

Supplementary Figure 1

Imaging pronuclear migration and centration in one-cell C. elegans embryo.

a DIC (top panels) and GFP fluorescence microscopy (bottom panels – z-maximum projections) of embryo expressing GFP::TAC-1. Time is indicated in seconds and time 0 s is pronuclear meeting. Scale bar: $10 \mu m$.

b Pronuclear and centrosome midpoint positions along the A-P axis as a function of time for 10 representative GFP::TAC-1 embryos. Here and in other Supplementary Figures, position on the A-P axis is represented in normalized coordinates (0: anterior; 1: posterior).

Pronuclear and centrosome midpoint positions, as well as pronuclear velocities during the slow migration phase and pronuclei radii in *goa-1/gpa-16(RNAi)* embryos.

a Pronuclear and centrosome midpoint positions along the A-P axis as a function of time for 10 representative *goa-1/gpa-16(RNAi*) embryos.

b Distribution of female pronucleus velocities during the slow phase of migration in goa-1/gpa-16(RNAi) embryos (-200 s < t < -100 s; n = 31; Kolmogorov-Smirnov test (two-sided) P = 0.56; mean: $0.034 \pm 0.002 \ \mu m \ s^{-1}$; SD: $0.042 \pm 0.001 \ \mu m \ s^{-1}$).

c Pronuclear radii as a function of time in *goa-1/gpa-16(RNAi)* embryos with SEM (n = 31). Red and blue lines: linear fit (male – slope: $0.0034 \pm 0.0001 \,\mu\text{m s}^{-1}$, offset: $4.09 \pm 0.02 \,\mu\text{m}$; female – slope: $0.0033 \pm 0.0001 \,\mu\text{m s}^{-1}$, offset: $3.99 \pm 0.01 \,\mu\text{m}$; errors are S.D.).

Pronuclear migration and centration upon depletion of cortical forces in *gpr*-1/2(RNAi) embryos.

a Schematics of pronuclear migration and centration in *gpr-1/2(RNAi)* embryos. Represented are the female and male pronuclei (blue and red disks, respectively), centrosomes (green dots), microtubules (green lines), dynein motors (blue) and dynein anchors (light blue ellipses); arrows represent exerted forces. Anterior (A) and posterior (P) sides are indicated. $F_{\rm MF}$: force exerted between the male-asters complex and the female pronucleus; $F_{\rm cort}$: force exerted by cortical dynein; $F_{\rm cent}$: centering force; $\gamma_{\rm F}$: drag coefficient of the female pronucleus; $\gamma_{\rm MAC}$: drag coefficient of the male-asters depleted cortical dynein motors.

b Partial Pearson's correlation, controlling for time-variation, between pronuclear velocities along the A-P axis over successive time windows in *gpr-1/2(RNAi)* embryos (n = 20). Each time-point corresponds to a time window of 25 s and the correlated time window (P < 0.05) is highlighted in yellow (partial correlation: blue crosses; P-value (Student's t-test, two-sided): orange circles). Here and in panel c, velocities are calculated between successive frames 6 s apart.

c Velocity of male pronucleus as a function of time and of velocity of the female pronucleus during the correlated phase of pronuclear migration in *gpr-1/2(RNAi)* embryos (n = 20, -50 < t < 0 s time-window). Plane: linear fit $v_{MAC} = -\frac{\gamma_F}{\gamma_{MAC}}v_F + v_0 + mt$ ($v_0 = (-0.11 \pm 0.02) \,\mu\text{m s}^{-1}$; $m = (-0.001 \pm 0.0005) \,\mu\text{m s}^{-2}$; errors are S.D.). The Pearson partial correlation coefficient ρ between the velocities of the male-asters complex and female pronucleus, controlling for time variation, its P-value (Student's t-test, two-sided) and the fitted ratio between the drag coefficients of the male-asters complex and female pronucleus are indicated.

d A-P forces acting on the male-asters complex and female pronuclei shortly before pronuclear meeting with SEM. Blue: force between pronuclei, estimated from the force acting on the female pronucleus in *gpr-12(RNAi)* embryos (blue squares, n = 20). The force is compatible with that determined in *goa-1/gpa-16(RNAi)* embryos (blue crosses, n = 31; $\chi^2 = 9$; P = 0.11) embryos. Red: sum of the forces acting between pronuclei and the centering force, estimated as that acting on the male-asters complex in *gpr-12(RNAi)* (red squares, n= 20). The force is compatible with that determined as that acting on the male-asters complex in *gpr-12(RNAi)* (red squares, n= 20). The force is compatible with that

Overview of forces acting in pronuclear migration and centration in mutant/RNAi and control embryos.

a Schematics (left) and intensity (right, A-P component, with SEM, n = 31) of the time evolution of the total force acting on the female pronucleus in *goa-1/gpa-16(RNAi)* embryos, corresponding to the force exerted between the male-asters complex and the female pronucleus. Here, as well as in b and in d, time 0 s is pronuclear meeting. The data presented in this figure recapitulates that presented in Fig. 1, 3 and 4.

b Schematics (left) and intensity (right, A-P component, with SEM, n = 31) of the time evolution of the total force acting on the male-asters complex in *goa-1/goa-16(RNAi)* embryos, corresponding to the sum of the force exerted between the male-asters complex and the female pronucleus, plus the centering force.

c Schematics (left) and intensity (right, A-P component, with SEM, n = 8) of the time evolution of the centering force in *zyg-12(ct350) goa-1/goa-16(RNAi)* embryos, which corresponds to the total force acting on the asters pair. Time 0 s is taken as the fitted half-centration time (indicated by the green lettering on the x-axis; Methods).

d Schematics (left) and intensity (A-P component, right) of the total force acting on the male-asters complex in control embryos (right, A-P component, with SEM, n = 33), corresponding to the sum of the force exerted between the male-asters complex and the female pronucleus, plus the centering force, as well as forces mediated by cortical dynein.

Pronuclear and centrosome midpoint positions in *top-2(it7) goa-1/gpa-16(RNAi)* embryos, as well as comparison of centrosome midpoint velocities in *zyg-12(ct350) goa-1/gpa-16(RNAi)* and *top-2(it7) goa-1/gpa-16(RNAi)* embryos.

a Centrosome midpoint positions along the A-P axis as a function of time for 10 representative *top-2(it7) goa-1/gpa-16(RNAi)* embryos.

b, **c** Comparison of centrosome midpoint velocities in *zyg-12(ct350) goa-1/gpa-16(RNAi)* (b, n = 8 embryos) and *top-2(it7) goa-1/gpa-16(RNAi)* embryos (c, n = 10 embryos). In *top-2(it7) goa-1/gpa-16(RNAi)* embryos, time 0 s is defined at pronuclear meeting. In *zyg-12(ct350) goa-1/gpa-16(RNAi)* embryos, since pronuclear meeting is not occurring, time 0 s is defined at the time at which centrosomes reach on average the same position that they reach in *top-2(it7) goa-1/gpa-16(RNAi)* embryos at pronuclear meeting (67% of AP-axis length; indicated by the orange lettering on the x-axis). Dots of different colors represent centrosome midpoint positions in different embryos. The slope of the A-P trajectory of the asters pair of each embryo in the -50 s < t < 0 s time-window is fitted with a linear function (dashed red lines). The average asters pair velocity v_A is calculated by averaging the slopes calculated for each individual embryo and for each condition. The average asters pair velocity is higher in *top-2(it7) goa-1/gpa-16(RNAi)* than in *zyg-12(ct350) goa-1/gpa-16(RNAi)* embryos (z-test; P = 0.007 (two-sided)).

Supplementary Table 1

		Interaction			
	Model	MAC- female	Time-dependency	Variable drag	AIC
		PN			
1	$V_{\rm MAC} = V_0$	-	-	-	136
2	$V_{\rm MAC} = V_0 + mt$	-	+ (linear)	-	62
3	$V_{\rm MAC} = V_0 + mt + nt^2$	-	+ (up to quadratic)	-	64
4	$V_{\rm MAC} = V_0 - \frac{\gamma_{\rm F}}{\gamma_{\rm MAC}} V_{\rm F}$	+ (linear)	-	-	19
5	$V_{\text{MAC}} = V_0 - rac{\gamma_{\text{F}}}{\gamma_{\text{MAC}}} V_{\text{F}} + mt$ (Eq.3)	+ (linear)	+ (linear)	-	16
6	$V_{\rm MAC} = V_0 - \frac{\gamma_{\rm F}}{\gamma_{\rm MAC}} V_{\rm F} + mt + nt^2$	+ (linear)	+ (up to quadratic)	-	20
7	$V_{\rm MAC} = V_0 - \frac{\gamma_{\rm F}}{\gamma_{\rm MAC}} V_{\rm F} + b V_{\rm F}^2$	+ (up to	-	-	20
		quadratic)			
8	$V_{\rm MAC} = V_0 - \frac{\gamma_{\rm F}}{\gamma_{\rm MAC}} V_{\rm F} + b V_{\rm F}^2 + mt$	+ (up to	+ (linear)	-	17
		quadratic)			
9	$V_{\text{MAC}} = V_0 - \frac{\gamma_F}{\gamma_{\text{MAC}(0)}} V_F + r't V_F + mt$	+ (linear)	+ (linear)	+ (*)	17

Model selection analysis by the Akaike Information Criterion

Distinct models of the relationship between the velocity of the male-asters complex, that of the female pronucleus and time compared by the Akaike Information Criterion (AIC). The table reports whether the interaction between the male-asters complex (MAC) and female pronucleus (female PN), the time-dependency of the centering force, as well as a variable drag coefficient of the male-asters complex, are included in each model. The model that fits the dataset with highest quality, i.e. the one with the lowest AIC, is Model 5 (Eq. 3). (*): in Model 9, the drag coefficient of the male-asters complex asters complex varies linearly with time.