Supporting Information

Pd-catalyzed Acyl C–O Bond Activation for Selective Ring-opening of α -Methylene- β -lactones with Amines

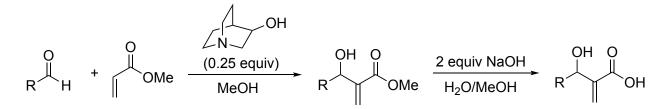
Christian A. Malapit, Donald R. Caldwell, Nicole Sassu, Samuel Milbin, and Amy R. Howell*

Department of Chemistry, University of Connecticut

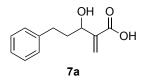
Storrs, Connecticut 06269-3060 United States

Email: amy.howell@uconn.edu

Table of Contents

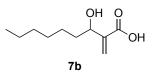

I.	General Information	S2
II.	Preparation of α -methylene- β -hydroxyacids 7	S3
III.	Preparation of α -methylene- β -lactones 1	S6
IV.	Pd-catalyzed amidation of $\alpha\text{-methylene-}\beta\text{-lactones}$	S11
V.	Pd-catalyzed kinetic resolution of $\alpha\mbox{-methylene-}\beta\mbox{-lactones}$	S20
VI.	References	S23
VII.	¹ H and ¹³ C NMR spectra of new compounds	S24
VIII.	Chiral HPLC traces of enantioenriched compounds	S56

I. General Information

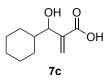

Commercially available reagents were used without further purification. All ¹H NMR experiments were recorded using a 300, 400 or 500 MHz spectrometer. All ¹³C NMR experiments were recorded using a 100 or 125 MHz spectrometer. Chemical shifts (δ) are given in ppm, and coupling constants (*J*) are given in Hz. The 7.26 resonance of residual CHCl₃ for proton spectra and the 77.23 ppm resonance of CDCl₃ for carbon spectra were used as internal references. High-resolution mass spectra (HRMS) were obtained on a microTOF instrument. Unless otherwise stated, reaction progress was monitored by thin layer chromatography (TLC) performed on glass plates coated with silica gel UV254. Visualization was achieved by ultraviolet light (254 nm), 0.5% KMnO₄ in 0.1 M aq NaOH solution and/or 5% phosphomolybdic acid in ethanol. Column chromatography was performed using silica gel, 40 microns flash silica.

II. Preparation of α -methylene- β -hydroxyacids

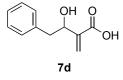
General procedure for the preparation of α -methylene- β -hydroxyacids¹



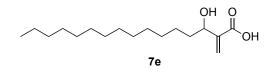
Methylacrylate (2 equiv) was added to a solution of aldehyde (1 equiv), MeOH (0.75 equiv), and quinuclidinol (0.25 equiv), and the mixture was stirred at rt. The reaction progress was monitored by ¹H NMR over a period of 2–3 d until >95% conversion. The reaction mixture was concentrated *in vacuo* to remove MeOH and excess methylacrylate. Aq 2.0 M NaOH (2 equiv) was added dropwise to the resulting crude mixture dissolved in MeOH (half the volume of NaOH solution). This was stirred for 2 d or until complete saponification. The progress of the reaction was monitored by ¹H NMR analysis or TLC. The reaction mixture was concentrated *in vacuo* to remove MeOH. The resulting aq solution was acidified using 10% aq HCl until pH 1 to 2. This was extracted with Et₂O (same volume as aq solution) three times. The combined organic extracts were dried (Na₂SO₄), filtered, and concentrated *in vacuo*. The crude product was purified by flash chromatography on silica gel.



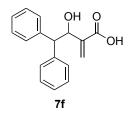
3-Hydroxy-2-methylene-5-phenylpentanoic acid (7a). The general procedure was followed using hydrocinnamaldehyde (4.00 g, 30.0 mmol), and the reaction mixture was stirred for 2 d. ¹H NMR analysis of the crude reaction mixture showed 95% conversion. Hydrolysis was complete in 2 d. Purification by flash chromatography on silica gel (petroleum ether/EtOAc, 70:30) gave **7a** as a white solid (3.65 g, 59% over two steps):¹ ¹H NMR (300 MHz, CDCl₃) δ 7.33–7.18 (m,


5H), 6.43 (s, 1H), 5.95 (s, 1H), 4.47 (dd, *J* = 7.4, 5.5 Hz, 1H), 2.89-2.67 (m, 2H), 2.09–1.98 (m, 2H)

3-Hydroxy-2-methylenenonanoic acid (7b). The general procedure was followed using heptaldehyde (3.40 g, 30.0 mmol), and the reaction mixture was stirred for 2 d. Hydrolysis was complete in 2 d. Purification by flash chromatography on silica gel (petroleum ether/EtOAc, 80:20) gave **7b** as a white solid (2.50 g, 50% over two steps):² ¹H NMR (400 MHz, CDCl₃) δ 6.37 (s, 1H), 5.91 (s, 1H), 4.42 (t, *J* = 7.2 Hz, 1H), 1.75–1.60 (m, 2H) ,1.51–1.20 (m, 8H), 0.95–0.81 (m, 3H).

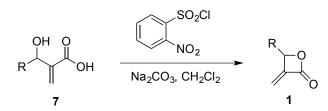


3-Cyclohexyl-3-hydroxy-2-methylenepropanoic acid (7c). The general procedure was followed using cyclohexanecarboxaldehyde (1.30 g, 11.6 mmol), and the reaction mixture was stirred for 2 d. Hydrolysis was complete in 2 d. Cmpd **7c** was obtained as a crude oil and carried to the next step with no further purification:² ¹H NMR (400 MHz, CDCl₃) δ 6.41 (s, 1H) 5.83 (s, 1H) 4.11 (d *J* = 7.1 Hz, 1H) 1.97–1.93 (m, 1H) 1.75–1.56 (m, 6H) 1.24–0.96 (m, 4H).

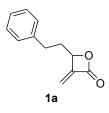


3-Hydroxy-2-methylene-4-phenylbutanoic acid (7d). The general procedure was followed using phenyl acetaldehyde (2.28 g, 19.0 mmol), and the reaction mixture was stirred for 3 h. Hydrolysis was complete in 1 day. Purification by flash chromatography on silica gel (petroleum

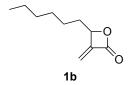
ether/EtOAc, 80:20) gave **7d** as a thick pale yellow oil (0.90 g, 23% over two steps):³ ¹H NMR (400 MHz, CDCl₃) δ 7.32–7.19 (m, 5H), 6.41 (s, 1H), 5.94 (s, 1H), 4.45 (s, 1H) , 2.69 (m, 3H).



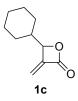
3-Hydroxy-2-methylenehexadecanoic acid (7e). The general procedure was followed using tetradecanal (2.98 g, 15.0 mmol), and the reaction mixture was stirred for 2 d. Hydrolysis was complete in 2 d. Purification by flash chromatography on silica gel (petroleum ether/EtOAc 85:15) gave **7e** as a white solid (3.20 g, 75% over two steps):⁴ ¹H NMR (400 MHz, CDCl₃) δ 6.38 (s, 1H), 5.91 (s, 1H), 4.43 (dd, *J* = 6.5, 6.5 Hz, 1H), 1.68–1.66 (m, 2H), 1.43–1.41 (m, 1H), 1.30–1.26 (m, 22H), 0.90 (t, *J* = 6.9 Hz, 3H).

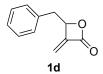

3-Hydroxy-2-methylene-4,4-diphenylbutyric acid (7f). The general procedure was followed using diphenylacetaldehyde (2.94 g, 15.0 mmol), and the reaction mixture was stirred for 2 d. Hydrolysis was complete in 2 d. Purification by flash chromatography on silica gel (petroleum ether/EtOAc, 75:25) gave **7f** as a white foam (3.30 g, 83% over two steps):^{5 1}H NMR (400 MHz, CDCl₃) δ 7.31 (m, 10H), 6.29 (s, 1H), 5.71 (s, 1H), 5.23 (d, *J* = 8.0 Hz, 1H), 4.38 (d, *J* = 8.0 Hz, 1H).

III. Preparation of α -methylene- β -lactones

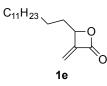


General procedure for the preparation of α -methylene- β -lactones¹

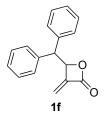

Na₂CO₃ (10 equiv) was added to α -methylene- β -hydroxyacids **7** (1 equiv) in DCM (5 mL DCM/mmol of acid), and the reaction mixture was stirred at rt. After 30 min, *o*-nosyl chloride (2 equiv) was added, and the resulting suspension was stirred at rt for 2 d or until complete conversion. The progress of the reaction was monitored by TLC or ¹H NMR analysis. The reaction mixture was diluted with DCM (10 volumes) and H₂O (5 volumes) and stirred for 15 min. The organic layer was separated, and the aq layer was extracted with DCM (3 x 5 volumes). The combined organic extracts were dried (Na₂SO₄), filtered, and concentrated *in vacuo*. Purification was done by flash chromatography on silica gel to afford α -methylene- β -lactones **1**.


4-(2-Phenylethyl)-3-methyleneoxetan-2-one (1a). The general procedure was followed using 3-hydroxy-2-methylene-5-phenylpentanoic acid (**7a**) (2.90 g, 14.1 mmol). Purification by flash chromatography on silica gel (petroleum ether/EtOAc 95:5) provided **1a** as a colorless oil (1.70 g, 65%):^{1 1}H NMR (400 MHz, CDCl₃) δ 7.36–7.31 (m, 2H), 7.27–7.22 (m, 3H), 5.86 (dd, *J* = 2.0, 2.0 Hz, 1H), 5.33 (dd, *J* = 1.7, 1.7 Hz, 1H), 4.97 (dddd, *J* = 6.4, 6.4, 1.7, 1.7 Hz, 1H), 2.87–2.71 (m, 2H), 2.19–2.12 (m, 2H).

4-Hexyl-3-methyleneoxetan-2-one (1b). The general procedure was followed using 3-hydroxy-2-methylenenonanoic acid (**7b**) (2.90 g, 14.1 mmol). Purification by flash chromatography on silica gel (petroleum ether/EtOAc 94:6) provided **1b** as a colorless oil (1.85 g, 78%): IR (neat): 2955, 2929, 2859, 1813, 1206, 1077 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 5.85 (dd, *J* = 1.8, 1.8 Hz, 1H), 5.39 (dd, *J* = 1.6, 1.6 Hz, 1H), 4.92 (dddd, *J* = 6.6, 6.6, 1.8, 1.8 Hz, 1H), 1.80 (m, 2H), 1.46–1.37 (m, 2H), 1.33–1.24 (m, 6H), 0.84 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.7, 146.5, 114.9, 79.7, 33.4, 31.6, 29.0, 24.6, 22.5, 14.1; HRMS (ESI) calcd for C₁₀H₁₇O₂ (M + H)⁺ *m/z* 169.1229, found 169.1217.

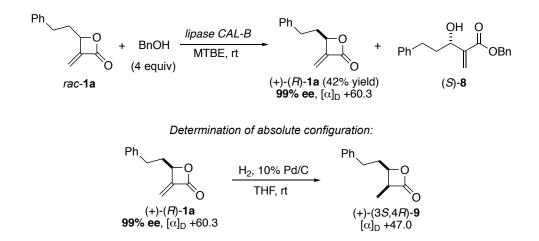


4-Cyclohexyl-3-methyleneoxetan-2-one (1c). The general procedure was followed using 3cyclohexyl-3-hydroxy-2-methylenepropanoic acid (**7c**) (1.40 g, 5.20 mmol). Purification by flash chromatography on silica gel (petroleum ether/EtOAc 95:5) provided **1c** as a colorless oil (0.67 g, 77%):² ¹H NMR (400 MHz, CDCl₃) δ 5.91 (dd, *J* = 1.7, 1.7 Hz, 1H), 5.42 (dd, *J* = 1.7, 1.7 Hz, 1H), 4.69 (ddd, *J* = 7.1, 1.7, 1.7 Hz, 1H), 1.87–1.10 (m, 11H).



4-Benzyl-3-methyleneoxetan-2-one (1d). The general procedure was followed using 3-hydroxy-2-methylene-4-phenylbutanoic acid (**7d**) (900 mg, 4.68 mmol). Purification by flash

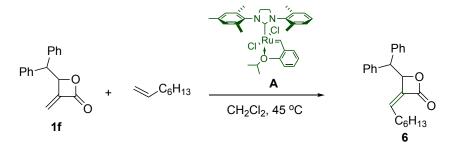
chromatography on silica gel (petroleum ether/EtOAc 94:4) provided **1d** as a pale yellow oil (244 mg, 30%): ¹H NMR (400 MHz, CDCl₃) δ 7.36–7.23 (m, 5H), 5.89 (dd, *J* = 1.8, 1.8 Hz, 1H), 5.23 (dd, *J* = 1.6, 1.6 Hz, 1H), 5.14 (dddd, *J* = 6.8, 6.8, 1.6, 1.6 Hz, 1H), 3.29 (dd, *J* = 14.1, 6.8 Hz, 1H), 3.05 (dd, *J* = 14.1, 6.8 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 163.4, 145.8, 134.8, 129.5, 128.9, 127.5, 116.2, 79.0, 39.7; HRMS (ESI) calcd for C₁₁H₁₀O₂ (M + H)⁺ *m/z* 175.0759, found 175.0742.



3-Methylene-4-tridecyloxetan-2-one (1e). The general procedure was followed using 3-hydroxy-2-methylenehexadecanoic acid (**7e**) (2.50 g, 9.25 mmol). Purification by flash chromatography on silica gel (petroleum ether/EtOAc 98:2) provided **1e** as a colorless oil (1.60 g, 65%):⁴ ¹H NMR (400 MHz, CDCl₃) δ 5.85 (dd, *J* = 1.9, 1.9 Hz, 1H), 5.39 (dd, *J* = 1.7, 1.7 Hz, 1H), 4.92 (dddd, *J* = 6.5, 6.5, 1.6, 1.6 Hz, 1H), 1.81 (m, 2H), 1.46–1.40 (m, 2H), 1.33–1.22 (m, 20H), 0.84 (t, *J* = 6.6 Hz, 3H).

4-Benzhydryl-3-methyleneoxetan-2-one (1f). The general procedure was followed using 3-hydroxy-2-methylene-4,4-diphenylbutyric acid (**7f**) (1.4 g, 5.2 mmol). Purification by flash chromatography on silica gel (petroleum ether/EtOAc 95:5) provided **1f** as a white solid (0.95 g, 73%):⁵ ¹H NMR (400 MHz, CDCl₃) δ 7.30–7.23 (m, 10H), 5.74 (dd, *J* = 2.0, 1.4 Hz, 1H), 5.53 (ddd, *J* = 9.6, 2.0, 1.4 Hz, 1H), 4.72 (dd, *J* = 2.0, 1.4 Hz, 1H), 4.20 (d, *J* = 9.6, 1H).

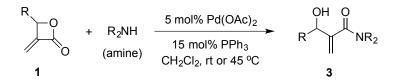
Preparation of β -lactone (+)-(R)-1a⁶

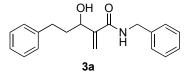


(*4R*)-4-(2-Phenylethyl)-3-methyleneoxetan-2-one [(*R*)-1a]. Lipase CAL-B (lipase acrylic resin from *Candida Antarctica*; 19 mg) was added to a solution of 4-(2-phenylethyl)-3methyleneoxetan-2-one (*rac*-1a) (190 mg, 1.0 mmol) and benzyl alcohol (4 mmol) in MTBE (5 mL). The resulting suspension was stirred at rt, and conversion was monitored by ¹H NMR. After 24 h, ~50% conversion was obtained. Percent conversion was estimated based on the ratio of unreacted 1a and product 8. The reaction mixture was passed through a pad of Celite and washed with MTBE (3 x 5 mL). The filtrate was dried (Na₂SO₄) and concentrated *in vacuo*. The crude mixture was purified by column chromatography on silica gel (hexanes/EtOAc 95:5) and gave (*R*)-1a as a colorless oil (79 mg, 42%):¹ [α]²⁰_D = (+)-60.3 (*c* = 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.36–7.31 (m, 2H), 7.27–7.22 (m, 3H), 5.86 (dd, *J* = 2.0, 2.0 Hz, 1H), 5.33 (dd, *J* = 1.7, 1.7 Hz, 1H), 4.97 (dddd, *J* = 6.4, 6.4, 1.7, 1.7 Hz, 1H), 2.87–2.71 (m, 2H), 2.19–2.12 (m, 2H); 99% ee, retention time 7.7 min (major) and 8.7 min (minor) on Chiralpak AY3 (5% IPA/hexane, 1.0 mL/min). The absolute configuration was determined by reduction of **1a** to cmpd **9**.⁷

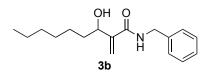
(3*S*,4*R*)-3-Methyl-4-(2-phenylethyl)oxetan-2-one (9). Cmpd (+)-(*R*)-1a (47 mg, 0.25 mmol) and 10% Pd on carbon (0.0075 mmol, 8 mg) were mixed in dry THF (2 mL) under a N_2 atmosphere. The reaction vessel was purged with H_2 for 10 min. The reaction mixture was stirred at rt for 2 h under a balloon filled with H_2 . The crude mixture was filtered through a pad of

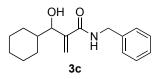
Celite. The Celite was washed with DCM (3 x 3 mL), and the filtrate was concentrated to give a pale yellow oil. Purification by flash chromatography on silica gel (petroleum ether/EtOAc, 92:8) afforded **9** as a pale yellow oil (41 mg, 88%):⁷ [α]²⁰_D = (+)-47.0 (*c* = 1.00, CHCl₃) [lit.⁸ [α]²⁰_D = (-)-47.2 (*c* = 2.04, CHCl₃) for *ent*-**9**]; ¹H NMR (400 MHz, CDCl₃) 7.38–7.24 (m, 5H), 4.57 (ddd, *J* = 4.5, 4.5, 4.5 Hz, 1H), 3.74 (dq, *J* = 14.6, 7.4 Hz, 1H), 2.90 (ddd, *J* = 14.2, 5.3, 5.3 Hz, 1H), 2.73 (m, 1H), 2.06 (m, 2H), 1.28 (d, *J* = 7.7 Hz, 3H).


Preparation of β-lactone 6⁵

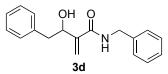

4-Benzhydryl-3-heptylideneoxetan-2-one (6). 1-Octene (168 mg, 1.5 mmol) was added to a solution of 4-benzhydryl-3-methyleneoxetan-2-one (**1f**) (250 mg, 1.0 mmol) under N₂ in DCM (4 mL). Cat **A** (5 mol %) was added, and the resultant solution was heated at reflux. The reaction was monitored by ¹H NMR. Upon consumption (~20 h) of **1f**, the solution was cooled and concentrated, and the brown residue was purified by column chromatography on silica gel (petroleum ether/EtOAc 99:1). Lactone **6** was obtained as a clear oil (309 mg, 92%, *Z* isomer): ¹H NMR (400 MHz, CDCl₃) for the major isomer: δ 7.37–7.28 (m, 7H), 7.26–7.22 (m, 3H), 5.48 (d, *J* = 9.2 Hz, 1H), 5.18 (ddd, *J* = 8.1, 8.1, 1.0 Hz, 1H), 4.20 (d, *J* = 9.2 Hz, 1H), 2.45–2.30 (m, 2H), 1.33–1.21 (m, 8H), 0.89 (t, *J* = 6.7 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.9, 140.0, 139.6, 139.0, 136.1, 129.0, 128.8, 128.5, 127.8, 127.3, 79.1, 55.1, 31.6, 29.2, 28.8, 28.7, 22.7, 14.2; HRMS (ESI) calcd for C₂₃H₂₇O₂ (M + H)⁺ *m/z* 335.2011, found 335.1982.

IV. Pd-catalyzed amidation of α -methylene- β -lactones

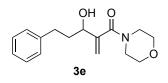

General procedure for the Pd-catalyzed amidation of α -methylene- β -lactones with amines


Anhydrous DCM (0.25 mL) was added to a reaction tube containing 5 mol % Pd(OAc)₂ (0.005 mmol, 1.1 mg) and 15 mol % PPh₃ (0.015 mmol, 4.0 mg) and stirred for 20 min at rt. The α -methylene- β -lactone (1.0 equiv, 0.1 mmol) in DCM (0.25 mL) was added via syringe, followed by the amine (1.1 equiv., 0.11 mmol; for aryl amines, 2-4 equiv. were used). The reaction mixture was stirred for 24 h at rt or 45 °C. The reaction mixture was filtered through a short pad of silica which was rinsed with DCM (2 x 2 mL). The crude mixture was concentrated *in vacuo* and purified by column chromatography on silica gel. [See **3f** for a 1.0 mmol scale reaction]

N-Benzyl-3-hydroxy-2-methylene-5-phenylpentanamide (3a). The general procedure was followed using 4-(2-phenylethyl)-3-methyleneoxetan-2-one (1a) and benzylamine, and the reaction was performed at 45 °C. Purification by column chromatography on silica gel (hexanes/EtOAc 70:30) provided **3a** as a pale yellow solid (29 mg, 98%): mp 96–97 °C; IR (neat) 3307 (br), 3027, 2925, 2855, 1715, 1654, 1605, 1535, 696 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.28–7.18 (m, 7H), 7.13–7.09 (m, 3H), 6.64 (br s, 1H), 5.71 (s, 1H), 5.38 (s, 1H), 4.45 (dd, *J* = 14.8, 5.8 Hz, 1H), 4.41 (dd, *J* = 14.8, 5.7 Hz, 1H), 4.31 (dd, *J* = 7.9, 5.7 Hz, 1H), 3.08 (br s, 1H), 2.71 (ddd, *J* = 14.2, 9.6, 6.0 Hz, 1H), 2.59 (ddd, *J* = 15.9, 9.2, 6.7 Hz, 1H), 2.03–1.94 (m, 1H), 1.93–1.84 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 145.7, 141.7, 138.2, 129.0, 128.7, 128.6, 128.0, 127.8, 126.2, 120.1, 73.4, 43.7, 37.5, 32.3; HRMS (ESI) calcd for C₁₉H₂₂NO₂ (M + H)⁺ *m/z* 296.1651, found 296.1664.

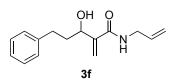


N-Benzyl-3-hydroxy-2-methylenenonanamide (3b). The general procedure was followed using 4-hexyl-3-methyleneoxetan-2-one (1b) and benzylamine, and the reaction was performed at rt. Purification by column chromatography on silica gel (hexanes/EtOAc 70:30) provided **3b** as a white solid (27 mg, 98%): mp 77–78 °C; IR (neat) 3389 (br), 2954, 2926, 2856, 1654, 1609, 1536, 697 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.36–7.33 (m, 2H), 7.30–7.28 (m, 3H), 6.83 (br s, 1H), 5.80 (s, 1H), 5.45 (s, 1H), 4.52 (dd, *J* = 14.9, 5.7 Hz, 1H), 4.48 (dd, *J* = 14.9, 5.7 Hz, 1H), 4.36 (dd, *J* = 12.5, 6.2 Hz, 1H), 2.94 (d, *J* = 5.5 Hz, 1H), 1.71–1.60 (m, 2H), 1.40–1.27 (m, 8H), 0.88 (t, *J* = 6.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 145.8, 138.3, 129.0, 127.9, 127.8, 120.1, 74.3, 43.7, 36.0, 31.9, 29.3, 26.1, 22.8, 14.3; HRMS (ESI) calcd for C₁₇H₂₆NO₂ (M + H)⁺ *m/z* 276.1964, found 276.1961.

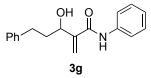


N-Benzyl-3-cyclohexyl-3-hydroxy-2-methylenepropanamide (3c). The general procedure was followed using 4-cyclohexyl-3-methyleneoxetan-2-one (1c) and benzylamine, and the reaction was performed at rt. Purification by column chromatography on silica gel (hexanes/EtOAc 70:30) provided **3c** as a yellowish solid (24 mg, 89%): mp 82–83 °C; IR (neat) 3306 (br), 2923, 2851, 1654, 1609, 1537, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.35–7.31 (m, 2H), 7.28–7.26 (m, 3H), 7.00 (br s, 1H), 5.82 (s, 1H), 5.37 (s, 1H), 4.52 (dd, *J* = 14.9, 5.8 Hz, 1H), 4.48 (dd, *J* = 14.9, 5.8 Hz, 1H), 3.97 (dd, *J* = 8.1, 6.1 Hz, 1H), 3.28 (d, *J* = 6.1 Hz, 1H), 2.04–2.01 (m, 1H), 1.76–1.50 (m, 5H), 1.23–1.13 (m, 3H), 0.99–0.81 (m, 2H); ¹³C NMR (100

MHz, CDCl₃) δ 168.2, 144.5, 138.3, 128.9, 127.8, 127.7, 121.5, 80.0, 43.5, 42.2, 30.0, 29.5, 26.5, 26.1, 26.0; HRMS (ESI) calcd for C₁₇H₂₄NO₂ (M + H)⁺ *m/z* 274.1807, found 274.1813.

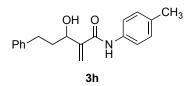


N-Benzyl-3-hydroxy-2-methylene-4-phenylbutanamide (3d). The general procedure was followed using 4-benzyl-3-methyleneoxetan-2-one (1d) and benzylamine, and the reaction was performed at rt. Purification by column chromatography on silica gel (hexanes/EtOAc 70:30) provided 3d as a pale yellow solid (21 mg, 76%): mp 102–104 °C; ¹H NMR (300 MHz, CDCl₃) δ 7.39–7.16 (m, 10H), 6.72 (br s, 1H), 5.77 (s, 1H), 5.42 (s, 1H), 4.62 (m, 1H), 4.53 (d, *J* = 5.7 Hz, 2H), 3.06–2.94 (m, 3H); ¹³C NMR (75 MHz, CDCl₃) δ 167.8, 144.6, 138.2, 137.9, 129.6, 128.9, 128.6, 127.8, 127.6, 126.7, 120.8, 74.7, 43.5, 42.9; HRMS (ESI) calcd for C₁₈H₂₀NO₂ (M + H)⁺ *m/z* 282.1494, found 282.1482.

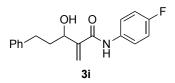


N-(3-Hydroxy-2-methylene-5-phenyl)pentanoylmorpholine (3e). The general procedure was followed using 4-(2-phenylethyl)-3-methyleneoxetan-2-one (1a) and morpholine, and the reaction was performed at rt. Purification by column chromatography on silica gel (hexanes/EtOAc 60:40) provided **3e** as a pale yellow oil (25 mg, 92%): IR (neat) 3386 (br), 2922, 2855, 1643, 1604, 1436, 1069, 700 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.31–7.26 (m, 3H), 7.21–7.19 (m, 2H), 5.50 (s, 1H), 5.18 (s, 1H), 4.32 (ddd, *J* = 12.9, 6.4, 6.4 Hz, 1H), 3.65 (br s, 8H), 3.05 (d, *J* = 6.3 Hz, 1H), 2.85 (ddd, *J* = 14.2, 7.6, 7.6 Hz, 1H), 2.71 (ddd, *J* = 14.4, 7.9, 7.9 Hz, 1H), 1.94–1.88 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 170.0, 145.1, 141.7, 128.7, 128.7,

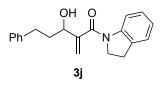
126.2, 116.4, 77.43, 73.2, 67.1, 37.8, 32.3; HRMS (ESI) calcd for $C_{16}H_{22}NO_3$ (M + H)⁺ *m/z* 276.1600, found 276.1617.



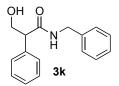
N-Allyl-3-hydroxy-2-methylene-5-phenylpentanamide (3f). The general procedure was followed using 4-(2-phenylethyl)-3-methyleneoxetan-2-one (1a) (188 mg, 1.0 mmol) and allylamine (63 mg, 1.1 mmol), and the reaction was performed at rt. Purification by column chromatography on silica gel (hexanes/EtOAc 70:30) provided 3f as a pale yellow solid (220 mg, 90%): mp 74–75 °C; IR (neat) 3306 (br), 2922, 2860, 1655, 1605, 1531, 921, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.30–7.26 (m, 3H), 7.20–7.17 (m, 2H), 6.53 (br s, 1H), 5.90–5.81 (m, 1H), 5.78 (s, 1H), 5.45 (s, 1H), 5.20 (dddd, *J* = 17.2, 1.6, 1.6, 1.6 Hz, 1H), 5.16 (dddd, *J* = 10.3, 1.4, 1.4, 1.4 Hz, 1H), 4.37 (ddd, *J* = 7.8, 5.8, 5.8 Hz, 1H), 3.95–3.92 (m, 2H), 3.23 (d, *J* = 6.0 Hz, 1H), 2.79 (ddd, *J* = 14.0, 5.9, 5.9 Hz, 1H), 2.68 (ddd, *J* = 14.1, 6.7, 6.7 Hz, 1H), 2.10–2.01 (m, 1H), 1.99–1.91 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 145.7, 141.7, 134.0, 128.7, 128.6, 126.2, 120.0, 116.8, 73.4, 42.0, 37.5, 32.3; HRMS (ESI) calcd for C₁₅H₂₀NO₂ (M + H)⁺ *m/z* 246.1494, found 246.1521.



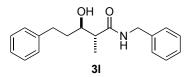
3-Hydroxy-2-methylene-*N***-phenyl-5-phenylpentanamide (3g).** The general procedure was followed using 4-(2-phenylethyl)-3-methyleneoxetan-2-one (1a) (19 mg, 0.10 mmol) and aniline (41 mg, 0.44 mmol), and the reaction was performed at 45 °C. Purification by column chromatography on silica gel (hexanes/EtOAc 70:30) provided 3g as a pale yellow solid (26 mg,


92%): mp 126–128 °C; IR (neat) 3306 (br), 3305, 2924, 2860, 1650, 1618, 1522, 747, 694 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 9.60 (br s, 1H), 7.57–7.55 (m, 2H), 7.36–7.26 (m, 4H), 7.21–7.11 (m, 4H), 6.01 (s, 1H), 5.54 (s, 1H), 4.48 (dd, *J* = 7.8, 7.8 Hz, 1H), 2.94 (br s, 1H), 2.84–2.76 (m, 1H), 2.75–2.68 (m, 1H), 2.18–2.08 (m, 1H), 2.07–1.98 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 145.6, 141.4, 137.8, 129.3, 128.7, 126.3, 124.8, 122.1, 120.4, 73.6, 37.3, 32.3; HRMS (ESI) calcd for C₁₈H₂₀NO₂ (M + H)⁺ *m/z* 282.1494, found 282.1498.

3-Hydroxy-*N***-(4-methylphenyl)-2-methylene-5-phenylpentanamide** (3h). The general procedure was followed using 4-(2-phenylethyl)-3-methyleneoxetan-2-one (1a) (19 mg, 0.10 mmol) *p*-toluidine (24 mg, 0.22 mmol), and the reaction was performed at 45 °C. Purification by column chromatography on silica gel (hexanes/EtOAc 70:30) provided 3h as a pale yellow solid (28 mg, 96%): mp 113–115 °C; IR (neat) 3286 (br), 3026, 2921, 2861, 1658, 1597, 1513, 813, 697 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.58 (br s, 1H), 7.44–7.42 (m, 2H), 7.30–7.26 (m, 2H), 7.21–7.17 (m, 3H), 7.14–7.12 (m, 2H), 5.98 (s, 1H), 5.50 (s, 1H), 4.45 (dd, *J* = 7.9, 5.8 Hz, 1H), 3.19 (br s, 1H), 2.83–2.67 (m, 2H), 2.32 (s, 3H), 2.16–2.07 (m, 1H), 2.05–1.96 (m, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 145.6, 141.4, 135.2, 134.5, 129.7, 128.7, 128.7, 126.2, 121.9, 120.5, 73.5, 37.4, 32.3, 21.1; HRMS (ESI) calcd for C₁₉H₂₂NO₂ (M + H)⁺ *m/z* 296.1651, found 296.1681.

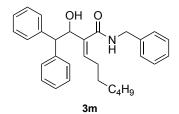


3-Hydroxy-*N***-(4-fluorophenyl)-2-methylene-5-phenylpentanamide** (3i). The general procedure was followed using 4-(2-phenylethyl)-3-methyleneoxetan-2-one (1a) (19 mg, 0.10 mmol) and 4-fluoroaniline (50 mg, 0.44 mmol), and the reaction was performed at 45 °C. Purification by column chromatography on silica gel (hexanes/EtOAc 70:30) provided 3i as a pale yellow solid (24 mg, 80%): mp 78–79 °C; IR (neat) 3293 (br), 2926, 2859, 1660, 1611, 1540, 1508, 832, 700 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 8.73 (br s, 1H), 7.54–7.49 (m, 2H), 7.31–7.26 (m, 2H), 7.21–7.18 (m, 3H), 7.04–6.99 (m, 2H), 6.03 (s, 1H), 5.52 (s, 1H), 4.47 (dd, *J* = 7.8, 7.8 Hz, 1H), 3.05 (br s, 1H), 2.84–2.66 (m, 2H), 2.18–1.95 (m, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 165.5, 159.7 (d, *J*_{C-F} = 243 Hz), 145.2, 141.3, 133.8, 128.7, 128.7, 126.3, 122.5, 122.2 (d, *J*_{C-F} = 7.9 Hz), 115.9 (d, *J*_{C-F} = 22.5 Hz), 73.5, 37.4, 32.3; HRMS (ESI) calcd for C₁₉H₁₉FNO₂ (M + H)⁺ *m/z* 300.1400, found 300.1417.

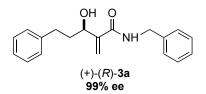


N-(3-Hydroxy-2-methylene-5-phenyl)-pentanoylindoline (3j). The general procedure was followed using 4-(2-phenylethyl)-3-methyleneoxetan-2-one (1a) (19 mg, 0.10 mmol) and indoline (52 mg, 0.44 mmol), and the reaction was performed at 45 °C. Purification by column chromatography on silica gel (hexanes/EtOAc 60:40) provided 3j as a light brown thick oil (28 mg, 90%, contains ~6% indoline as impurity): IR (neat) 3404 (br), 2922, 1641, 1618, 1481, 1408, 698 cm⁻¹; ¹H NMR (400 MHz, CDCl₃): δ 8.10 (br s, 1H), 7.29–7.26 (m, 3H), 7.22–7.15 (m, 5H), 7.06 (dd, *J* = 7.4, 7.4 Hz, 1H), 5.62 (s, 1H), 5.42 (s, 1H), 4.44 (dd, *J* = 6.6, 6.6 Hz, 1H), 4.17–4.04 (m, 2H), 3.22 (br s, 1H), 3.14 (dd, *J* = 14.9, 8.2 Hz, 1H), 3.07 (dd, *J* = 14.9, 8.2 Hz, 1H),

1H), 2.94–2.87 (m, 1H), 2.77–2.70 (m, 1H), 2.01 (dd, J = 7.7, 7.7 Hz, 1H), 1.99 (dd, J = 7.7, 7.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 168.9, 147.2, 142.4, 141.9, 132.6, 128.7, 128.6, 127.6, 126.1, 125.1, 124.6, 117.8, 116.9, 73.1, 50.8 (br), 38.0, 32.4, 28.3 (br); HRMS (ESI) calcd for C₂₀H₂₂NO₂ (M + H)⁺ *m/z* 308.1651, found 308.1662.

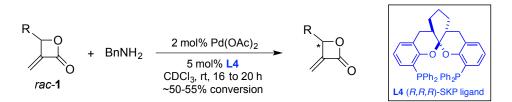


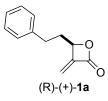
N-Benzyl-3-hydroxy-2-phenylpropanamide (3k). The general procedure was followed using 3-phenyloxetan-2-one⁹ (**4**) and benzylamine, and the reaction was performed at rt. Purification by column chromatography on silica gel (hexanes/EtOAc 60:40) provided **3k** as a white solid (25 mg, 96%): mp 116–118 °C; IR (neat) 3276 (br), 3030, 2924, 1638, 1548, 697 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.36–7.25 (m, 8H), 7.18–7.16 (m, 2H), 5.82 (br s, 1H), 4.43 (dd, *J* = 14.9, 5.8 Hz, 1H), 4.43 (dd, *J* = 14.9, 5.8 Hz, 1H), 4.18 (dd, *J* = 11.0, 8.8 Hz, 1H), 3.80 (dd, *J* = 11.0, 4.3 Hz, 1H), 3.70 (dd, *J* = 8.7, 4.5 Hz, 1H), 3.44 (br s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 173.7, 138.0, 136.8, 129.4, 128.9, 128.7, 128.2, 127.7, 127.7, 65.3, 54.6, 43.7; HRMS (ESI) calcd for C₁₆H₁₈NO₂ (M + H)⁺ *m/z* 256.1338, found 256.1349.



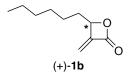
(*2R*,3R**)-*N*-Benzyl-3-hydroxy-2-methyl-5-phenylpentanamide (3I). The general procedure was followed using *trans*-3-methyl-4-(2-phenylethyl)-oxetan-2-one¹⁰ (5) and benzylamine, and the reaction was performed at rt (2 d). Purification by column chromatography on silica gel (hexanes/EtOAc 60:40) provided **3I** as a white solid (24 mg, 82%): mp 133–135 °C; IR (neat) 3293 (br), 2914, 1643, 1549, 697 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) δ 7.34–7.24 (m, 7H), 7.20–

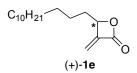
7.16 (m, 3H), 6.17 (br s, 1H), 4.43 (d, J = 2.5 Hz, 1H), 4.41 (d, J = 2.5 Hz, 1H), 3.63 (ddd, J = 5.4, 5.4, 5.4, 1H), 3.40 (br s, 1H), 2.86 (ddd, J = 14.2, 7.4, 7.4 Hz, 1H), 2.67 (ddd, J = 13.9, 8.0, 8.0 Hz, 1H), 2.26 (dq, J = 7.1, 5.2 Hz, 1H), 1.82–1.76 (m, 2H), 1.26 (d, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 176.1, 142.2, 138.2, 128.9, 128.7, 128.6, 127.9, 127.8, 126.1, 73.5, 46.2, 43.5, 37.6, 32.4, 15.9; HRMS (ESI) calcd for C₁₉H₂₄NO₂ (M + H)⁺ *m/z* 298.1807, found 298.1813.

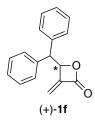

N-Benzyl-4,4-diphenyl-2-heptylidene-3-hydroxybutanamide (3m). The general procedure was followed using 4-benzhydryl-3-heptylideneoxetan-2-one (**6**) (290 mg, 0.87 mmol) and benzylamine (102 mg, 0.95 mmol), and the reaction was performed at 45 °C. Purification by column chromatography on silica gel (hexanes/EtOAc 80:20) provided **3m** as a pale yellow oil (344 mg, 90%, *Z* isomer): IR (neat) 3323 (br), 2954, 2926, 2856, 1660, 1601, 746, 697 cm⁻¹; ¹H NMR (400 MHz, CDCl₃) for the <u>major isomer</u>: δ 7.37–7.28 (m, 9H), 7.22–7.08 (m, 6H), 5.93 (dd, *J* = 5.3, 5.3 Hz, 1H), 5.30 (dd, *J* = 10.4, 7.6 Hz, 1H), 4.89 (dd, *J* = 10.0, 5.4 Hz, 1H), 4.49 (dd, *J* = 14.6, 5.9 Hz, 1H), 4.45 (dd, *J* = 14.6, 5.9 Hz, 1H), 4.16 (d, *J* = 10.0 Hz, 1H), 3.09 (d, *J* = 5.4 Hz, 1H), 2.09–2.04 (m, 2H), 1.26–1.00 (m, 8H), 0.85 (t, *J* = 7.0 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.6, 142.0, 141.5, 138.3, 138.1, 135.8, 129.0, 128.9, 128.8, 128.8, 128.6, 128.3, 127.9, 127.0, 126.8, 78.9, 57.4, 43.6, 31.8, 29.3, 29.3, 28.9, 22.7, 14.3; HRMS (ESI) calcd for C₃₀H₃₆NO₂ (M + H)⁺ *m/z* 442.2746, found 442.2770.


(3*R*)-*N*-Benzyl-3-hydroxy-2-methylene-5-phenylpentanamide [(*R*)-3a]. Anhydrous DCM (0.25 mL) was added to a reaction tube containing 5 mol % Pd(OAc)₂ (1.1 mg, 0.005 mmol) and 15 mol % PPh₃ (4.0 mg, 0.015 mmol), and the solution was stirred for 20 min at rt. (*R*)-4-(2-Phenylethyl)-3-methyleneoxetan-2-one [(*R*)-1a] (19 mg, 0.1 mmol) in DCM (0.25 mL) was added via syringe, followed by benzylamine (12 mg, 0.11 mmol). The reaction mixture was stirred for 24 h at 45 °C. The reaction mixture was filtered through a short pad of silica which was rinsed with DCM (2 x 2 mL). The crude mixture was concentrated *in vacuo* and purified by column chromatography on silica gel (hexanes/EtOAc 70:30) and gave (*R*)-3a as a pale yellow solid (27 mg, 92%): $[\alpha]^{20}_{D} = (+)-24.8$ (*c* = 1.00, CHCl₃); mp 96–97 °C; ¹H NMR (400 MHz, CDCl₃): δ 7.28–7.18 (m, 7H), 7.13–7.09 (m, 3H), 6.64 (br s, 1H), 5.71 (s, 1H), 5.38 (s, 1H), 4.45 (dd, *J* = 14.8, 5.8 Hz, 1H), 4.41 (dd, *J* = 14.8, 5.7 Hz, 1H), 4.31 (dd, *J* = 7.9, 5.7 Hz, 1H), 3.08 (br s, 1H), 2.71 (ddd, *J* = 14.2, 9.6, 6.0 Hz, 1H), 2.59 (ddd, *J* = 15.9, 9.2, 6.7 Hz, 1H), 2.03–1.94 (m, 1H), 1.93–1.84 (m, 1H); 99% ee, retention time 12.2 min (major) and 13.2 min (minor) on Chiralcel OJ (2% IPA/hexane, 1.5 mL/min).

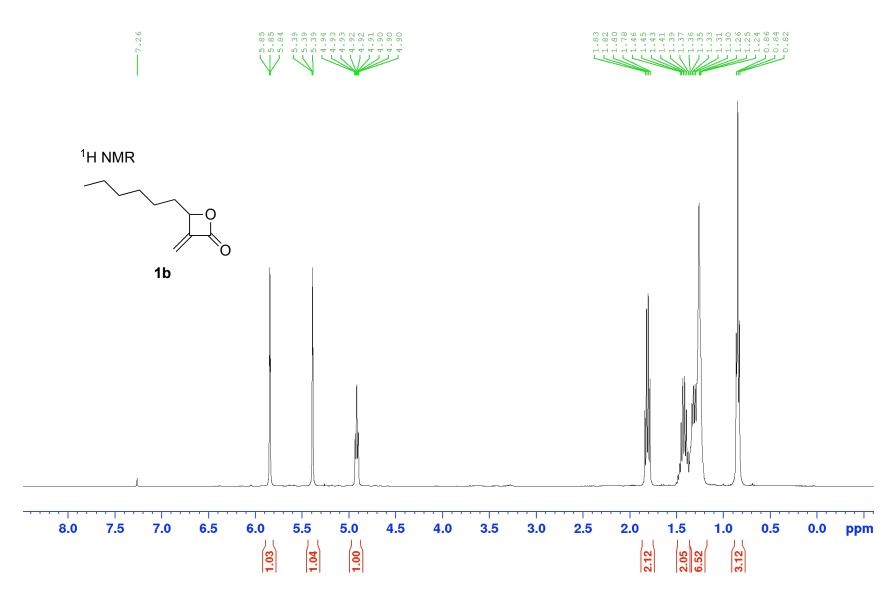
V. Pd-catalyzed kinetic resolution of α -methylene- β -lactones

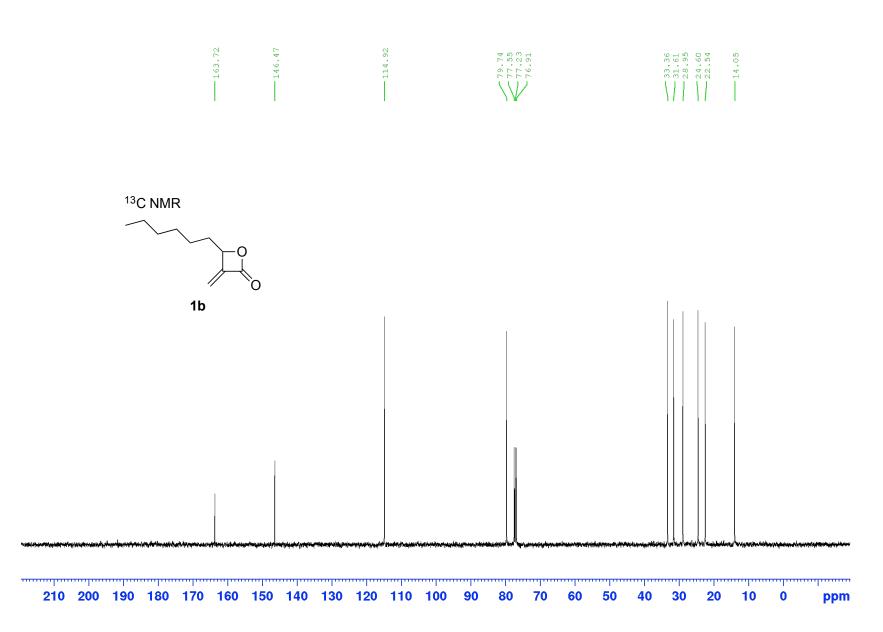

General procedure for the Pd-catalyzed kinetic resolution of α -methylene- β -lactones with benzylamine.

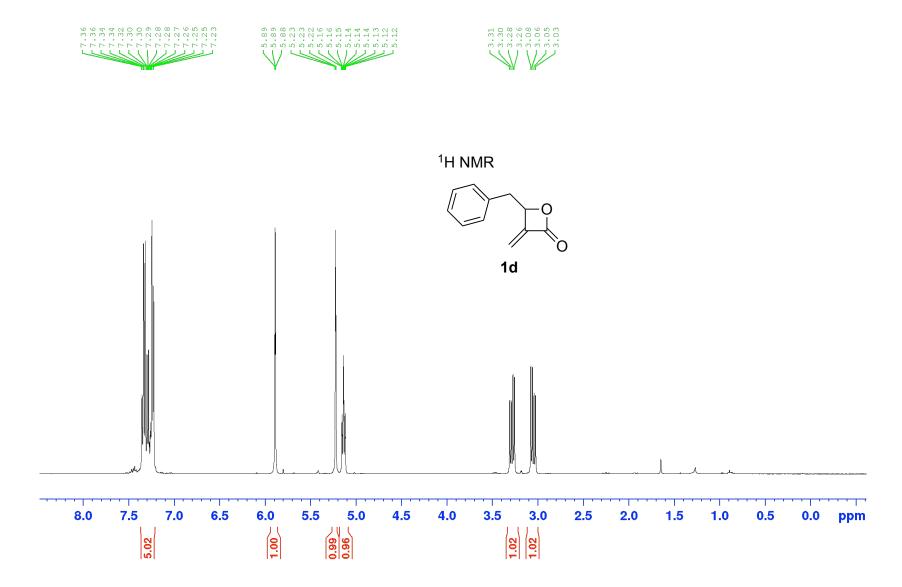

Deuterated chloroform (0.50 mL) was added to a reaction tube containing 2 mol % Pd(OAc)₂ (0.004 mmol, 1.0 mg) and 5 mol % **L4** (0.010 mmol, 6.6 mg), and the solution was stirred for 20 min at rt. The α -methylene- β -lactone (1.0 equiv, 0.2 mmol) in CDCI₃ (0.50 mL) was added via syringe, followed by the amine (1.0 equiv, 0.2 mmol). The reaction mixture was stirred at rt for 16 to 20 h until 50–55% conversion was reached. The reaction was monitored by ¹H NMR analysis. The reaction mixture was filtered through a short pad of silica, which was rinsed with DCM (2 x 2 mL). The crude mixture was concentrated *in vacuo* and purified by column chromatography on silica gel.

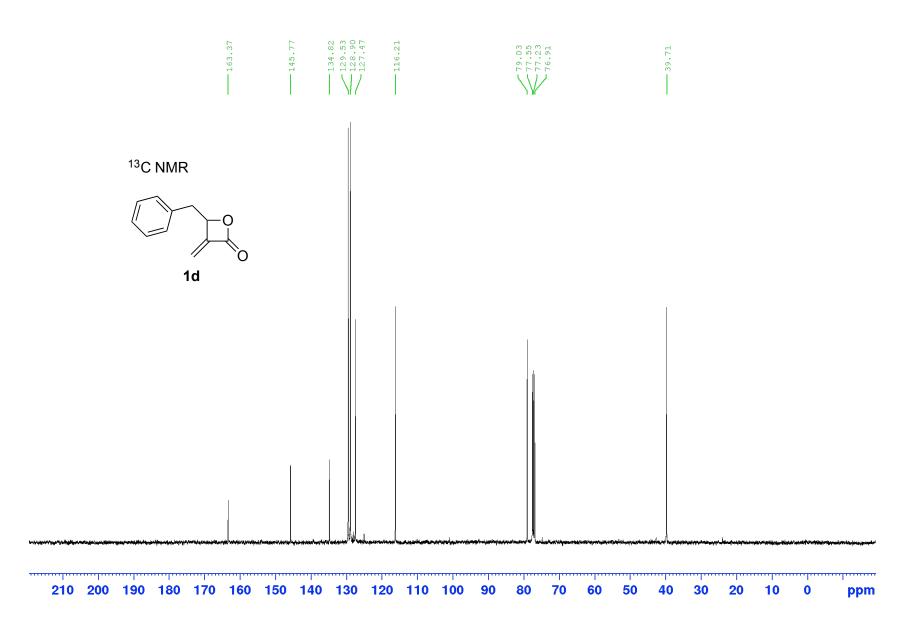

(*4R*)-4-(2-Phenylethyl)-3-methyleneoxetan-2-one ([*R*]-[+]-1a). The general procedure was followed using racemic **1a** (38 mg, 0.20 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc 95:5) provided (*R*)-(+)-**1a** as a colorless oil (16 mg, 43%):¹ [α]²⁰_D = (+)-40.3 (*c* = 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.36–7.31 (m, 2H), 7.27–7.22 (m, 3H), 5.86 (dd, *J* = 2.0, 2.0 Hz, 1H), 5.33 (dd, *J* = 1.7, 1.7 Hz, 1H), 4.97 (dddd, *J* = 6.4, 6.4, 1.7, 1.7 Hz, 1H), 2.87–2.71 (m, 2H), 2.19–2.12 (m, 2H); 68% ee, retention time 7.7 min (major) and 8.7 min (minor) on Chiralpak AY3 (5% IPA/hexane, 1.0 mL/min).

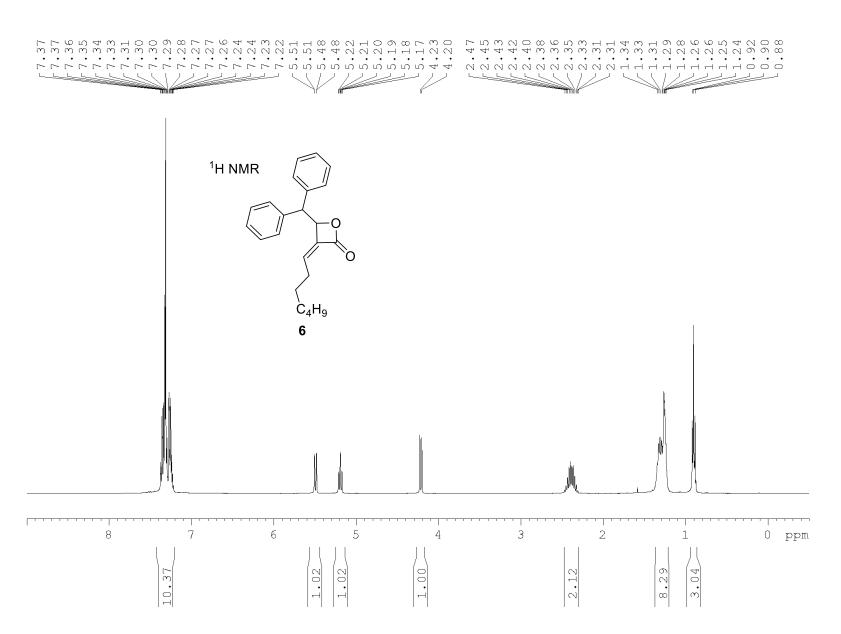
4-Hexyl-3-methyleneoxetan-2-one ([+]1b). The general procedure was followed using racemic **1b** (34 mg, 0.20 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc 94:4) provided (+)-**1b** as a colorless oil (13 mg, 38%): $[\alpha]^{20}{}_{D}$ = (+)-40.1 (*c* = 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.85 (dd, *J* = 1.8, 1.8 Hz, 1H), 5.39 (dd, *J* = 1.6, 1.6 Hz, 1H), 4.92 (dddd, *J* = 6.6, 6.6, 1.8, 1.8 Hz, 1H), 1.80 (m, 2H), 1.46–1.37 (m, 2H), 1.33–1.24 (m, 6H), 0.84 (t, *J* = 6.8 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.7, 146.5, 114.9, 79.7, 33.4, 31.6, 29.0, 24.6, 22.5, 14.1; 72% ee, retention time 5.5 min (minor) and 6.8 min (major) on Chiralpak AY3 (5% IPA/hexane, 0.5 mL/min).

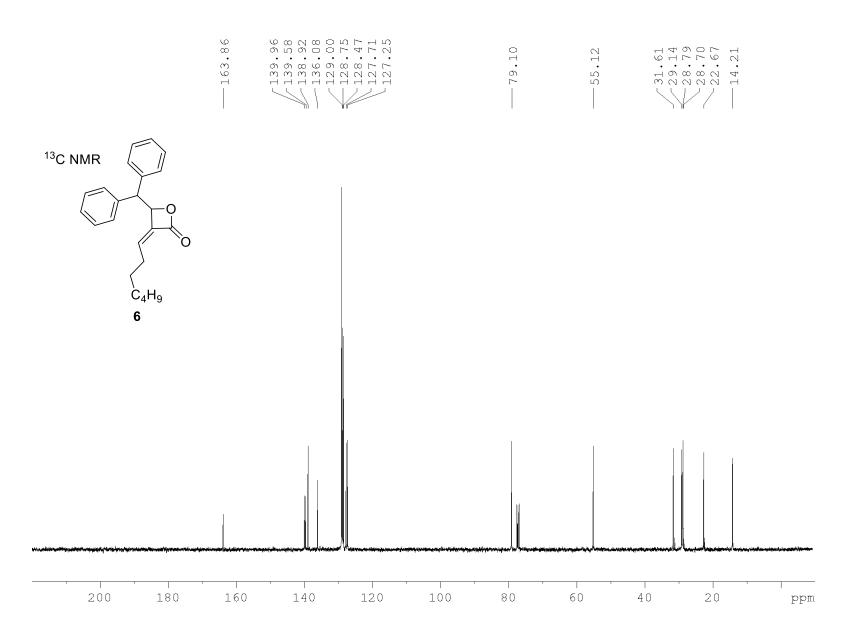

3-Methylene-4-tridecyloxetan-2-one ([+]-1e). The general procedure was followed using racemic **1e** (53 mg, 0.20 mmol). Purification by column chromatography on silica gel (petroleum ether/EtOAc 98:2) provided (+)-**1e** as a colorless oil (21 mg, 40%):⁴ [α]²⁰_D = (+)-37.0 (*c* = 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 5.85 (dd, *J* = 1.9, 1.9 Hz, 1H), 5.39 (dd, *J* = 1.7, 1.7 Hz, 1H), 4.92 (dddd, *J* = 6.5, 6.5, 1.6, 1.6 Hz, 1H), 1.81 (m, 2H), 1.46–1.40 (m, 2H), 1.33–1.22 (m, 20H), 0.84 (t, *J* = 6.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 163.7, 146.6, 114.8, 79.7, 33.4, 32.0, 29.8, 29.7, 29.7, 29.6, 29.5, 29.5, 29.3; 56% ee, retention time 10.1 min (major) and 10.8 min (minor) on Chiralpak AY3 (5% IPA/hexane, 0.5 mL/min).

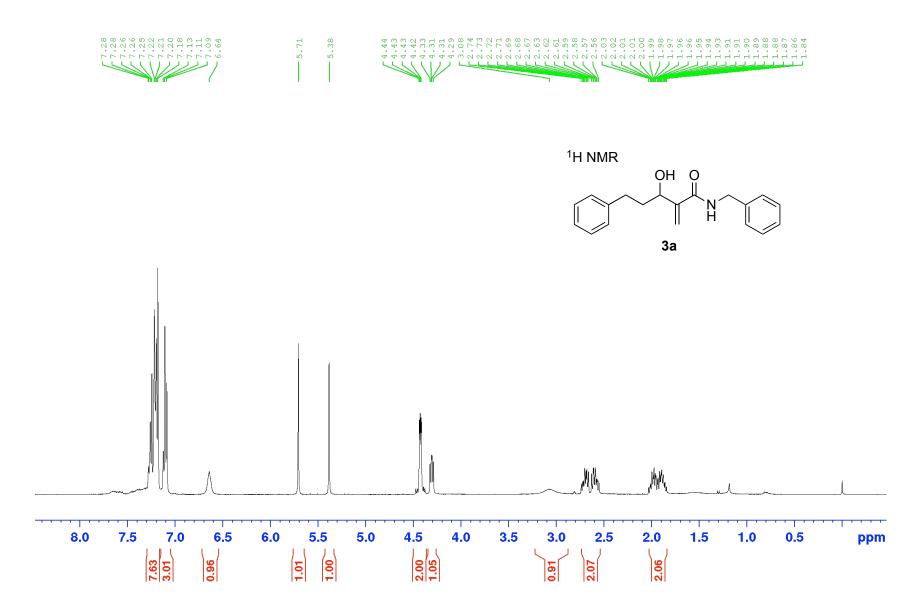

4-Benzhydryl-3-methyleneoxetan-2-one ([+]-1f). The general procedure was followed using racemic **1f** (0.2 mmol, 50 mg). Purification by column chromatography on silica gel (petroleum ether/EtOAc 95:5) provided (+)-**1f** as a white solid (19 mg, 37%):⁵ $[\alpha]^{20}{}_{D}$ = (+)-51.4 (*c* = 1.00, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.30–7.23 (m, 10H), 5.74 (dd, *J* = 2.0, 1.4 Hz, 1H), 5.53 (ddd, *J* = 9.6, 2.0, 1.4 Hz, 1H), 4.72 (dd, *J* = 2.0, 1.4 Hz, 1H), 4.20 (d, *J* = 9.6, 1H); 74% ee, retention time 6.5 min (major) and 7.1 min (minor) on Chiralpak AY3 (5% IPA/hexane, 1.0 mL/min).

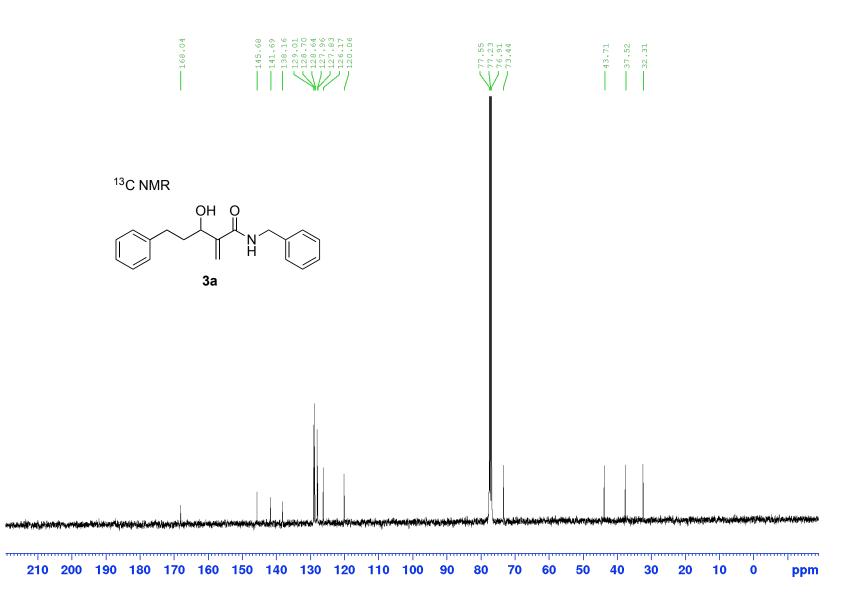

VI. References

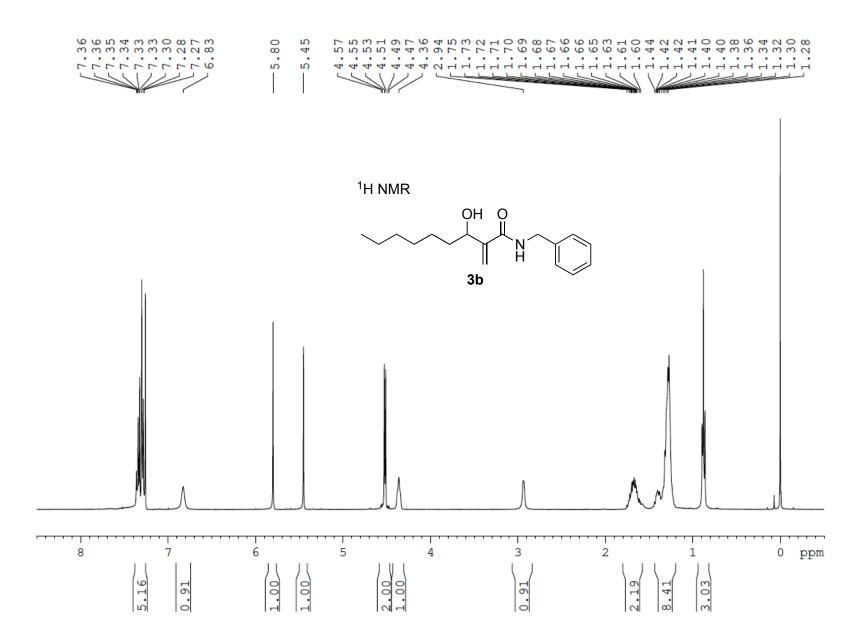

- (1) Martinez, I.; Andrews, A. E.; Emch, J. D.; Ndakala, A. J.; Wang, J.; Howell, A. R. *Org. Lett.* **2003**, 5, 399.
- (2) Hon, Y.-S.; Liu, Y.-W.; Hsieh, C.-H. *Tetrahedron* **2004**, *60*, 4837.
- (3) Poly, W.; Schomburg, D.; Hoffmann, H. M. R. J. Org. Chem. **1988**, 53, 3701.
- (4) Kamat, S. S.; Camara, K.; Parsons, W. H.; Chen, D.-H.; Dix, M. M.; Bird, T. D.; Howell,
 A. R.; Cravatt, B. F. *Nat. Chem. Biol.* **2015**, *11*, 164.
- (5) Raju, R.; Howell, A. R. *Org. Lett.* **2006**, 8, 2139.
- (6) Adam, W. Groer, P.; Saha-Moller, C. R. *Tetrahedron Asymm.* **1997**, *8*, 833.
- (7) Malapit, C. A.; Chitale, S. M.; Thakur, M. S.; Taboada, R.; Howell, A. R. J. Org. Chem.
 2015, 80, 5196.
- (8) Zhu, C.; Shen, X.; Nelson, S. G. J. Am. Chem. Soc. 2004, 126, 5352.
- (9) Dollinger, L. M.; Howell, A. R. J. Org. Chem. **1996**, *61*, 7248.
- (10) Adam, W.; Baeza, J.; Liu, J.-C. J. Am. Chem. Soc. **1972**, *94*, 2000.

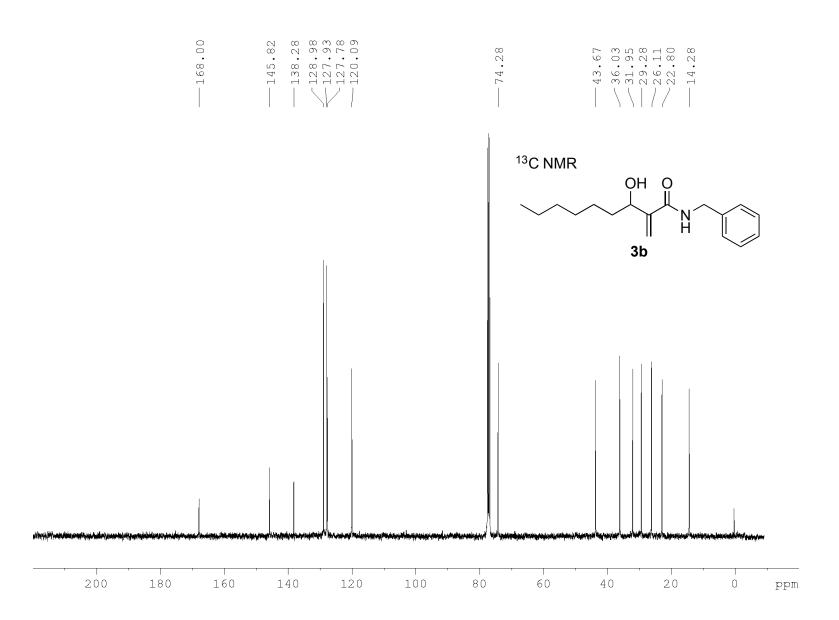


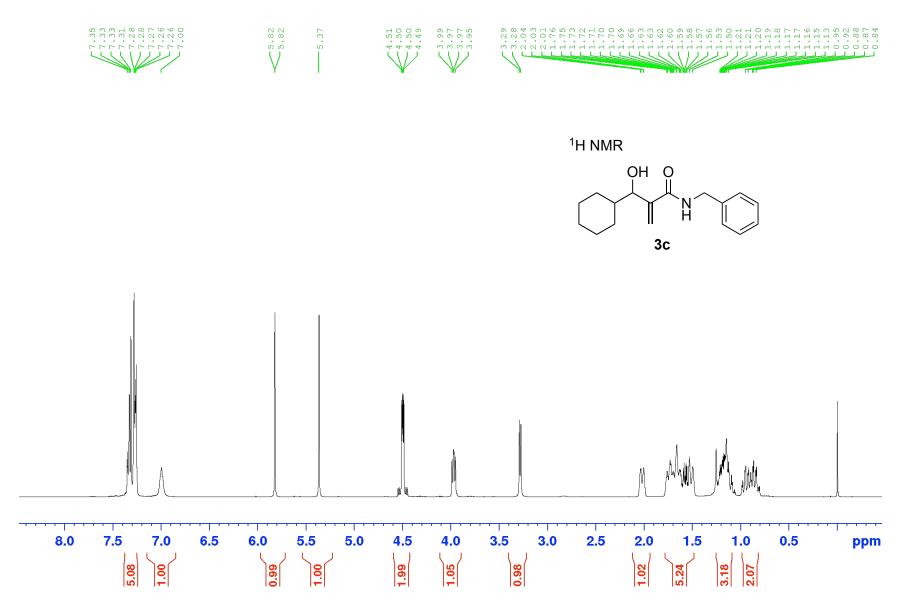

S24

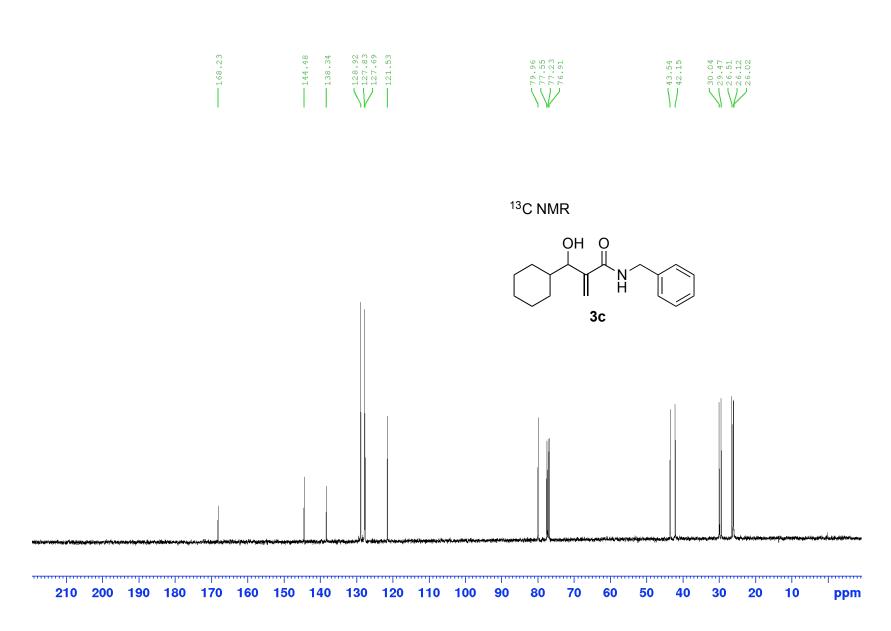


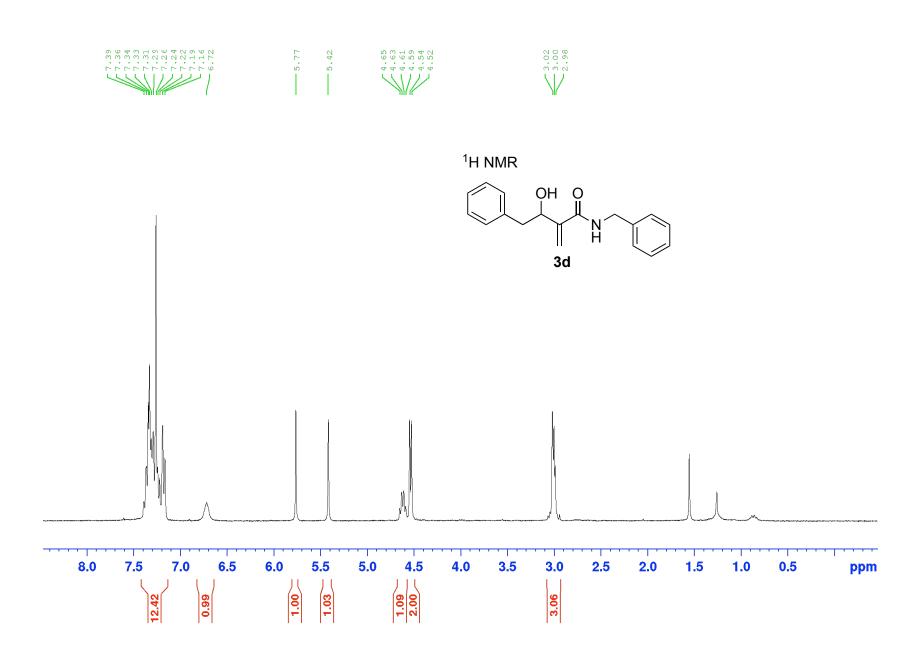


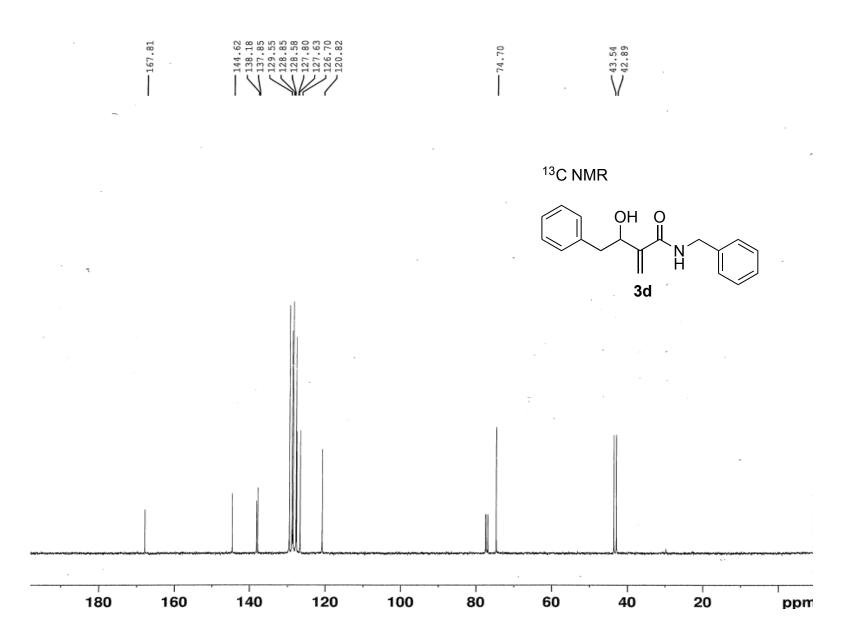


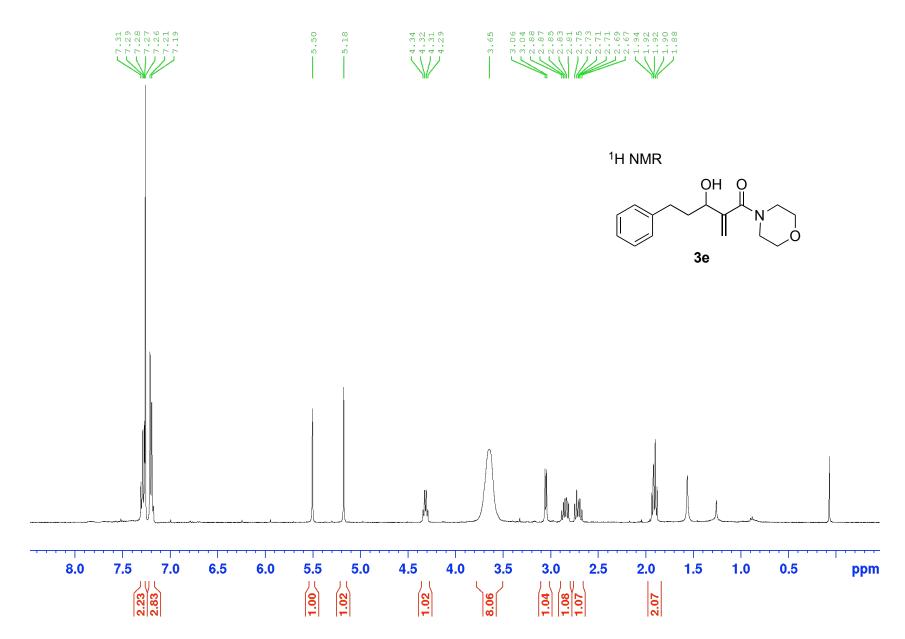


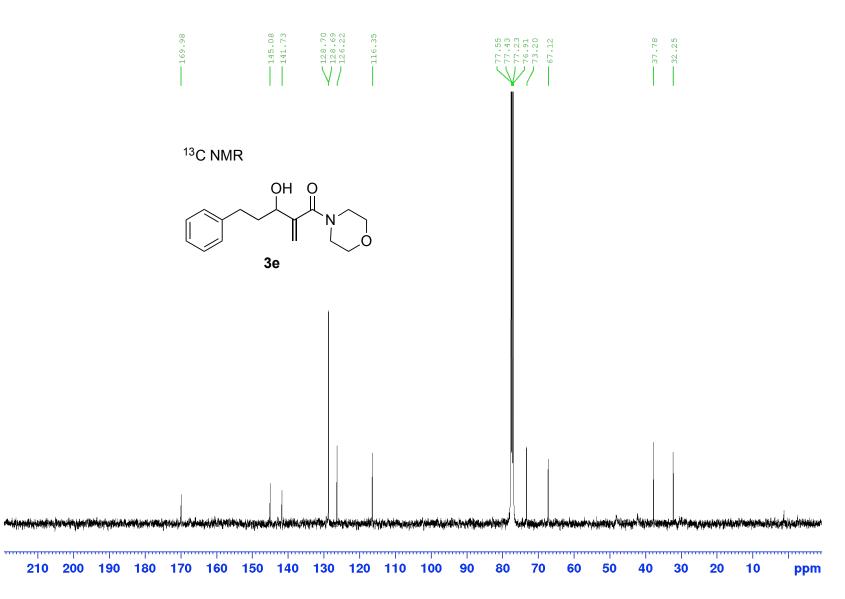


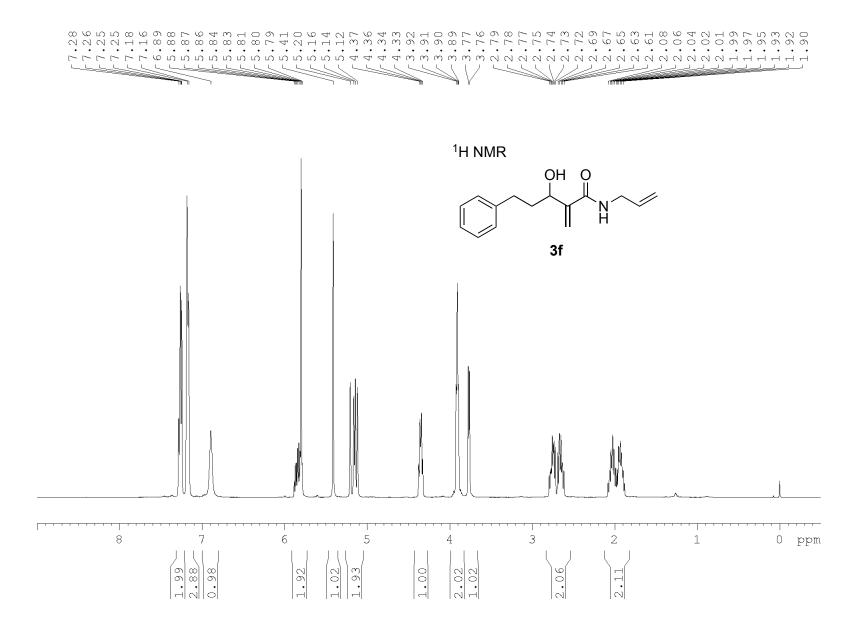


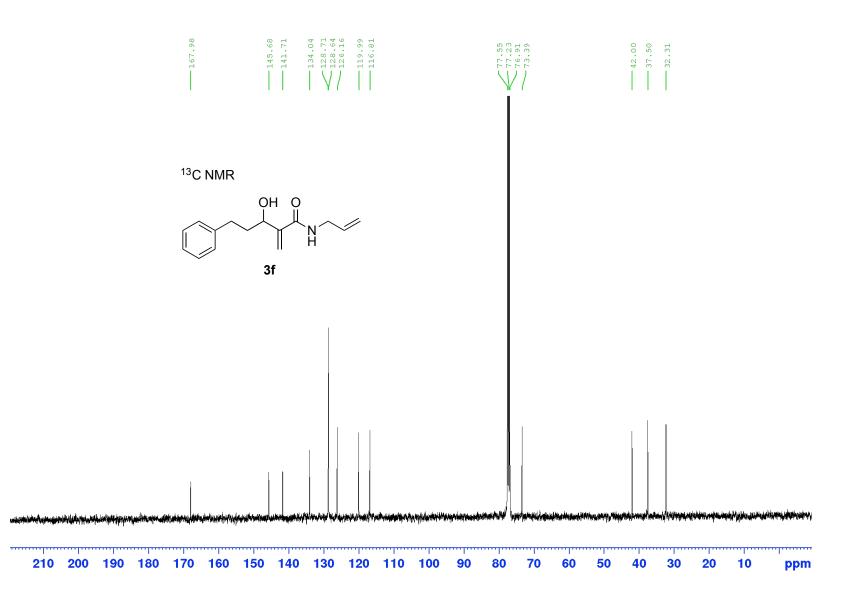


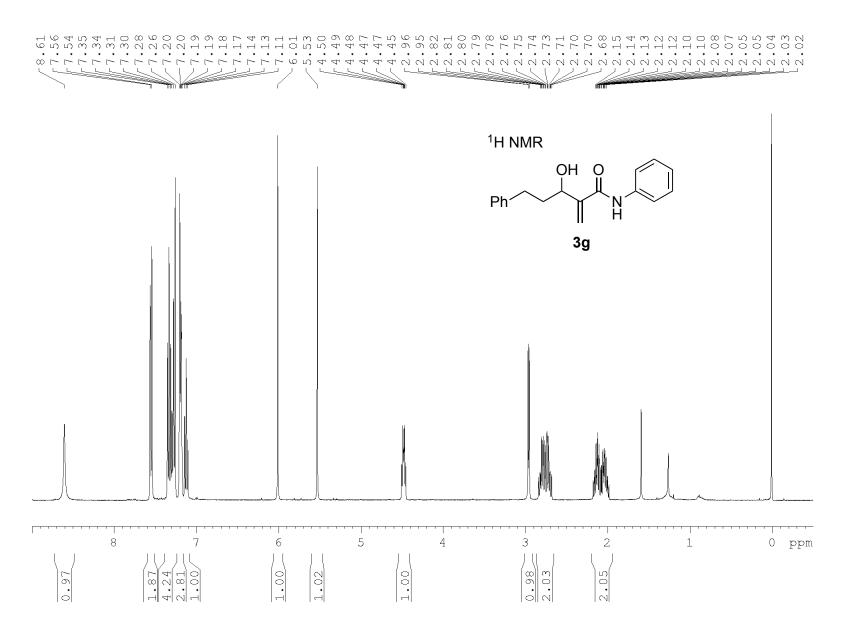


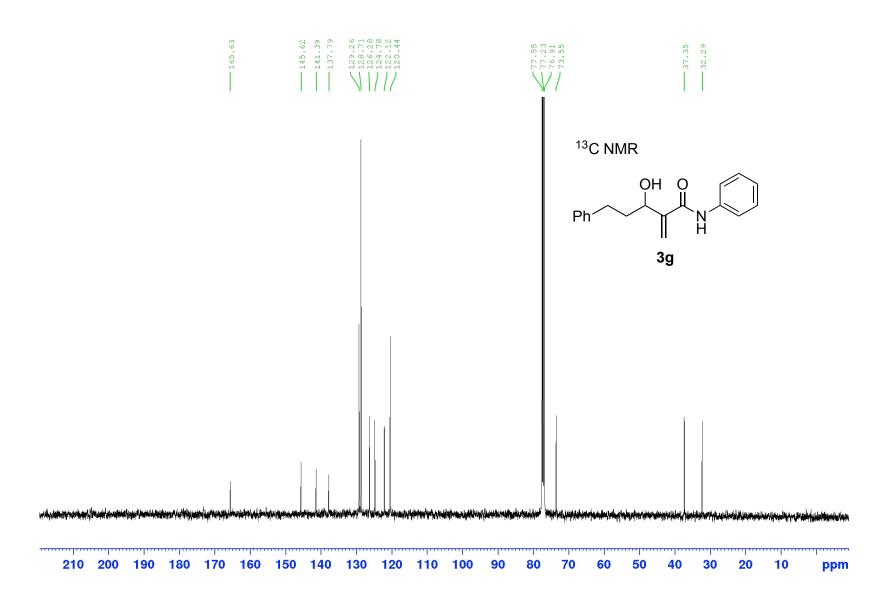

S34

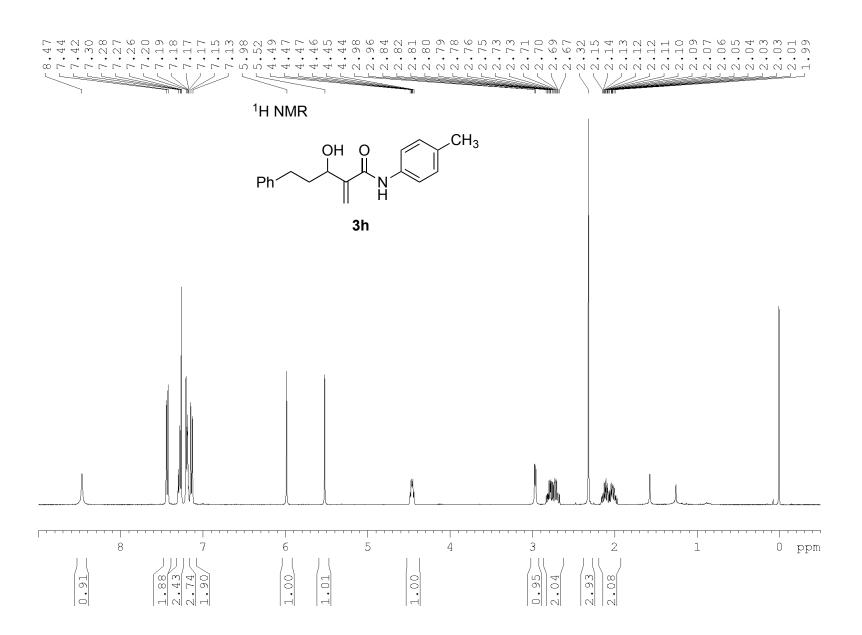


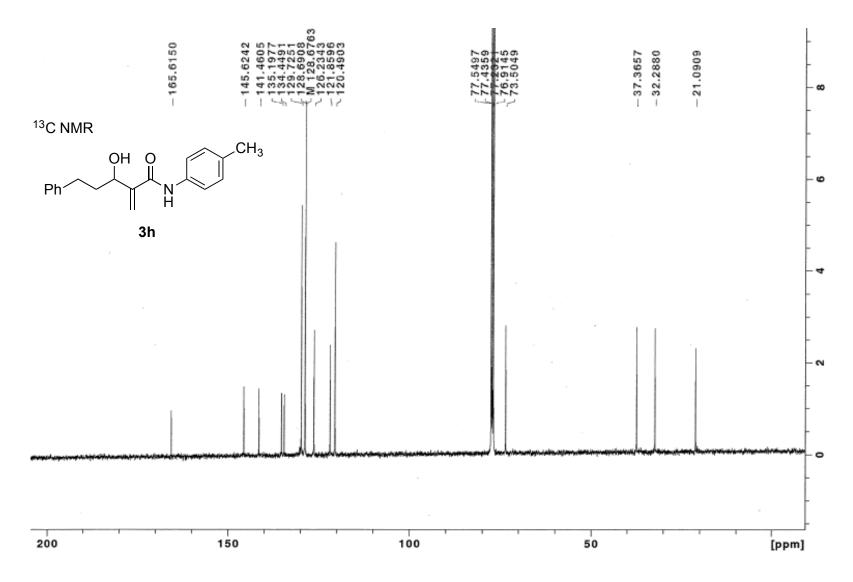


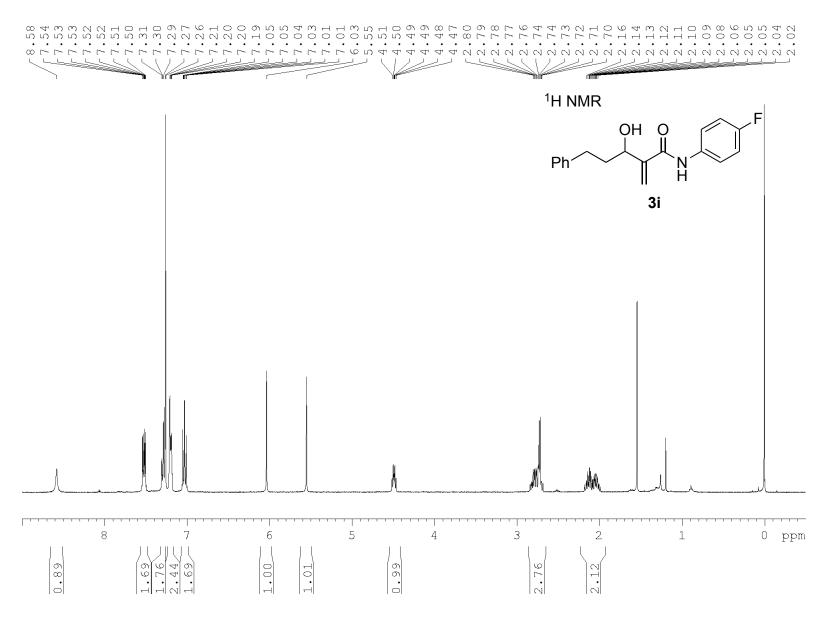


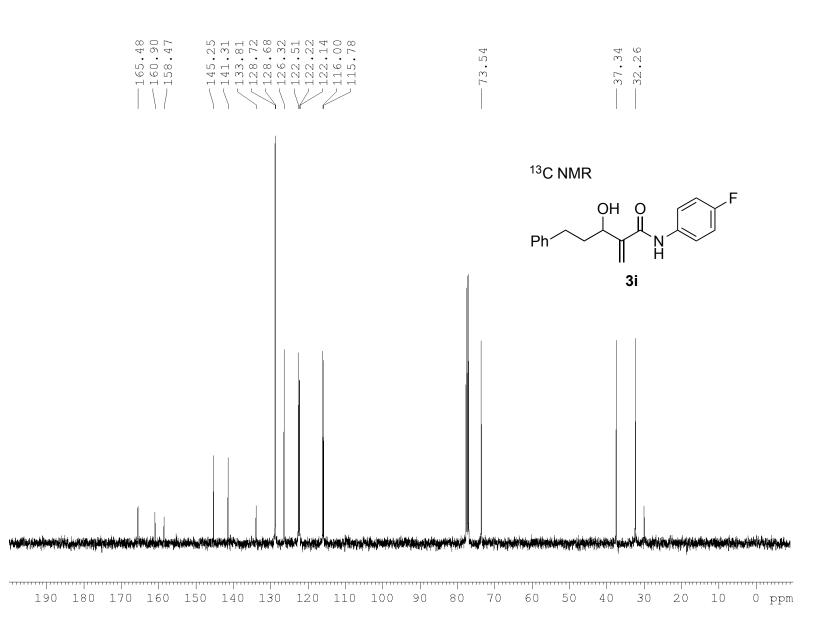

S37

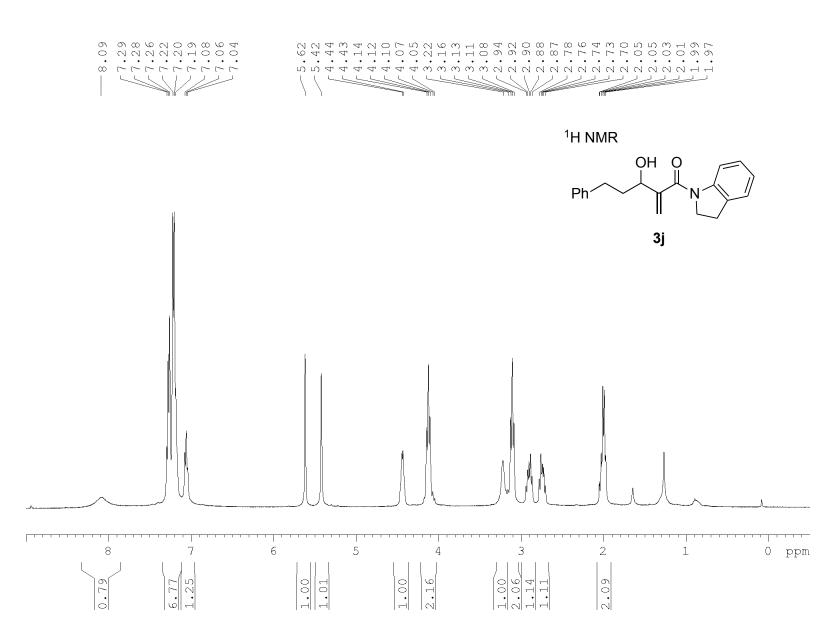


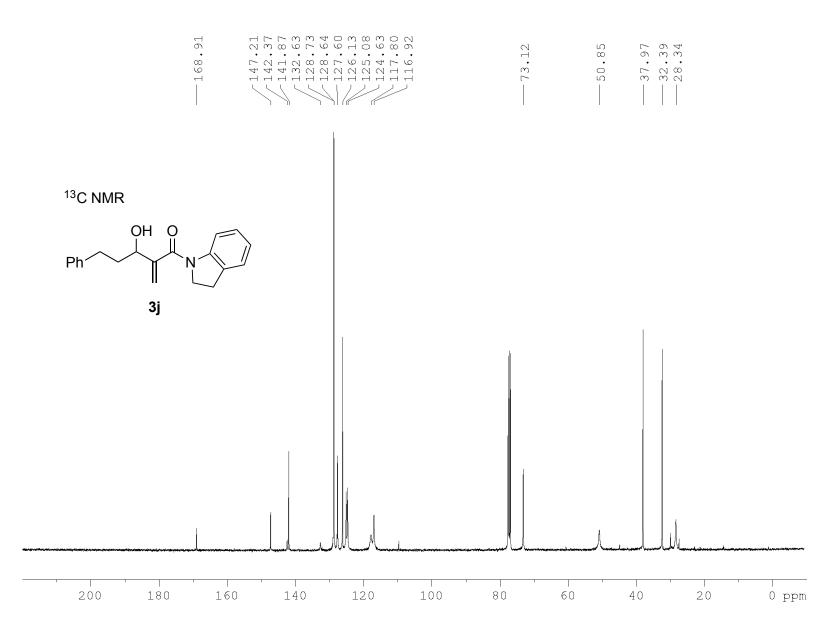


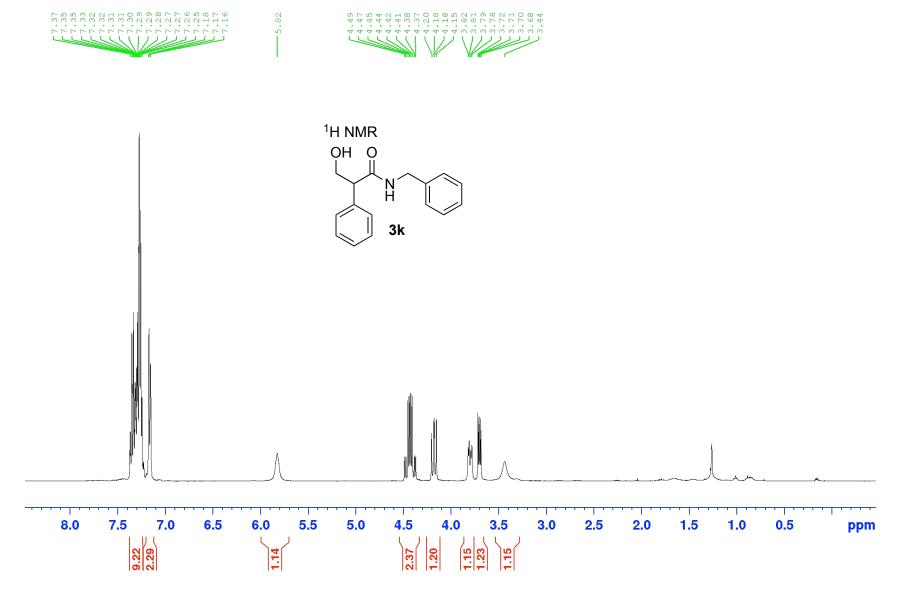


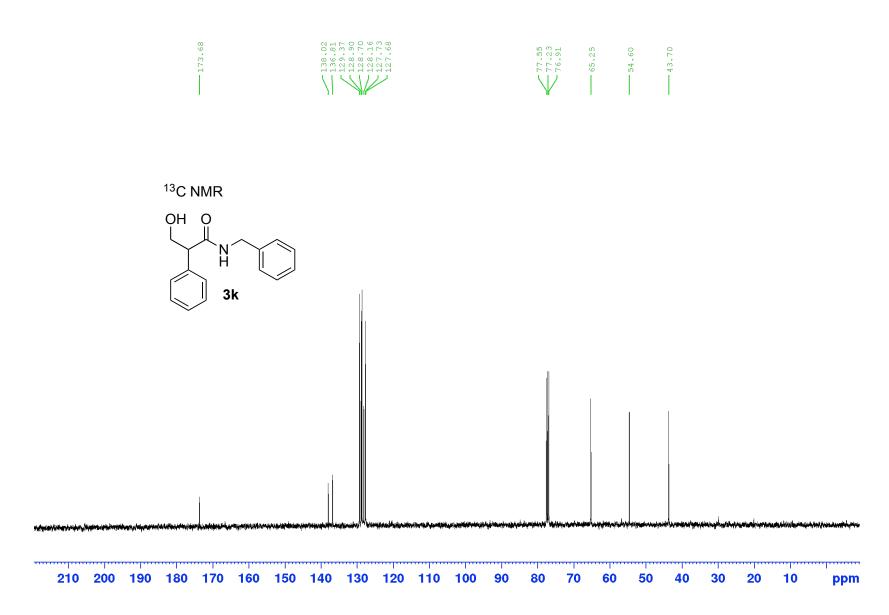


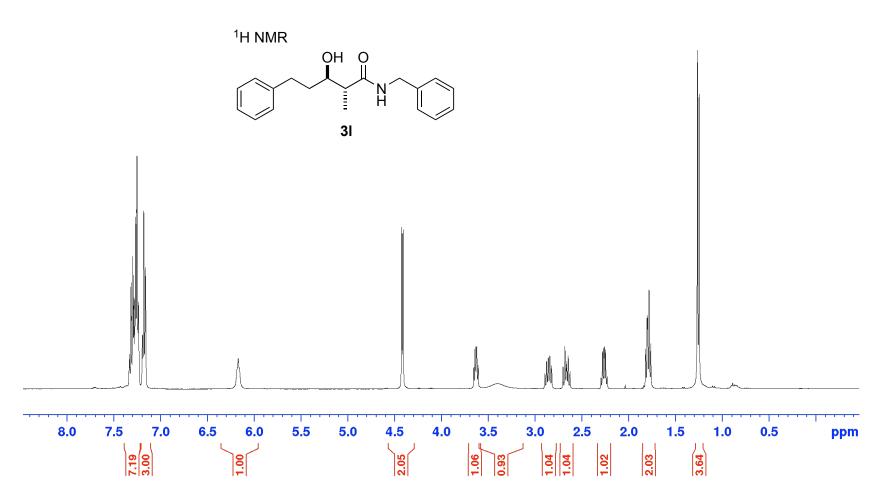


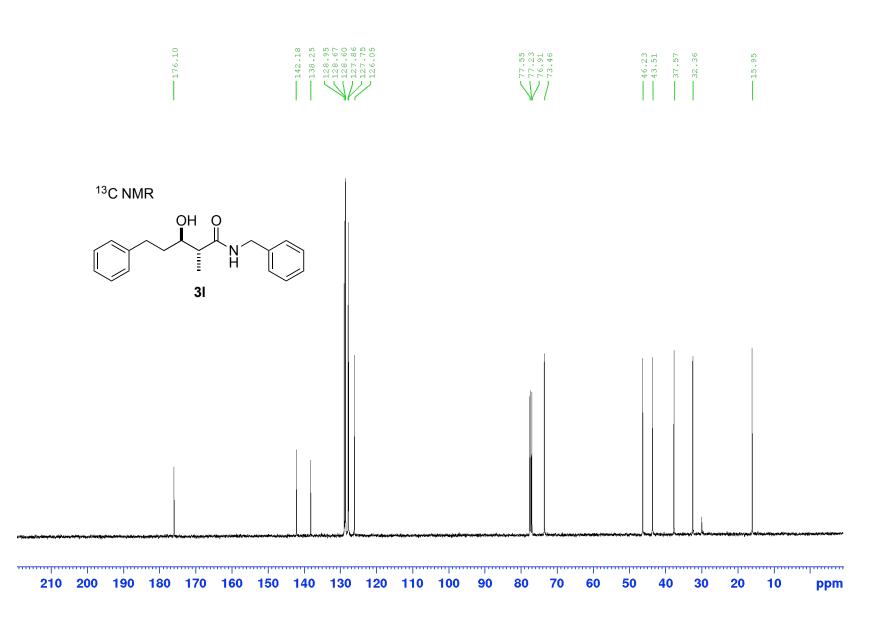


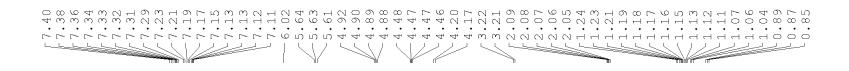


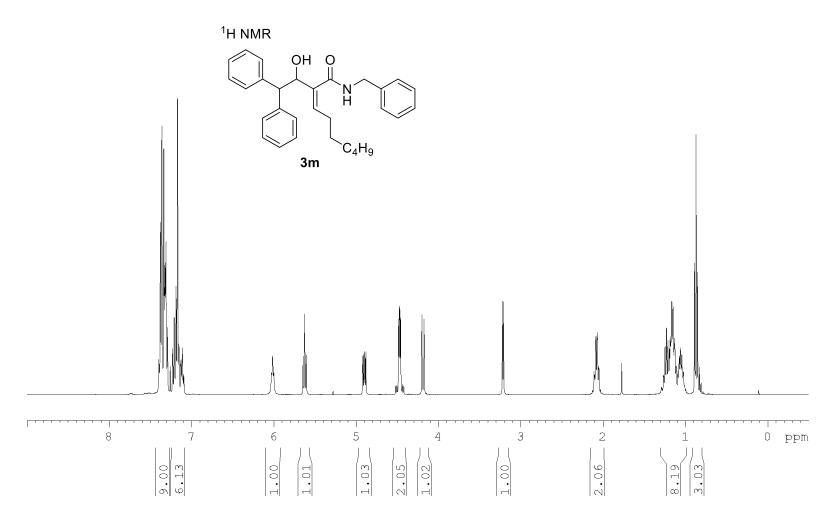

S45

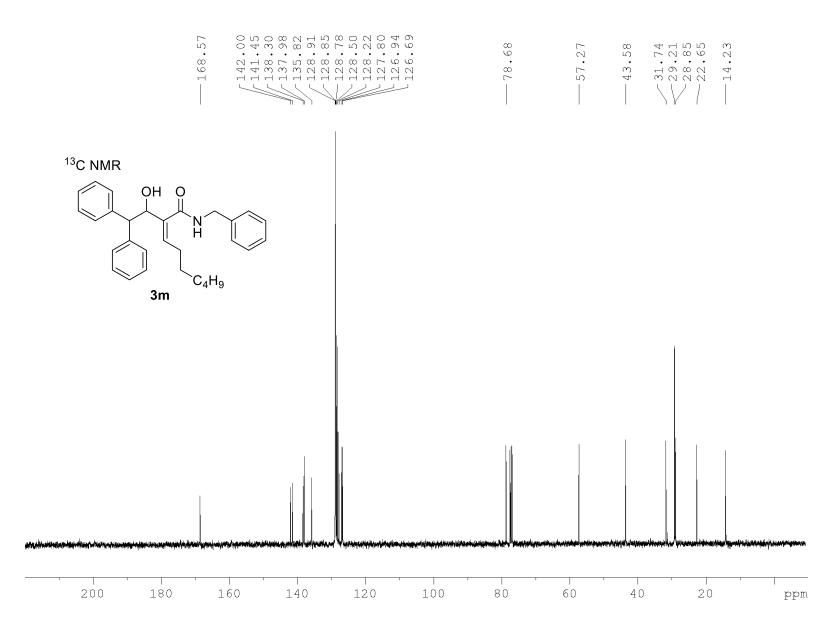


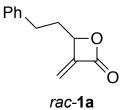


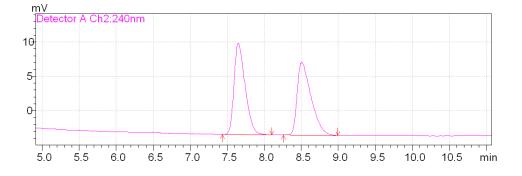


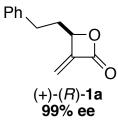


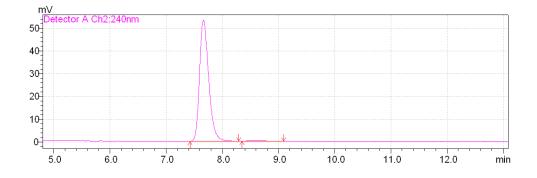


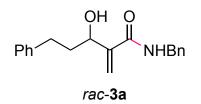


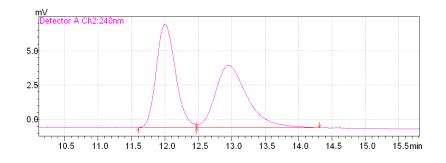


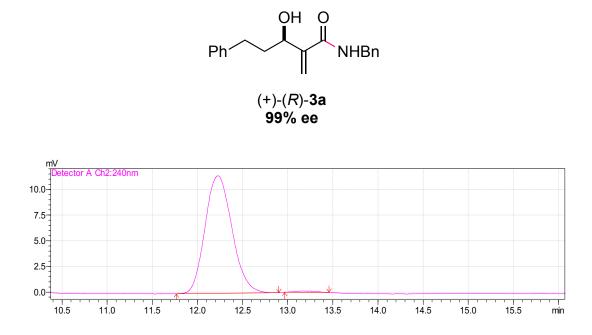




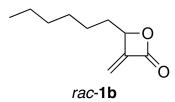

VIII. Chiral HPLC Traces of Enantioenriched Compounds

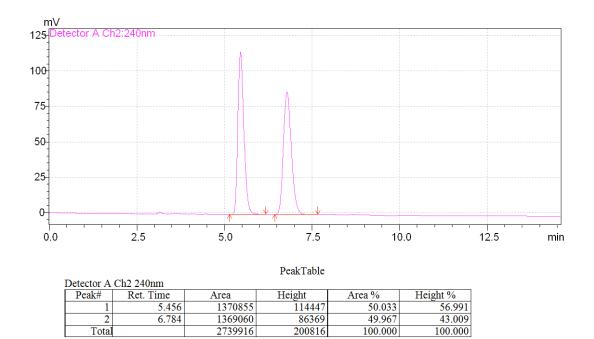


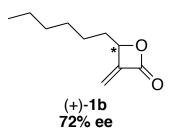

		PeakTable					
I	Detector A Ch2 240nm						
	Peak#	Ret. Time	Area	Height	Area %	Height %	
	1	7.647	139909	13317	50.122	55.617	
	2	8.506	139226	10628	49.878	44.383	
	Total		279135	23945	100.000	100.000	

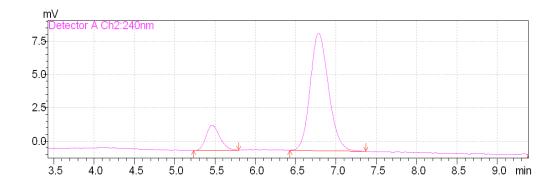


Detector A Ch2 240nm						
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	7.663	602159	53267	99.325	99.660	
2	8.566	4090	182	0.675	0.340	
Total		606249	53449	100.000	100.000	

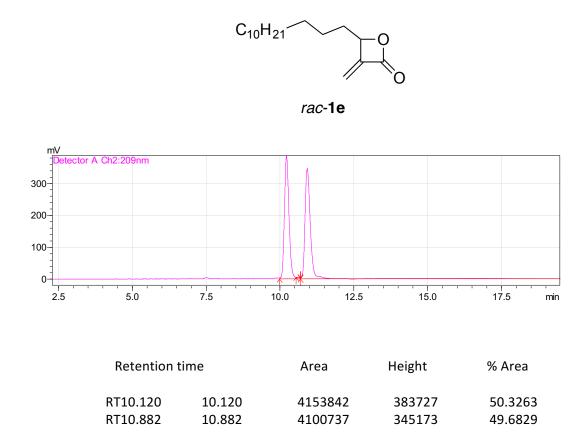


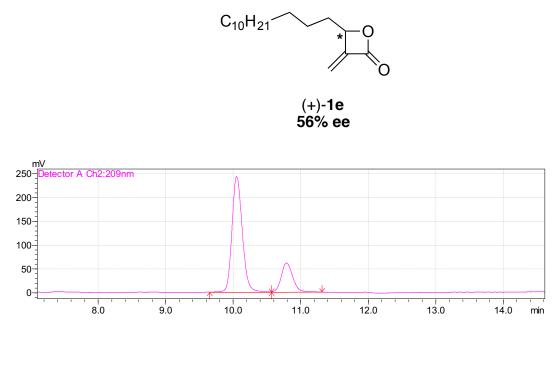


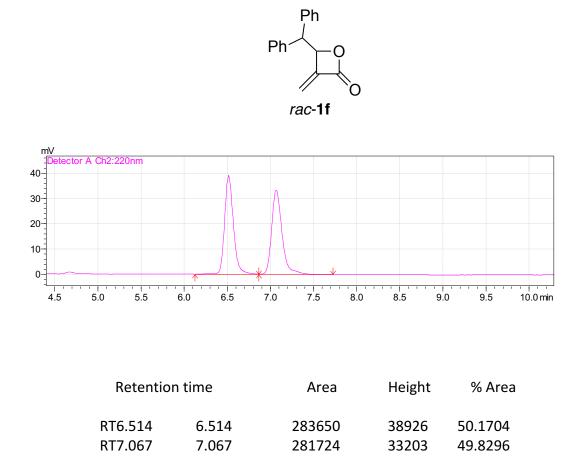

			PeakTable				
Detector A Ch2 240nm							
Peak#	Ret. Time	Area	Height	Area %	Height %		
1	12.003	151325	7555	49.951	62.394		
2	12.949	151623	4553	50.049	37.606		
Total		302948	12108	100.000	100.000		

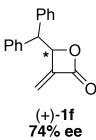


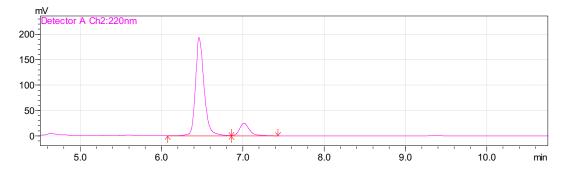
PeakTable						
Detector A Ch2 240nm						
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	12.224	237876	11461	99.626	99.361	
2	13.182	893	74	0.374	0.639	
Total		238769	11534	100.000	100.000	






	PeakTable					
Detector A Ch2 240nm						
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	5.463	22509	1902	13.880	17.748	
2	6.784	139655	8816	86.120	82.252	
Total		162164	10719	100.000	100.000	


Method: Chiralpak AY3 (Particle size: 3 um; column size: 4.6 x 250 mm) 5.0% IPA/hexane; 0.5 mL/min


Retention tin	ne	Area	Height	% Area
RT10.068	10.068	2613948	243431	78.3454
RT10.788	10.788	722495	61480	21.6546

Method: Chiralpak AY3 (Particle size: 3 um; column size: 4.6 x 250 mm) 5.0% IPA/hexane; 1.0 mL/min

Retention time	Area	Height	% Area
RT6.462	1431262	193060	87.0550
RT7.013	212827	24595	12.9450

Method: Chiralpak AY3 (Particle size: 3 um; column size: 4.6 x 250 mm) 5.0% IPA/hexane; 1.0 mL/min