture farm design on the 7-D efficiency frontier) had 
been identified by the tradeoff model, we then evaluated its effect on the halibut fishery using the 
fully dynamic bioeconomic model. In that case, sites with aquaculture were closed to halibut 
fishing, the bioeconomic halibut fishery model was simulated forward in time 10 years, and yield 
in each year was recorded. We also used the fully dynamic bioeconomic halibut fisheries model 
for evaluating effects of the plans derived under conventional planning. Consequently, we 
estimated and reported the actual effect on the halibut fishery of all of the aquaculture farm 
designs presented in this study based on the fully dynamic halibut model described above.  

Supplementary Note 11.  

 Viewshed Model: New development can change the aesthetic qualities of a place. The 
potential impact of aquaculture development or other emerging uses on views and scenic values 
is a frequent concern expressed by stakeholders71,72. Though scant evidence exists that offshore 
aquaculture development decreases coastal real estate values73, community members may still 
oppose aquaculture development because they are concerned about changes in scenic values and 
impacts on tourism, recreation, and property values. For these reasons, other regions have 
modeled and analyzed the visual impact of new aquaculture development on surrounding 
areas73,74. We developed a modeling approach that assesses how many people’s views could be 
affected by placement of a farm in each site, incorporating both residential views and 
recreational views from state parks and beaches.  

 We ran the ArcGIS 10.2 Viewshed tool to identify all locations on land from which a given 
developable site would be visible within a defined radius of visibility. Based on previous work 
and our assumptions about farm design, we assumed that mussel and kelp farms would not be 
visible beyond a 3-km radius75, while finfish farms would be visible up to 8 km away73. We 
assumed the height of a viewer on land to be 1.7 m tall (the average height of adult men and 
women in the United States) and infrastructure of all farm types would be primarily horizontal 
structures on the water plane (including linear patterns of buoys for kelp and mussels, net pens 
for fish, and navigational lighting for both), extending vertically less than 1 m. Inputs to the 
model were the locations of the centers of each developable site (a shapefile of points) and a high 
resolution (90-m) raster digital elevation model of land (DEM; Supplementary Data 1). Data 
were not available to incorporate trees or buildings into the DEM, though we acknowledge that 
both could affect actual visibility from a given location (i.e., blocking views or allowing farms to 
be viewed further away from an upper story of a building). We used an earth curvature 
correction factor and a refractivity coefficient of 0.13, the default settings for the Viewshed tool. 
This part of the analysis produced rasters of which sites on land can view each farm. We then 
determined how many people’s views would be impacted given the distributions of residential 
populations and visitors to state parks and beaches within impacted sites on land, for each 
possible aquaculture site. 

For residential views, we summed the number of people living in impacted view areas on land 
using a 30-m grid of human population density supplied by the Natural Capital Project76. For 
scenic and recreational views, we assessed which farms would be visible from state parks and 
beaches and calculated the number of park or beach visitors who would potentially be affected 
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by that farm location, based on total annual visitor attendance data (day use and campers) from 
the 2011/12 Fiscal Year77. Because there are not data on where visitors spend time within a state 
park or beach, we assumed that a view of the farm from any part of the park or beach would 
affect all visitors. Also, we recognize that there are other important locations for scenic 
recreational viewing beyond state parks and beaches (e.g., county parks, coastal roads and 
highways), but we were not able to obtain consistent use data across our study domain for these 
other areas and so just focused our analysis on state parks and beaches. Lastly, it is important to 
note that not all state parks and beaches collect and/or report visitation data, so this dataset is far 
from complete, and should be treated as a demonstration of what is possible rather than a 
definitive estimate for where impacts would be highest. For an actual permitting or planning 
exercise, it would be important to fill gaps in the scenic and recreational dataset. 

 The outputs of the viewshed analysis were rasters of which sites on land can view each farm, 
summed residential population within the viewshed of each farm, state parks and beaches within 
the viewshed of each farm, summed annual visitors to state parks and beaches within view of 
each farm, and the total number of people whose views would be affected by each farm (summed 
across residential and park/beach visitors). For the calculation of value for this sector used in the 
tradeoff analysis, we combined residential and recreational views into a single metric 
representing the number of people whose views could be affected by the development of each 
site (Supplementary Fig. 6a,b). The weighting of residential versus recreational viewshed 
impacts could be adjusted to reflect the relative importance of the two components to 
stakeholders or decision-makers in a particular planning context. We chose to sum the number of 
people because there was not information for southern California upon which to judge the 
relative value stakeholders place on uninterrupted residential versus recreational views.  

Supplementary Note 12.  

 Benthic Environmental Health Model: Offshore aquaculture can generate negative 
environmental impacts, particularly with regards to pollution, and limiting negative impacts is 
typically a key focus in planning for future aquaculture development5,78,79. The magnitude of 
these effects is generally heavily influenced by operational characteristics, such as species 
farmed, stocking density, and feeding strategy, but also by farm location79 and thus spatial 
planning should take into account spatial variability in possible environmental impacts. 
Specifically, the physical and chemical characteristics of the surrounding environment, such as 
background nutrient levels, currents, and depth, are important in determining the fate and impact 
of any pollutants released from the farm80,81. Both fed and unfed aquaculture operations release 
particulate organic matter (such as feces, or uneaten feed in the case of fed aquaculture) that can 
settle to the seafloor where it can lead to eutrophication and local oxygen depletion in and near 
the benthos82,83. The community level effects of increased nutrients and decreased oxygen on the 
benthos can vary significantly based on the level of impact and background conditions; indeed, 
low levels of nutrient enrichment can have a minor effect and may even increase benthic 
biodiversity and biomass84,85. However, for the purpose of this analysis we take a precautionary 
approach that assumes that any changes to the benthic environment are not desirable. Generally 
deeper water and faster currents result in more diffusion of organic material, which will 
minimize any adverse effects, but also create a larger footprint of benthic areas potentially 
affected by the farm80,81. While shellfish operations have been shown to have benthic impacts in 
shallow sheltered areas, field studies of offshore shellfish operations have shown that there is 
unlikely to be any benthic impact in the deeper open ocean environments that are generally 
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typical of offshore aquaculture operations86. We therefore focused on impacts to the benthos only 
from finfish aquaculture, since this impact often is listed as a primary concern by the aquaculture 
industry and public stakeholder groups5,79.  

 Benthic impacts were estimated using AquaModel (Supplementary Note 7). Specifically, we 
used the model to estimate the total organic carbon (TOC) flux to the seafloor as a proxy for the 
risk of a given farm producing hypoxic or anoxic conditions on the seafloor near the farm. 
AquaModel simulates both the flux of particles containing organic carbon and the resuspension 
and re-distribution of these particles as they are assimilated by the benthic food web. We focus 
on organic carbon flux because organic carbon is the source of the potential problems to 
sediments (such as shifts to anaerobic bacterial dominance when the rate of deposition exceeds 
the aerobic assimilative capacity). Furthermore, the effect of additional organic carbon on the 
biogeochemical characteristics of the sediment and the microbenthic infauna are well understood 
87, and these measures are the basis for all aquaculture sediment effect models. We calculated the 
average TOC flux to the seafloor (g per m2 per day) at each aquaculture site to provide a relative 
measure of potential organic enrichment. This measure does not account for resuspension rates, 
so is a conservative index of potential effect and allows us to identify sites that may be at higher 
risk to experience benthic impacts. The model runs used to estimate TOC flux were the same as 
described in Supplementary Note 7 to estimate biomass production. The same method, including 
cluster analysis and stepwise regression, was used to extrapolate from the 71 sites that were run 
in AquaModel to estimate TOC rate for the 842 potential finfish sites that were not run in 
AquaModel (Supplementary Fig. 6c). The coefficients in the regression equation can be found in 
Supplementary Data 2 (R2 = 0.83, SE = 0.055).  

Supplementary Note 13.  

 Disease Risk Model: Risk of disease outbreak often is used as a justification for opposition to 
aquaculture development79. Two primary types of infectious agents are often identified as 
vectors for aquaculture disease, viruses and bacteria88,89. While the widespread use of antibiotics 
and vaccines have been very effective against bacterial pathogens, viral infection remains a 
significant problem for the aquaculture industry90. Viral disease risk appears to be highest for 
finfish farms (relative to shellfish and algae), due to the use of feed made from the carcasses of 
other fish species, which greatly increases the risk of exposure to novel pathogens88,89. Although 
the risk of viral disease outbreaks is strongly influenced by husbandry practices (stocking 
density, feed characteristics, etc.), there is also a spatial planning dimension to disease risk. 
Specifically, viruses could potentially travel between farms via pelagic dispersal, meaning farm 
design and farm density in relation to ocean currents could influence the risk of disease 
transmission and system-wide outbreak. We therefore focused on modeling oceanographic 
connectivity among finfish farms as an indicator of risk of viral disease outbreaks in relation to 
alternative spatial plans of finfish aquaculture development. 

 Marine viruses have life stages in which they are inside their host (e.g., a fish) and dispersing 
between hosts in the water91. Because finfish are contained within the farm pens, we focused on 
the dispersive stage of the virus in connecting farms and potentially spreading disease. To do 
this, we utilized the three-dimensional ocean circulation model (Supplementary Note 1). When 
outside of their hosts, viruses degrade rapidly within a matter of hours due to UV radiation92. 
Thus, in the OCM we simulated viruses with a dispersal period (akin to a “pelagic larval 
duration”) of one day, in order to estimate the distance a single virus could travel within the 
study domain before being destroyed by UV exposure49. Using the simulation outputs we 
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generated a probability density function (PDF), or dispersal kernel, for each developable finfish 
site given the fixed spatial constraints (see Methods in main paper). The dispersal kernel for 
disease transport was estimated using the same methods described for halibut larval dispersal 
(Supplementary Note 9), except that in the particle tracking models the particles were released 
year-round and only from sites that may be developed for finfish aquaculture (i.e., of positive 
NPV value to that sector), and they dispersed passively (i.e., no vertical migration or other 
behavior) for 24 hours. 

 We applied network analysis to the viral dispersal kernel to estimate relative risk of a system-
wide disease outbreak of a given finfish farm plan. The goal of the network analysis was to 
calculate the degree of centrality of each potential fish farm site to all other potential fish farm 
sites, then use this information to penalize farm plans that develop highly central “hub” sites 
most likely to support disease transmission among farms throughout the study area. We did this 
by evaluating the eigenvector centrality for each potential finfish farm site in a proposed spatial 
plan. Eigenvector centrality is often cited as a primary way to identify disease hubs in weighted 
networks93,94. Unlike many other centrality metrics, eigenvector centrality takes into account the 
complete topology of the entire network, instead of just assessing the strength of direct 
connections, meaning that the centrality of a single node is dependent on both direct and indirect 
connections between nodes (in our case, farms). To calculate eigenvector centrality for each site 
we first estimated maximum potential disease risk by considering the scenario where all potential 
finfish aquaculture farms are developed. Using the dispersal kernel as the adjacency matrix for 
the disease network, we calculated the eigenvector centrality of each developable site using the 
equation from 95: 

Axi  xi                                 (Sup Equ. 23) 

where x is the eigenvector of a given site i in the disease adjacency matrix, A, with an 
eigenvalue, λ. As explained by the Perron–Frobenius theorem, λ is the largest eigenvalue and x 
the corresponding eigenvector96 for a given site. Thus, the value λ represents the degree of 
centrality for a given site, which we used to represent the disease response to finfish aquaculture 
at that site. For a given spatial plan of aquaculture development, total risk of disease spread of 
the entire plan was calculated as the sum of the eigenvector centrality values of the developed 
sites (Supplementary Fig. 6d).  
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Supplementary Table 1: Steps for implementing the full MSP analytical model. 

Step Significance Case study description 
 Specify study domain 
 Identify emerging 

sectors and key 
existing sectors of 
concern in relation to 
emerging sector 
development 

  

 Delineates the spatial 
planning problem 

 Acknowledges 
environmental impacts 
and socioeconomic 
conflicts that may be 
generated by emerging 
sectors   

 Study domain: Southern 
California Bight 

 Emerging sectors: mussel, 
finfish and kelp aquaculture  

 Impacts and existing sectors: 
halibut fishery, benthic health, 
viewshed quality, risk of disease 
outbreak  

 Identify and delineate 
potential development 
locations for 
emerging sectors 

 Constrains spatial 
planning problem to 
feasible sites for 
development 

 Aquaculture development 
restricted from fixed sites: 
military areas, shipping lanes, 
protected areas, rocky substrate, 
minimum and maximum depth 
zones, and areas around sewage 
outfalls and major river mouths 

 Identified 1,061 feasible sites for 
at least one type of aquaculture 

 Generate spatial 
models of the existing 
and emerging sectors 
and their interactions 

 Explicitly characterize 
interactions between 
existing and emerging 
sectors 

 Spatially-explicit biological and 
socio-economic models of the 
three emerging and four existing 
sectors, modelled across all 
feasible sites 

 Apply all potential 
policy options to the 
sector models across 
all feasible sites  

 

 Quantifies site-specific 
sector responses to the 
alternative policy 
options 

 Sector responses can 
represent values or 
impacts, and can be in 
different units  

 Model response of each sector to 
each of four policy options at 
each site: no development, or 
development of mussel, finfish 
or kelp aquaculture 

 Aquaculture and halibut fishery 
sector responses represent value 
(in economic annuity) 

 Benthic health, viewshed quality 
and risk of disease outbreak 
sector response represent impact 
(in various units) 

 Convert impacts into 
values 

 Estimate the value to 
each sector for each 
policy option at each 
site 

 Aligns sector 
valuations, such that, 
for all sectors, higher 
numbers are more 
beneficial to the sector 

 For benthic health, viewshed 
quality and risk of disease 
outbreak sectors, value for a 
policy option at a site calculated 
as the maximum response by the 
sector across all sites and policy 
options minus the sector’s 
modelled response to the policy 
option at the site 
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 For aquaculture and halibut 
fishery sectors, value is equal to 
the sector’s modelled response 

 Transform all sector 
values to a common, 
unitless scale (i.e., 
where the value 
equals the 
proportional 
contribution of each 
policy option at each 
site to each sector’s 
total potential value)   

 Transforms sector 
values into comparable 
units 

 For each sector, its scaled value 
is the value of the sector at a 
given site, under a given policy 
option, divided by the maximum 
total potential value (i.e., the 
summed value if the ideal policy 
option for that  sector was 
selected at every site) 

 Apply weighting 
factors to each 
sector’s scaled values  

 Accounts for different 
relative socio-political 
preferences for each 
sector 

 Different combinations 
of preference weights 
can be used to evaluate 
different priorities, or 
when priorities are 
uncertain or unspecified

 All combinations of six weights 
{ n = 0, 0.2, 0.4,…1} were 

applied across the seven sectors, 
generating 67 = 279,936 results 
indicating the weighted value to 
a sector at a site from 
implementing one of the policy 
options 

 For a particular set of 
preference weights, 
generate a marine 
spatial plan solution 
by selecting the 
policy option at each 
site that maximizes 
the sum of weighted 
sector values 

 Calculate the domain-
wide outcome of that 
plan for each sector 

 Indicates an optimal 
spatial plan, and 
associated sector 
impact and/or value, in 
relation to specified 
priorities across sectors 
(i.e., preference 
weights) 

 The marine spatial planning 
solution illustrates the optimal 
policy option (i.e., aquaculture 
development option) for each of 
the 1,061 sites, where, for each 
site the selected option best 
maximizes the sum of the seven 
weighted sector values 

 Outcome indicates how the plan 
will affect each sector in terms 
of its response and/or 
proportional change in impact or 
value 

 Replicate the above 
step for each set of 
sector-specific 
weights 

 Identifies the set of 
spatial plans that 
delineate the efficiency 
frontier of marine 
spatial plan solutions 
that optimally balance 
the tradeoff in values 
and impacts among the 
interacting sectors 

 A seven-dimensional, 279,936-
point efficiency frontier of 
marine spatial plan solutions of 
optimal aquaculture 
development in relation to the 
values of the three aquaculture 
and four existing sectors and 
their interactions 
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Supplementary Figures  

 

 

Supplementary Figure 1: Development domains of the three forms of aquaculture, given the 
imposed logistical, sociopolitical, and economic constraints. 
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Supplementary Figure 2: Modelled annual revenue of (a) mussel, (b) kelp, and (c) finfish 
aquaculture for each site, in US dollars.  
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Supplementary Figure 3: Potential annual costs of (a) mussel, (b) kelp, and (c) finfish 
aquaculture for each site, in US dollars.  
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Supplementary Figure 4: (a) Halibut habitat index, used for characterizing relative availability 
of suitable habitat in each site. The index was calculated for each site as the logarithmic function 
derived from the Haugen43 data and evaluated at the site’s depth, multiplied by the area soft and 
mixed-sediment habitat in the site. (b) Model estimate of halibut spawning stock biomass density 
(kg per km2) in a world without fishing. 
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Supplementary Figure 5: (a) Empirical data of the proportion of total halibut fishery landings in 
each California Department of Fish and Wildlife reporting block. (b) Model estimate of halibut 
fishery landings (kg per km2). 
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Supplementary Figure 6: Coastal viewshed impact (number of impacted people by a farm) of 
mussel and kelp farms (a) and finfish farms (b) at each site. (c) Benthic impact (TOC flux) for 
each developable finish site. (d) Potential disease risk (in terms of eigenvector centrality) for 
each developable finfish site. 

  



29 
 

 

Supplementary Figure 7: Number of sites developed by each aquaculture type, given 
unconstrained (a) and constrained (b) approaches to conventional planning.  
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