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1 Detailed recombineering protocol

Introduction: The purpose of this document is to describe the recombineering protocol in

detail to help other researchers scrutinise our work and reproduce it if necessary. The strains

and ssDNA oligonucleotides used are listed in Tables S2 and S3. The technicalities of re-

combineering have been described extensively in previous studies, from which this protocol

is optimised1;2. In brief, recombineering relies on the cell’s own DNA replication machinery

for point-specific mutagenesis, mimicking mutations arising during replication in dividing cells.

The target site for recombineering mutagenesis on a bacterial chromosome must first be exposed

by an open replication fork as single-strand DNA. The exogenous ssDNA oligonucleotide then

binds complementarily to its exposed target like an Okazaki-fragment on the lagging strand,

albeit with a few mismatches that carry the mutations. The methyl-directed mismatch repair

corrects individual mismatches with high efficiency but fails to fix consecutive mismatches.

Two synonymous mutations were therefore added on each side of the actual non-synonymous

mutation to prevent it from being repaired and thus boost the mutagenesis efficiency. These

mismatches form a heteroduplex double-strand chromosomal DNA at the target site, resembling

natural mutations in bacteria. After one additional round of DNA replication this heteroduplex

chromosome segregates into one wild-type and one mutant chromosome. Since the exogenous

ssDNA oligonucleotide integrates into the lagging strand, its sequence orientation depends on

the target gene relative to the replication origin. All three antibiotic resistance target genes

in this study required anti-sense ssDNA for mutagenesis, as this is the only orientation that

allows efficient recombineering. Given that sense mRNA is transcribed reverse-complementarily
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from the anti-sense DNA strand, mutating the anti-sense DNA strand should allow immediate

production of mutant mRNA, as opposed to mutating the sense DNA strand. There is indeed

some evidence that mutant mRNA can be transcribed from mismatched heteroduplexes17.

When induced by heat, the recombineering plasmid pSIM6 expresses proteins that facili-

tate mutagenesis by, for instance, binding to the exogenous oligonucleotide and delaying the

otherwise rapid degradation of cytosolic ssDNA. Recombineering efficiency in cells grown from

minimal media is typically orders of magnitude lower than in rich media, due to poor ssDNA

uptake and fewer open replication forks for ssDNA integration2. Manipulating growth rate

with sub-lethal antibiotics such as ciprofloxacin may reduce the overall growth rate of cell pop-

ulation but cause cell filamentation, thereby promoting polyploidy instead of reducing it3. Due

to these technical limitations, instead of manipulating bacterial ploidy through choice of media,

we kept media consistent and quantified ploidy by using the lacZ-reporter assay.

The precise day-by-day experimental protocol is as follows.

Day 1: An E. coli MG1655 strain containing the pSIM6 recombineering plasmid was streaked

from frozen stock onto LB agar plates with 100 µg/ml ampicillin and incubated overnight at

30◦C until colonies became visible. The pSIM6 plasmid was maintained by ampicillin and kept

at below 32◦C except during the heat-activation on Day 3.

Day 2: A colony was picked to inoculate 5 ml overnight culture in LB supplemented with 100

µg/ml ampicillin and incubated at 30◦C. Fresh antibiotic plates were prepared for phenotypic

selection of resistance mutations (rifampicin, streptomycin or nalidixic acid). Liquid LB was

prepared and incubated overnight in 30◦C to pre-warm for day 3. Our LB contained only 5

g/L sodium chloride, since the other commonly used concentration of 10 g/L was previously

reported to be suboptimal for recombineering1. Sterile de-ionized Milli-Q water was prepared

and incubated at 4◦C overnight in the fridge.

Day 3: 1.5 ml of fully-grown overnight culture was transferred into 120 ml pre-warmed LB

supplemented with 100 µg/ml ampicillin in a large Erlenmeyer flask. Each flask was enough for

about 10 electroporations. The flask culture was incubated at 30◦C with shaking at 220 rpm

until reaching an OD600 of ∼0.3 after approximately 2 hours. The flask was placed in a 43◦C

water bath with 50-100 rpm shaking for 10 minutes to induce expression of the recombineering

proteins on pSIM6. Immediately after heat shock, the flask culture was rapidly chilled by gentle
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swirling in an ice-water mix and left on ice for at least 5 min. The chilled culture was aliquoted

into 50-ml Falcon tubes. Cells were centrifuged down at 4000 G for 5 minutes at 4◦C. The LB

was removed and cells resuspended by pipetting gently up and down in ice-cold Milli-Q water.

Cells were washed in ice-cold water three times with at least 3 ml water each time. During

the wash it was crucial to remove as much residual liquid as possible after each centrifugation,

especially when removing the LB. The pellet from each Falcon tube, concentrated down from

50 ml of early-exponential phase bacterial culture, was finally resuspended in 250 µl of ice-cold

water after the third wash. From this cell suspension we aliquoted and mixed every 50 µl of

cells with 1 µl of 5 µM ssDNA oligo (∼200 ng for a 90 base oligo) in a clean Eppendorf tube.

The cell-DNA mix was then transferred into a 1-mm gap electroporation cuvette chilled by

ice-cold water.

Cell-DNA mix was electroporated at 1.8 kV/mm with time constant around 5.0 ms. After

each electroporation, 1 ml fresh LB was immediately added into the cuvette, before proceeding

to the next cuvette. We had in each experiment typically six replicates. We also included two

controls: (i) cell sample diluted directly into fresh LB without electroporation; and (ii) cell

sample electroporated without adding ssDNA. All electroporated samples as well as the non-

electroporated control were incubated for 30 min at 30◦C without shaking for cells to recover.

The entire sample from each cuvette was transferred to a clean Eppendorf tube and centrifuged

down at 4000 G in a table-top centrifuge at room temperature for 3 minutes, then resuspended

in 1 ml fresh LB. Cell density in these 1-ml cultures without electroporation was determined

(by serial dilution and plating from the non-electroporated control) to be around 108 to 109 per

ml. This is because every 1-ml of resuspended culture contained cells from ∼10 ml of early-

exponential phase culture that started from a 80-fold diluted stationary phase culture (with a

density of 109 cells per ml) and grew for ∼2 hours at 30◦C. Electroporation reduces the viable

cell density by about one order of magnitude, yielding 107-108 viable cells in each 1-ml culture.

This allows up to 6 cell divisions before reaching full density. All the resuspended 1-ml cultures

were incubated at 30◦C with 220 rpm shaking. To maintain continuous growth, cultures were

diluted 100-fold into 1 ml fresh LB after 6 hours and 24 hours. In our experiments the cells

first grew slowly, reaching 3-5 generations after 6h. After the first transfer at 6h, they would

reach 10-13 generations at 24h (for an example, see S10 Fig). After the second transfer at 24h,

they would reach ∼20 generations at 48h.

We sampled the cultures hourly for the first 10 hours (Day 3), then at 24h (Day 4) and

48h (Day 5) post-electroporation. For phenotyping, at each time point we sampled 20 µl of
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culture, which was roughly 2% of the initial volume. The samples were diluted in PBS before

plating on non-selective media (for determining total cell density and genotypic mutant fre-

quency) or selective media plates (for determining phenotypic mutant frequency). The dilution

factor was adjusted accordingly. At the very first sampling for example, 90 µl of 10,000-fold

diluted culture could yield a few hundred CFUs on non-selective media that allowed optimal

counting on a normal 90 mm petri dish. This CFU-count from non-selective media was used

to determine the bacterial population size in the culture, based on the known dilution factor

and plating volume. The population size at each sampling time point was then compared to

the population size sampled at time zero (right after the 30-min incubation following electro-

poration) to determine the number of population doublings, or bacterial generations, elapsed.

For selective plating from the first sampling time point, 90 µl of 10-fold diluted culture may or

may not yield even a single phenotypic mutant due to phenotypic delay. At later time points

we diluted the samples more as cell density increased and genotypic mutants eventually de-

veloped their phenotype. We recommend testing the exact dilution factor and plating volume

in smaller pilot experiments beforehand. (For the resistance mutations, we performed five pi-

lot/prior experiments that showed consistent patterns of phenotypic delay, before we proceeded

to the experiments reported here, with more sampling time points, samples and replicates per

experiment. Similarly, for the lacZ-reporter assay, we established the method with two pilot

experiments beforehand.)

When working with the lacZ-reporter assay we used non-selective media plates containing

1 mM IPTG and 40 µg/ml X-gal. As visible colonies formed after overnight incubation, the

plates were left at 4◦ for about a week for the blue colour to fully develop. Genotypic mutants

could be directly visualised by colonies that contain blue colour. Phenotypic lacZ-mutants were

scored on M9 agar plates with 0.4% lactose as carbon source.

All plates were incubated at 30◦C. The non-selective media plates were incubated overnight

and used to quantify the population size of the bacteria as well as assessing the frequency of

genotypic mutants (see Day 4). Selective plates were incubated up to 48 hours, thus giving

the mutants sufficient time to grow in the presence of selection before counting the phenotypic

mutant colonies. At the same sampling time points we also plated cells from the two controls

onto selective media. We observed no colonies resulting from either spontaneous mutations or

drug-tolerance in these controls.
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Day 4: CFU on non-selective plates incubated from Day 3 were counted to assess the popula-

tion size of the bacteria at each sampling time point. The change in bacterial cell density over

time was translated into growth expressed in number of bacterial generations. After counting

CFU, entire plates of colonies were replica-plated onto selective media plates. Since the MIC of

fully-developed phenotypic mutants are at least ∼100 times higher than that of wild-type cells,

colonies were replicated onto selective media with the drug concentration of 8x MIC rather

than 2x MIC. The fraction of colonies that subsequently grew on selective media among all

colonies from the same plate was recorded as the frequency of genotypic mutants (see Day 5).

We replica-plated 100-1000 colonies from each replicate at each sampling time point to ensure

a decent estimate of genotypic mutant frequency. The replicated plates were incubated at room

temperature overnight as doing so allows sufficient growth for replicated mutant colonies but

limits the growth of rare, spontaneous mutants in wild-type colonies.

Day 5: Visible patches of cells on replica-plated selective plates, grown from mutant colonies

transferred from non-selective plates on Day 4, were counted. This number was divided by the

total CFU on non-selective plates counted on Day 4, thereby obtaining the genotypic mutant

frequency. Phenotypic mutant CFU on selective plates with cells sampled from Day 3 were

counted after the 48-hour incubation. Phenotypic mutant frequency was calculated based on

the CFU counts, the known plating volume and dilution factor. Phenotypic penetrance was

calculated as the ratio between phenotypic mutant frequency and genotypic mutant frequency

for each replicate from each sampling time point.

Finally, the 48-hour time point was sampled on Day 5. Procedures for scoring genotypic

and phenotypic mutants, as described above, were repeated as required on the following days

for the 24-hour and 48-hour samples.

2 Fluctuation tests

2.1 Detailed simulation methods

Spontaneous de novo mutations: We adopted the standard “Lea-Coulson” formulation4;5

to model the appearance of mutants during culture growth. In time tf , the wild-type population

grows deterministically from size N0 to Nf = N02
tf = N0e

βtf , where β = log 2 is the exponential

growth rate per unit time, with one time unit taken as the population doubling time. De
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novo mutants appear according to a non-homogeneous Poisson process with instantaneous rate

βµN0e
βt at time t. The mutation rate µ to be estimated has the interpretation of mutations

generated per wild-type cell division in this standard approach6. (Note that our µ corresponds

to µβ in certain key references7;6.) We then applied the results8;9 that, to a good approximation,

the total number of mutation events occurring is Poisson-distributed with mean µN0(2
tf − 1),

and each clone descending from a de novo mutant has “developing time” (time remaining until

tf ) exponentially distributed with mean 1/β = 1/ log 2. We drew random values from these

distributions to determine the number of mutant clones to simulate and for how long. To

account for polyploidy, we deconstructed the mutation rate as µ = cµc where c is ploidy and µc

is mutation rate per target copy. We assumed that a mutation arises on a single chromosome

within a cell, and neglected the chance (of order µ2) that more than one chromosome mutates

either simultaneously in one cell or later in the same mutant clone.

Unlike recombineering, which introduces mutations in the anti-sense DNA strand (see sec-

tion 1), natural mutations may arise by a number of mechanisms. For instance, mutations

immediately affecting both strands may arise when DNA double-strand breaks occur and in-

troduce genome rearrangements such as inversions, insertions or deletions upon repair of the

break. Mutations can also arise by damage or copying error affecting only a single strand. This

results in a mismatch which, if not repaired, will lead to a fully fledged double-stranded muta-

tion in one of the two descendant chromosomes only after another round of DNA replication.

By assuming that all descendants of a de novo mutant are also mutants, the standard model

implicitly supposes that mutations arise in double-stranded form. In order to have agreement

with the standard model in the monoploid case, and thus focus our investigation on the effect of

ploidy, we also assumed that mutations arise in double-stranded form in our simulation model.

If mutations actually arise in single-stranded form, in most cases this will give equivalent re-

sults to our double-stranded polyploid model with adjusted parameter settings (see section 2.3

below).

Mutant clone dynamics: We tracked every cell in a mutant clone individually, including

its chromosome composition and timepoints at which it is produced by division and in turn

divides again. The interdivision time of each cell was either taken to be constant, or drawn

independently at random from an exponential distribution. By assuming independence, we

neglect any possible correlations of interdivision time between sister cells or across generations.

Other interdivision time distributions could readily be implemented, but these two cases cap-
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ture the extremes of variance between which realistic interdivision time distributions will lie.

The exponential case corresponds to the standard Lea-Coulson formulation, in which the devel-

opment of mutant clones follows a Yule process. A more complete investigation of interdivision

time distributions in the context of fluctuation tests, though limited to monoploidy, has been

undertaken by other authors9;10, and our observation of similar estimated mutation rate for the

two different interdivision time distributions (S2 Fig) is consistent with these previous studies.

Also as in the standard model, we assumed that the mutant has the same fitness as the

wild-type in non-selective media, in the sense that expected population doubling time is equal.

To achieve this, we fixed median interdivision time of mutant cells to one time unit (requiring

interdivision time to be exactly one in the constant case, or exponentially distributed with

rate β in the exponential case). Mutant clones were simulated until no more divisions before tf

occurred, then cells existing at time tf were scored for phenotype according to their chromosome

composition and assumed dominance.

Our method of tracking cell “lifetimes” computationally was in part inspired by a previous

approach9, and these authors’ consideration of general interdivision time distributions, along

with other extensions such as different growth rates of wild-type and mutant in non-selective

media, has recently been implemented in an R package10. Our consideration of multiple chro-

mosome copies here is (to the best of our knowledge) novel, and could potentially be integrated

into R packages in the future.

Maximum likelihood estimation: The calculation of the likelihood under the standard

model has been described previously11;7. In brief, for any value of the composite parameter m =

µ(Nf−N0) (representing the mean number of mutation events occurring during culture growth),

the probability mass function of the number of mutants in a culture at the end of growth can

readily be calculated by recursive equations (Eq. 8 in ref.7), which we implemented in R. We

thereby computed the likelihood as a function of m, given the number of phenotypic mutants

observed in each parallel culture. Numerical optimization yielded the maximum likelihood

estimate of m. The endpoints of the 95% profile likelihood confidence interval were found by

solving numerically for the values of m at the threshold for rejection in a likelihood ratio test at

5% significance level. Finally, the estimate of m was converted to an estimate of µ by dividing

by (Nf −N0), assumed as usual to be a known and fixed value.
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2.2 Mathematical explanation for the distribution of phenotypic

mutants

While it has occasionally been recognized in the literature that the existence of multiple chro-

mosome copies and resulting “segregation lag” could affect fluctuation analysis12;13;14;15, the

precise impact on the observed total mutant counts and resulting effects on mutation rate esti-

mation under modern maximum likelihood methods have, to the best of our knowledge, never

been elucidated. Our simulation study numerically illustrated the impact of effective polyploidy

on mutation rate estimation. Here we provide a more detailed mathematical explanation of

how effective polyploidy affects the distribution of the number of phenotypic mutants, thereby

clarifying the numerical results.

2.2.1 Recessive mutations

When mutations are recessive, we observed numerically that the estimated mutation rate µ̂ was

close to the actual per-copy mutation rate µc, regardless of ploidy, and that the distribution of

mutant counts predicted by the standard model parameterized by µ̂ provided a good match to

the observed distribution from simulations of polyploid populations. These observations can

be explained mathematically.

After the appearance of a mutation in one out of c copies in a cell, according to our model of

segregation there will be a delay of n = log2 c cell divisions until the first homozygous mutant

appears; all other descendants up to this time are heterozygotes or homozygous wild-type

cells (S1 Fig). Since the mutation is recessive, no mutants are “visible” until homozygosity

is achieved. (Recall that phenotypically wild-type cells are assumed to have no chance of

dividing and forming visible colonies on selective plates in the fluctuation test.) After this lag,

a phenotypic mutant lineage appears in which all further descendants are phenotypic mutants,

regardless of ploidy. That is, the number of phenotypic mutants doubles in each subsequent

generation, the same pattern as observed (without any lag) in a monoploid population.

Let Tclone denote the developing time of a randomly chosen mutant clone, i.e. the time

between a de novo mutation arising in a single chromsome copy and the end time of culture

growth (tf ) at which phenotypic mutants are counted. Since the timing of mutations is stochas-

tic, Tclone is a random variable. The distribution of Tclone is approximately exponential with

rate parameter β = log 2 (ref.8). In our model, exactly n divisions are required to achieve

homozygosity; however, the actual time between divisions can be variable. Thus the lag time
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until a clone achieves homozygosity, say L, is in general a random variable, independent of

Tclone and equal in distribution to the sum of n independent draws from the interdivision time

distribution. A clone will produce visible descendants by tf if and only if Tclone ≥ L; in this

case, we need to determine the number of visible descendants produced in the remaining time

Tclone − L.

Firstly, we determine the probability that a randomly chosen clone produces visible descen-

dants by tf , i.e. Pr(Tclone ≥ L). Recall that Tclone is approximately exponentially distributed,

with

Pr(Tclone ≥ t) = e−βt (1)

For constant interdivision time, the lag L is exactly equal to n time units. The probability of

producing visible descendants is then simply:

Pr(Tclone ≥ n) = e−βn = 2−n = 1/c

In fact, it can be shown (see below) that Pr(Tclone ≥ L) = 1/c even for variable interdivision

times, provided the population doubling time is fixed to one unit (i.e. equal fitness of mutant and

wild-type). Recalling that the total number of mutant clones produced in the growing culture

is approximately Poisson-distributed with mean cµc(Nf −N0) (refs.8;9), and using the present

result that each mutant clone (independently) produces visible descendants with probability

1/c, the number of such “visible clones” is thus approximately Poisson-distributed with mean

µc(Nf −N0). Importantly, the number of visible clones is therefore independent of ploidy: the

increase in mutational influx with c is exactly counterbalanced by the increase in segregation

lag.

Secondly, we require the distribution of remaining developing time in clones once they cross

their lag time. Recalling that Tclone is (approximately) exponentially distributed, however, we

can simply apply the memoryless property:

Pr(Tclone − L ≥ t |Tclone − L ≥ 0) = Pr(Tclone ≥ t)

In words, the remaining developing time after achieving homozygosity (Tclone−L), conditioned

on homozygosity being reached before the end of the developing time (Tclone−L ≥ 0), is equal in

distribution to the total developing time of a randomly chosen clone (Tclone). In this remaining

time, the mutant clone produces only homozygous mutant descendants, with a pattern of

growth that is independent of ploidy. Therefore, provided a mutant clone does produce visible
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descendants by time tf , the number of these descendants is statistically no different to the

monoploid case.

In summary, a ploidy-c population is expected to produce a Poisson-distributed number of

“visible” clones with mean µc(Nf − N0) by observation time tf , each consisting of a number

of phenotypic mutants equal in distribution to the monoploid case. (All other mutation events

do not produce any phenotypic mutants by tf and can thus be ignored.) The total number

of phenotypic mutants counted is thus equal in distribution to a monoploid population with

mutation rate µc in the standard model, explaining why we consistently estimate µ̂ close to

µc, regardless of ploidy, and find that the standard model provides a good fit to the observed

mutant count distribution across simulated parallel cultures. In the case of recessive mutations,

then, effective polyploidy leaves no signature in fluctuation assay data.

Proof for variable interdivision times: Here we derive Pr(Tclone ≥ L) for variable interdi-

vision times. We impose the constraint that the asymptotic population growth rate (i.e. once

the population reaches a stable age distribution) is equal to β, yielding a population doubling

time of one unit, equal to the wild-type. Allowing an otherwise arbitrary interdivision time

distribution, with probability density function f(t), we thus require16:∫ ∞
0

e−βtf(t)dt =
1

2
(2)

By comparison to Equation 1, the left hand side of Equation 2 is seen to be equivalent to

Pr(Tclone ≥ X), where X is a random interdivision time. That is,

Pr(Tclone ≥ X) =
1

2
(3)

Next, the lag time can be expressed as L =
∑n

i=1Xi where Xi are independent and identically

distributed (iid) random variables with density f(t). Then we have:

Pr(Tclone ≥ L) = Pr(Tclone ≥
n∑
i=1

Xi)

= Pr(Tclone ≥ X1)× Pr(Tclone ≥
n∑
i=1

Xi |Tclone ≥ X1)

= Pr(Tclone ≥ X1)× Pr(Tclone ≥
n∑
i=2

Xi)
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where we have used the memoryless property of the exponential distribution of Tclone in the

last step. Continuing inductively yields:

Pr(Tclone ≥ L) =
n∏
i=1

Pr(Tclone ≥ Xi)

= (Pr(Tclone ≥ Xi))
n

since {Xi} are iid. Finally substituting Equation 3 yields:

Pr(Tclone ≥ L) = (1/2)n = 1/c

2.2.2 Dominant mutations

Recall that the number of mutant clones generated in a ploidy-c population is approximately

Poisson-distributed with mean cµc(Nf − N0). A dominant mutation arising in a ploidy-c cell

immediately yields a single phenotypic mutant; thus all mutant clones are immediately “vis-

ible”. The developing time of each mutant clone is no different to a monoploid population

(Tclone
d
≈ Exp(β)); however, the clone size distribution is fundamentally different. In a ploidy-c

population, until segregation is complete, the mutant clone contains only a single (heterozy-

gous) phenotypic mutant descendant in each subsequent generation, according to our model of

segregation (S1 Fig). After this lag of n = log2 c generations, a purely homozygous mutant lin-

eage arises, in which the number of phenotypic mutants doubles in each subsequent generation,

as in a monoploid population.

We can readily put bounds on the range of “apparent” mutation rate, which would be esti-

mated by the standard model, in a polyploid population. Firstly, whereas a recessive mutation

yields a clone containing zero phenotypic mutants for the first n generations, a dominant muta-

tion yields one phenotypic mutant during this segregation lag phase. Subsequently, the number

of phenotypic mutants increases according to the same pattern regardless of dominance. Thus

the apparent mutation rate in the dominant population must be higher than in the recessive

population, which was determined above to be µc. Secondly, due to the segregation lag before

the number of phenotypic mutants starts doubling, the number of phenotypic mutants observed

in a ploidy-c population must fall short of a monoploid population with mutation rate cµc.

Our numerical results indicated that the estimated mutation rate (µ̂) for a dominant muta-

tion in a ploidy-c population does indeed typically fall between µc and cµc (S2 Fig). However,

there was no constant re-scaling factor that would allow a clear interpretation of µ̂ in terms of

the true per-copy or per-cell mutation rate. When the actual per-cell rate cµc was low (either
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low c or low µc), the estimate µ̂ was closer to cµc, but as cµc increased, µ̂ fell increasingly

short (S2 Fig). Furthermore, the confidence intervals on the estimate became larger as ploidy

increased. These results can be traced to the fundamental difference in clone size distribution:

due to the segregation phase, polyploidy leads to an excess of singletons in individual clones

relative to the standard model. The standard model thus provided a poor fit to the observed

mutant counts, even when parameterized by µ̂ (S3 Fig).

The dynamics of a dominant mutation in effectively polyploid cells, along with implications

for observed mutant distributions and estimated mutation rates, were actually pointed out quite

early in the literature12, but have rarely been addressed since. A more precise mathematical

description of the distribution of phenotypic mutant counts for a dominant mutation in a

polyploid population, and thus a basis for accurately estimating mutation rate, is a subject of

our ongoing work.

2.3 Effect of single-stranded mutations

Recall that our model, like the standard model for fluctuation analysis, assumes mutations arise

in double-stranded form. In reality, as explained in section 2.1 above, mutations may also arise

in single-stranded form (i.e. mismatches), requiring one additional generation before producing

one daughter cell with a fully fledged double-stranded mutation and one non-mutant daughter

cell. To understand what difference this would make to our results, we must take into account

the strand on which the mismatch arises. mRNA is transcribed from the anti-sense DNA

strand. There is evidence that transcription can occur even from a mismatched heteroduplex,

producing mutant mRNA and protein in the progenitor cell in which the mismatch arose17.

As usual, we suppose that the phenotype of the cell is fully determined by its present genome

content (more specifically on the anti-sense DNA strand of each chromosome copy), i.e. we

neglect any additional delays in mRNA and protein turnover.

We must consider several cases depending on ploidy, dominance, and the strand on which

the mismatch arises. Suppose that mismatches arise in the sense strand at per-copy rate µs

and in the anti-sense strand at per-copy rate µa. For comparison to our polyploid model where

mutations arise in double-stranded form, see S1 Fig.

• Cells are monoploid (c = 1) and the mismatch arises on the antisense strand. Then the

progenitor cell is a phenotypic mutant, but there is a delay of one generation until the

mutation segregates into double-stranded form in one daughter lineage, while the other
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daughter lineage is wild-type. This is equivalent to our ploidy-2 model with dominant

mutations arising at per-copy rate µc = µa/2.

• Cells are monoploid and the mismatch arises on the sense strand. Then the mutation will

not be expressed in the progenitor, but only in the daughter lineage inheriting the double-

stranded mutation. This is equivalent to our ploidy-2 model with recessive mutations

arising at per-copy rate µc = µs/2.

• Cells are polyploid (c ≥ 2) and mutations are recessive. Then regardless of the strand on

which they arise, mismatches will not have a phenotypic effect on the progenitor due to

masking by the other genome copies. The necessity to first segregate into double-stranded

form adds one generation until achieving homozygosity and thus phenotypic expression.

This is equivalent to our ploidy-2c model with recessive mutations arising at per-copy

rate µc = (µs + µa)/2.

• Cells are polyploid, mutations are dominant and arise on the anti-sense strand. Then

mismatches have immediate phenotypic effects, but there is a delay of 1 + log2(c) =

log2(2c) generations until achieving homozygosity. This is equivalent to our ploidy-2c

model with dominant mutations arising at per-copy rate µc = µa/2.

• Cells are polyploid, mutations are dominant and arise on the sense strand. Then the

mutant phenotype is not expressed in the progenitor, but will be expressed in the following

generation in the daughter inheriting the double-stranded mutation. That is, there is a

delay of one generation to produce phenotypic mutants, but log2(c) further generations

until reaching homozygosity. This is not precisely equivalent to any case of our model.

To summarize, in all but the last case, a model in which mutations initially arise as single-

stranded mismatches can be converted to some form of our polyploid model in which mutations

arise in double-stranded form. In reality, a mixture of mutation types will arise and contribute

to the apparent mutation rate that would be estimated in a fluctuation test.

3 Effects of polyploidy on mutation rate estimation via

whole-genome sequencing

Other than fluctuation tests, in recent years, bacterial mutation rates have also been estimated

by whole-genome sequencing (WGS)18;19;20;21;22. We therefore asked whether effective poly-
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ploidy also impacts WGS-based mutation rate estimates, in particular whether WGS yields

the per-cell or per-copy rates. Mutation rates estimated by WGS are typically referred to as

“per-genome” rates, which equal per-cell rates under the tacit assumption that bacteria are

monoploid. With ploidy level taken into account, if WGS truly estimates the per-genome rates,

then it has the same issue as fluctuation tests using recessive mutations. However, given that

WGS-based mutation rates can be several times (up to one order of magnitude) higher than

rates from fluctuation tests18;19;20, it is also plausible that WGS actually yields per-cell rates

that reflect the underlying ploidy level. To our knowledge, however, the impact of polyploidy

on WGS-based mutation rates has never been explored.

To date, there are three experimental methods used to estimate mutation rates in combi-

nation with WGS. They are mutation accumulation (MA)21, counting neutral mutations fixed

such as in the E. coli long-term evolutionary experiment (LTEE)18, and maximum-depth se-

quencing (MDS)19. These three WGS methods yield per-genome or per-nucleotide mutation

rates within the same order of magnitude of one another, for both E. coli and Salmonella18;19.

MA is the most commonly used method20;21;22. In MA experiments, bacteria accumulate muta-

tions by serial-passaging on solid media with single-colony bottlenecks to minimize the impact

of selection21. For fast-growing bacteria like E. coli, forming a colony requires 25-30 divisions

and can occur in one day20;21. The daily passaging continues until a high number of genera-

tions, such as 6000 (ref.20). This is also routinely done in replicate cultures to reach a high total

generation number such as 133,476 (ref.20). In the end, one bacterial clone, after forming one

final colony, is sequenced. Base-substitution mutations or SNPs are typically called with a high

threshold such as >80% or even 100% (ref.18;20). Within-colony polymorphisms are thereby

ignored. This implies that only homozygous mutant alleles in the cell that founded the final

colony are registered in WGS. If the total generation number is high enough, the last 25-30

generations will have a negligible impact on the mutation rate estimate. Since MA remains

the most widely used method, we focus on it to decipher how effective polyploidy impacts

WGS-based mutation rate estimation.

In the MA assay, as described above, a single colony (assumed to be founded by a single cell)

is picked at each bottleneck to continue propagation, and at the final time point for sequencing.

Thus, one cell is chosen, presumably uniformly at random, among all existing cells in the

population at each sampling time. In order to quantify the mutations accumulated along its

direct lineage, we would need to follow this lineage backwards in time to the common ancestor

that founded the population. In general, a typical “backward lineage” does not show the same
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statistical properties – particularly the number of cell divisions elapsed – as a typical “forward

lineage”23. However, if we make the important simplifying assumptions that interdivision time

is fixed (in particular, not affected by any mutations) and there is no cell death, then it is

equivalent to choose a lineage at random either backwards or forwards in time. Thus, we

simplify the process by considering cell divisions forwards in time along a single focal lineage

throughout the entire experiment, from the founder cell to the cell forming the colony picked for

sequencing. At each cell division, we thus randomly choose one daughter cell to be the ancestor

of the chosen cell, i.e. to remain in the sampled lineage, and “discard” the other daughter cell

from consideration (S4 Fig, A).

In this model, the probability of a cell acquiring a mutation on any of its genome copies

within one generation is given by cµg, with µg the per-genome-copy mutation rate and c the

effective ploidy. For a mutation to be registered in WGS, it must fix in the sampled lineage.

If cells are monoploid, then the mutant progenitor and its offspring are all homozygous, and

all mutations occurring in the sampled lineage will therefore be passed down the lineage and

registered in WGS. For a polyploid cell that acquires one mutation, however, only a fraction

1/c of its descendants will become homozygous mutants while the rest become genetically wild-

type, due to asymmetric inheritance that we showed experimentally (main text Fig 3). To

register a mutation requires that one picks up a homozygous mutant descendant of the mutant

progenitor (S4 Fig, B-C), which occurs with probability 1/c. Therefore, although polyploidy

increases the influx of mutations by a factor c, this is cancelled out by a decrease of factor

c in the probability that a mutation fixes in the sampled lineage, leaving µg as the apparent

mutation rate. This result may not be exact if cell division times are variable, since our model

of sampling one cell at random at each cell division forwards in time is then not precisely

equivalent to sampling at random from all cells existing at a given time point in the real MA

assay. However, the argument shows that we will not in general recover the per-cell mutation

rate, and instead expect something close to the per-genome-copy mutation rate.

In the end, then, mutation rate estimates derived by WGS applied to MA assays represent

(approximately) per-genome-copy rates, comparable to fluctuation tests with recessive muta-

tions returning per-target-copy rates. Effective polyploidy thus does not explain the afore-

mentioned discrepancy of up to an order of magnitude between WGS-based and fluctuation

test-based estimates of mutation rate. Although both methods are impacted similarly by ef-

fective polyploidy, the mechanisms are fundamentally different. In fluctuation tests, effective

polyploidy introduces phenotypic delay and masks heterozygous mutants from selection. In mu-
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tation accumulation, mutations are assumed to be neutral, but asymmetric inheritance caused

by effective polyploidy decreases their fixation probability.

Although we focused on MA, both of the two aforementioned alternative WGS methods,

LTEE- and MDS-based mutation rates, yield mutation rate estimates of the same order of

magnitude as MA-based rates18;19. In LTEE, counting neutral mutations actually yields slightly

lower mutation rates than MA and MDS18. In MDS, since mutation rates are estimated based

on polymorphism in whole-population samples19, the resulting per-nucleotide mutation rates

are literally per-nucleotide, which translates readily to per-genome rates for any given genome

size. However, as we have shown here, these estimated rates must be interpreted carefully as

they do not reflect the per-cell mutation rate.

4 Standing genetic variation and rescue

4.1 General model notes

In this section we develop the models we use to investigate the evolutionary consequences of

effective polyploidy (main text Fig 7). Recall that in our framework, every cell contains c

(= 1, 2, 4, 8, . . .) copies of the locus of interest, which for brevity we refer to as “ploidy”, though

chromosomes may only be partial. At each generation these chromosomes double and are evenly

divided between the two daughter cells, splitting at the deepest point in their genealogy. A

cell’s type is defined by the number of mutant chromosomes (out of c) that it carries: type j = 0

is homozygous wild-type; types j = 2i, i = 0, 1, . . . , n− 1 are heterozygous; type j = 2n = c is

homozygous mutant.

We model population dynamics in discrete generations. To capture fitness differences for

bacteria undergoing binary fission, we suppose a type j cell successfully divides before dying,

i.e. produces two offspring rather than zero, with probability pj. These probabilities will differ

between the old environment (to calculate mutation-selection balance) and the new environ-

ment (to calculate the probability of rescue). In the deterministic calculation of the mutation-

selection balance below, only the proportion of offspring of each type matters; thus, the results

are not actually particular to organisms reproducing by binary fission, but do depend on the

types of offspring that can be produced, determined here by the assumed pattern of chromo-

some segregation. In the stochastic model for rescue, the entire probabilistic distribution of

offspring numbers matters, not only expected values.
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Consistent with the population genetics literature, here we define mutation rate (per cell,

per generation) as the proportion of offspring that are mutant (in a deterministic model) or

the probability that each offspring independently is mutant (in a stochastic model). Again, we

suppose mutations arise in double-stranded form (cf. discussion in sections 2.1 and 2.3 above).

For ploidy c, a wild-type cell has mutation rate µ̃ = cµ̃c = 2nµ̃c where µ̃c is the mutation

rate per copy. Although it is possible that more than one copy mutates simultaneously in this

model, these second-order events will drop out of the approximations we derive.

We choose our notation (µ̃) to make a subtle distinction from the mutation rate parameter

(µ) used in the fluctuation test model (section 2). Recall that the standard definition of

mutation rate in the fluctuation analysis literature is the number of mutants produced per

wild-type cell per division; that is, a mutation event, occurring with probability µ, retains

one wild-type cell and produces one new mutant6. In contrast, in the population genetics

approach, each offspring has a probability µ̃ to become a mutant. Assuming two offspring as

in binary fission, the probability of producing one mutant upon wild-type cell division is thus,

to first order, 2µ̃. Therefore, a bacterial mutation rate estimated by standard methods from a

fluctuation test should be divided by two in order to parameterize a typical population genetics

model. This discrepancy in the interpretation of mutation rate has not, to our knowledge,

been explicitly recognized, as such models are rarely treated side by side. In order to maintain

consistency with each existing body of literature, such that we recover standard results in the

monoploid case, we use the two different definitions of mutation rate in our respective modeling

approaches.

4.2 Mutation-selection balance (deterministic)

Here we suppose mutations are costly (where this cost may be masked in heterozygotes, de-

pending on the dominance assumption) and calculate the frequency of the mutant types at

equilibrium.

4.2.1 Mathematical derivations

Let xj(t) denote the frequency (proportion) of type j in the population at generation t, and wj

the relative fitness of type j, where fitness is given by the expected number of surviving offspring,

and relative fitnesses are normalized by the wild-type. (Under our binary fission model where

individuals have two offspring with probability pj or zero offspring with probability 1− pj, we
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have wj = pj/p0.) We denote population mean fitness by w̄(t) :=
∑

j wjxj(t). A proportion µ̃

of type 0 individuals’ offspring mutate to type 1, while the rest remain type 0. According to our

model of chromosome segregation (see main text Materials and Methods), type 2i individuals

(0 ≤ i ≤ n− 1) produce half type 0 and half type 2i+1 offspring, while type c = 2n individuals

produce only type 2n offspring. Then for c > 1 the type frequencies can be described by the

following recursions (with census after mutation and before selection):

x0(t+ 1) =
(1− µ̃)w0x0(t) + 1

2

∑n−1
i=0 w2ix2i(t)

w̄(t)
(4a)

x1(t+ 1) =
µ̃w0x0(t)

w̄(t)
(4b)

x2i(t+ 1) =
1
2
w2i−1x2i−1(t)

w̄(t)
, for 1 ≤ i ≤ n− 1 (4c)

x2n(t+ 1) =
1
2
w2n−1x2n−1(t) + w2nx2n(t)

w̄(t)
(4d)

Provided the mutation rate is small compared to fitness costs, mutants are rare and the wild-

type dominates the population: x0(t) ≈ 1 and w̄(t) ≈ 1. Then the equilibrium frequencies, x∗j ,

approximately satisfy:

x∗1 ≈ µ̃ (5a)

x∗2i ≈
w2i−1x∗2i−1

2
, for 1 ≤ i ≤ n− 1 (5b)

x∗2n ≈
w2n−1x∗2n−1

2
+ w2nx

∗
2n (5c)

This yields the general solution for the mutation-selection balance in polyploids under our

model of chromosome segregation:

x∗1 ≈ µ̃ = 2nµ̃c (6a)

x∗2i ≈

(
i−1∏
j=0

w2j

)
µ̃

2i
=

(
i−1∏
j=0

w2j

)
2n−iµ̃c, for 1 ≤ i ≤ n− 1 (6b)

x∗2n ≈
∏n−1

j=0 w2j

1− w2n
· µ̃

2n
=

∏n−1
j=0 w2j

1− w2n
µ̃c (6c)

We assume the mutation has fitness cost s in a homozygous mutant relative to a homozygous

wild-type; that is, w2n = 1 − s. The condition that mutants are rare amounts to µ̃ � s ≤ 1.

We can then consider various dominance models to determine the fitness of the heterozygotes.

18



When the mutation is completely recessive, only homozygous mutants bear the cost, while

heterozygotes have the same fitness as wild-types: w2i = w0 = 1 for 0 ≤ i ≤ n−1. Substituting

into the general solution yields:

x∗2i ≈
µ̃

2i
= 2n−iµ̃c, for 0 ≤ i ≤ n− 1 (heterozyg.) (7a)

x∗2n ≈
µ̃

2ns
=
µ̃c
s

(homozyg.) (7b)

Then the total frequency of the mutant allele, i.e. the proportion of all alleles in the population

that are mutant, is:

n∑
i=0

2i

2n
x∗2i ≈ (n− 1)µ̃c +

µ̃c
s

(8)

When the mutation is completely dominant, all heterozygotes have the same fitness as

homozygous mutants: w2i = 1− s for 0 ≤ i ≤ n. Substituting into the general solution yields:

x∗2i ≈
(

1− s
2

)i
µ̃ = (1− s)i2n−iµ̃c, for 0 ≤ i ≤ n− 1 (heterozyg.) (9a)

x∗2n ≈
(

1− s
2

)n
µ̃

s
= (1− s)n µ̃c

s
(homozyg.) (9b)

The total mutant allele frequency is then:

n∑
i=0

2i

2n
x∗2i ≈

µ̃c
s

(10)

For comparison, taking the same solution approach for monoploids (c = 1 and w1 = 1− s)

recovers the standard result for mutant frequency,

x∗1 ≈
µ̃

s
≡ µ̃c

s
(11)

4.2.2 Results

The key expressions in the cases of complete dominance or complete recessivity (Equations

7-11) are summarized in Table 1 in the main text, and an example of mutant allele frequency

as a function of cost is plotted in S5 Fig.

In the completely recessive case, the cost is masked in heterozygotes, and thus the mutant

allele is maintained at a higher overall frequency than in a monoploid population. Meanwhile,

the frequency of homozygous mutants is independent of ploidy.

In the completely dominant case, both heterozygotes and homozygotes are subject to se-

lection and thus present at a lower frequency than in the recessive case. The total mutant
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allele frequency turns out to be exactly the same as in the monoploid case. However, since

heterozygote cells contribute less than 100% mutant chromosomes, the frequency of cells con-

taining at least one mutant chromosome must necessarily be larger than in the monoploid case,

where every mutant cell is weighted by a 100% contribution. Indeed, the total frequency of

heterozygous and homozygous mutants among all cells is given by:

n∑
i=0

x∗2i ≈
µ̃c
s

(
2n+1s+ (1− s)n+1

1 + s

)
(12)

The factor in brackets can be shown to be larger than one for any s ∈ (0, 1] and n ≥ 1, and

increasing with n. That is, the total frequency of hetero- and homozygous mutants increases

with ploidy (c = 2n). However, a c-fold increase in ploidy yields less than a c-fold increase in

this total mutant cell frequency. This is because mutational influx is proportional to c, but half

of heterozygous mutants’ offspring are wild-type and thus “lost” from this pool.

For comparison, Otto and Whitton24 gave the equilibrium frequency of a costly mutant allele

to be µ̃c/σc, where σc is “the fitness effects of a single mutation in an organism of ploidy level

c” (p. 417, ref.24), allowing any level of dominance except the completely recessive case. This

result is given for monoploids, diploids, or tetraploids, for either asexual or randomly mating

sexual reproduction (with particular assumptions on chromosome segregation in tetraploids).

Our result, for asexual reproduction with any ploidy of the form c = 2n, is thus consistent in the

special case of complete dominance. Furthermore, these authors found that the mutant allele

frequency “increases with ploidy level for deleterious mutations that are partially recessive and

masked” (p. 417, ref.24). Our result in the limiting case of completely recessive mutations is

consistent with this trend.

4.3 Rescue (stochastic)

Suppose a population is exposed to a harsh new environment (e.g. antibiotics), such that the

basic reproductive number (R0) of phenotypically wild-type (“sensitive”) cells does not exceed

one, and thus the population will decline to extinction unless it is rescued by phenotypically

mutant (“resistant”) cells with R0 larger than one. We are interested in the probability that

the population is rescued, due to the establishment of at least one resistant lineage, from the

standing genetic variation (mutant types that already arose in the old environment) and/or de

novo mutations that occur in the new environment.

20



4.3.1 Mathematical derivations

Recall that in our framework, a type j cell has two daughters with probability pj, and otherwise

dies without leaving offspring. Thus R0,j = 2pj and the rescue scenario amounts to taking

pj = pS ≤ 1/2 for all types j that are sensitive in the new environment, and pj = pR > 1/2

for all types j that are resistant. (Recall that j = 0 corresponds to the homozygous wild-type;

j = 2i for 0 ≤ i ≤ n − 1 correspond to heterozygotes; and j = 2n = c corresponds to the

homzygous mutant.) We now model population dynamics stochastically using a multi-type

branching process.

The offspring distributions of the various types are described by the following probability

generating functions, where ~z = (z0, z1, . . . , z2n) is a dummy variable:

f0(~z) = 1− p0 + p0 ((1− µ̃)z0 + µ̃z1)
2 (13a)

f2i(~z) = 1− p2i + p2iz0z2i+1 , for 0 ≤ i ≤ n− 1 (13b)

f2n(~z) = 1− p2n + p2nz
2
2n (13c)

The extinction probabilities ζj starting from a single type j are given by the smallest non-

negative fixed point25, ~f(~ζ) = ~ζ. That is,

ζ0 = 1− p0 + p0 ((1− µ̃)ζ0 + µ̃ζ1)
2 (14a)

ζ2i = 1− p2i + p2iζ0ζ2i+1 , for 0 ≤ i ≤ n− 1 (14b)

ζ2n = 1− p2n + p2nζ
2
2n (14c)

The equation for ζ2n is decoupled and can readily be solved for the two roots, ζ2n = 1 and

ζ2n = 1/p2n − 1. The former solution gives the extinction probability when p2n ≤ 1/2, while

the latter applies when p2n > 1/2, which is the case of interest in the rescue scenario. Thus,

ζ2n = 1/pR − 1 (15)

Next, working backwards from i = n− 1 to i = 0 to successively substitute the expression

for ζ2i+1 into the equation for ζ2i , we arrive at the general form,

ζ2i = 1− p2i +
n−1∑
k=i+1

(
k−1∏
`=i

p2`

)
(1− p2k)ζk0 +

(
n−1∏
`=i

p2`

)
ζn−i0 ζ2n , for 0 ≤ i ≤ n− 1 (16)

The terms in this sum reflect all possible paths to extinction, whereby either a cell in the mutant

lineage fails to divide at some step before complete segregation, or cell divisions are successful
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up to complete segregation but the homozygous mutant fails to establish a surviving lineage,

while all homozygous wild-type descendants (one produced per cell division until complete

segregation) also lead to extinction.

These equations could in general be solved numerically. For µ̃� 1, we obtain the analytical

approximation:

ζ2i = 1− p2i +
n−i−1∑
k=1

(1− p2i+k)

(
i+k−1∏
`=i

p2`

)
+

(
n−1∏
`=i

p2`

)
ζ2n +O(µ̃), for 0 ≤ i ≤ n− 1

(17a)

ζ0 = 1− 2(1− ζ̃1)
1/p0 − 2

µ̃+O(µ̃2) (17b)

where ζ̃2i denotes the zero-order term in ζ2i as given in (17a). The approximation for ζ2i

essentially neglects the chance that another mutation occurs and escapes extinction among

the wild-type descendants produced before complete segregation. The approximation for ζ0

(and thus also for all types 2i) will break down as p0 → 1/2, i.e. the type 0 branching process

approaches criticality. On the other hand, the special case p0 = 0 leads to the exact solutions

ζ0 = 1 and ζ2i = ζ̃2i .

In the special case of complete recessivity or dominance, all heterozygotes have the same

division probability, p2i = phet for 0 ≤ i ≤ n − 1, where phet = pS for recessivity or phet = pR

for dominance. Substituting Equation 15 for ζ2n , the expressions for ζ2i can then further be

simplified to the exact form:

ζ2i = (1− phet)
1− (phetζ0)

n−i

1− phetζ0
+ (phetζ0)

n−i(1/pR − 1), for 0 ≤ i ≤ n− 1 (18)

or, for µ̃� 1, the approximate form:

ζ2i = 1− pn−ihet (2− 1/pR) +O(µ̃), for 0 ≤ i ≤ n− 1 (19a)

ζ0 = 1− 2pnhet
2− 1/pR
1/pS − 2

µ̃+O(µ̃2) (19b)

Rescue from standing genetic variation: We first consider the contribution to rescue from

mutant types (both hetero- and homozygous) that are already present when the environment

switches. For this purpose, we neglect de novo mutations in the new environment, thus setting

µ̃ = 0 in the solutions for the extinction probabilities ζj. The probability of rescue from standing

genetic variation, denoted PSGV, is calculated as the the complement of the probability that all
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starting types ultimately fail to establish surviving lineages, that is:

PSGV = 1−
n∏
i=0

ζ
N2i

2i
= 1− exp

(
n∑
i=0

N2i log(ζ2i)

)
(20)

where Nj is the number of type j individuals present at the time the environment switches. If we

assume the population begins at the deterministic mutation-selection balance calculated in the

previous section, with total population size N independent of ploidy (see ref.24 for a discussion

of possible links that we neglect), then Nj = Nx∗j where x∗j ∝ µ̃c, with the proportionality

constant depending on dominance in the old environment and on ploidy (main text Table 1).

The extinction probabilities ζ2i are given in general by Equation 17a, or in the case of complete

dominance or recessivity in the new environment by Equation 19a, setting µ̃ = 0.

If we assume both the cost in the old environment and the resistant phenotype in the new

environment are completely recessive, we substitute Equation 7 for the approximation of x∗2i

and Equation 19a (with phet = pS and µ̃ = 0) for ζ2i to obtain:

PSGV,R/R ≈ 1− exp

(
m ·

[
n−1∑
i=0

2n−i log(1− pn−iS (2− 1/pR)) + log(1/pR − 1)/s

])
(21)

where m := Nµ̃c is a ploidy-independent measure of mutational influx in the population, given

by the product of initial population size and per-copy mutation rate. In the case of complete

dominance in both environments, we substitute Equation 9 for the approximation of x∗2i and

Equation 19a (with phet = pR and µ̃ = 0) for ζ2i to obtain:

PSGV,D/D ≈ 1− exp

(
m ·

[
n−1∑
i=0

2n−i(1− s)i log(1− pn−iR (2− 1/pR)) + log(1/pR − 1)(1− s)n/s

])
(22)

A caveat is that we have taken all types to be at their deterministic frequencies. This

assumption will tend to be unrealistic when mutational influx (m) is small. Stochastic effects

imply that mutant cell types could be absent all together, and the realized frequencies of various

types will be correlated through time. In particular, rescue could fail even if pR = 1 due to the

chance that resistant cells are absent at any given time, whereas our current approach yields

PSGV = 1 when pR = 1, since the average frequency of resistant cells is non-zero. In general,

stochasticity in realized mutant frequencies is expected to reduce PSGV
26. Nonetheless, we do

not expect changes to the general qualitative effects of ploidy and other model parameters on

rescue probability. We thus leave a stochastic treatment of the SGV for future theoretical work.
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Rescue from de novo mutations: We now consider the contribution to rescue from muta-

tions that arise in the new environment. For this purpose, we suppose the population is initially

composed of N homozygous wild-type (type 0) individuals. The probability of rescue from de

novo mutations, denoted PDN, is then calculated as:

PDN = 1− ζN0 (23)

Clearly, PDN can only be non-zero when pS > 0, such that existing wild-type cells can pro-

duce offspring. Assuming that µ̃ � 1 (such that 1 − ζ0 � 1) and that N is large, we can

approximate27:

PDN ≈ 1− e−N(1−ζ0) ≈ 1− exp (−2nmα) (24)

where α is the coefficient of µ̃ in the approximation of ζ0 (Equation 17b or 19b), and again

m := Nµ̃c. In particular, when the mutation is completely recessive in the new environment,

we have

PDN,R ≈ 1− exp

(
−2n ·m · 2pnS

2− 1/pR
1/pS − 2

)
(25)

while when the mutation is completely dominant in the new environment, we have

PDN,D ≈ 1− exp

(
−2n ·m · 2pnR

2− 1/pR
1/pS − 2

)
(26)

4.3.2 Results

Here we explore the effects of model parameters, ploidy, and dominance on the probability of

rescue. We assume throughout that the mutation rate is small (µ̃ = cµ̃c � 1 for reasonable

c), allowing us to use analytical approximations derived above. For simplicity we will only

illustrate the cases of complete recessivity or dominance. Furthermore, in the case of SGV,

we suppose here that dominance is the same in both the old and new environments, although

there is empirical evidence that dominance can in fact be environment-dependent28 and this

situation could also readily be considered using our general mathematical results.

With these simplifying assumptions, we apply Equations 21 and 22 to calculate PSGV, and

Equations 25 and 26 to calculate PDN. Recall that PSGV covers the contribution of all hetero-

and homozygous mutant types existing at the time of the environmental shift, while PDN covers

the contribution of de novo mutations arising in the new environment from homozygous wild-

type cells. We also consider the overall probability of rescue from either (not mutually exclusive)
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source:

Ptot = 1− (1− PSGV)(1− PDN)

= PSGV + PDN − PSGVPDN (27)

The plots in S6 Fig – S9 Fig illustrate the effects of model parameters on the aforementioned

probabilities (PSGV, PDN, Ptot) as well as the ratio PSGV/PDN, for various ploidy levels.

Effect of probabilities that sensitive and resistant cells divide before death in the

new environment (pS, pR): PSGV is independent of pS in the dominant case, since both

heterozygous and homozygous mutant types are resistant. In the recessive case, since heterozy-

gotes are sensitive, PSGV is increasing with pS. In the extreme when pS = 0, rescue can only

occur from pre-existing homozygous mutants, whose frequency is independent of ploidy (main

text Table 1). PDN increases with pS in both the recessive and dominant cases, since increasing

the chance that wild-type cells produce surviving offspring increases the opportunities for de

novo mutations. However, PDN is more sensitive to pS in the recessive case, since changes in

pS affect survival of heterozygotes as well as homozygotes. Taken together, Ptot is clearly in-

creasing with pS. Furthermore, PSGV, PDN and Ptot are all increasing with pR, by reducing the

chance that a resistant lineage goes extinct. The relative contribution of SGV (PSGV/PDN) is

greatest at low pS, where wild-type cells are unlikely to survive to produce new mutants after

the environment changes, with this dependency stronger in the recessive case. The dependency

on pR is weak and not in a consistent direction.

Effect of mutational influx (m = Nµ̃c): The larger the population (N) or the higher the

per-copy mutation rate (µ̃c), the greater the number of mutant cells in the SGV and the more

likely new mutations are to be generated. Thus, PSGV, PDN and Ptot are all increasing with

m = Nµ̃c. The relative contribution of SGV (PSGV/PDN) is greatest at low mutational influx.

Effect of fitness cost in the old environment (s): The higher the cost of the mutation,

the lower its frequency in the old environment; thus PSGV is decreasing with s. Mutations that

first arise in the new environment do not incur this cost (our model takes fitness in the new

environment, determined by pR, independent of fitness in the old environment, determined by

s) and thus PDN is independent of s. Therefore, both the overall probability of rescue (Ptot)

and the relative contribution of SGV (PSGV/PDN) are decreasing with s.
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Effect of ploidy (c = 2n): As described in the main text, PSGV increases with ploidy in the

recessive case (for pS > 0) and in the dominant case. Meanwhile, PDN decreases with ploidy in

the recessive case and increases in the dominant case. These patterns are robust to variations

in parameter values (S6 Fig – S9 Fig).

Our results for rescue from standing genetic variation, if we assume a deterministic mutation-

selection balance prior to environmental change, interestingly qualitatively agree with and

extend our results for fluctuation analysis, which models the stochastic accumulation of genetic

variation in an exponentially growing population with mutations assumed to be cost-free. In

a fluctuation test, obtaining mutant colonies growing on selective plates corresponds to rescue,

with the assumption that every phenotypic mutant produces a visible colony (pR = 1) while

every phenotypically wild-type cell fails to produce a visible colony (pS = 0).

In the recessive case, both the deterministic frequency of homozygous mutants at mutation-

selection balance (section 4.2.2) and the distribution of number of homozygous mutants in an

exponentially growing culture (section 2.2) turn out to be independent of ploidy. If pS = 0, as

in fluctuation analysis and a special case of our rescue model, the observed mutant distribution

in the former or PSGV,R/R in the latter thus reflect only the contribution of homozygous mutants

that are immediately resistant in the new environment. Thus the result is unaffected by ploidy.

As pS increases in our more general rescue model, heterozygous mutants can also contribute

to rescue. Their frequency in the SGV (main text Table 1), and thus PSGV,R/R, increases

with ploidy. However, the increase in rescue probability is tempered by heterozygotes’ lower

probability of escaping extinction, due to the higher chance of loss until complete segregation

has occurred.

In the dominant case, both hetero- and homozygous mutant cells are phenotypically mu-

tant, i.e. immediately resistant in the new environment. Their total frequency in the SGV

at mutation-selection balance (section 4.2.2), similarly to a fluctuation test (section 2.2), in-

creases with ploidy, but falls short of the pattern expected for c-times higher mutation rate

in the standard monoploid model. This is explained by the segregation lag in heterozygous

mutants, during which only half of offspring are likewise phenotypic mutants. For the same

reason, the probability that a lineage initiated by a heterozygous mutant escapes extinction in

the new environment is lower than that of a homozygous mutant (whenever pR < 1), tempering

their contribution to rescue.

Our results for rescue from de novo mutations also reflect the counteracting effects of higher

mutational influx but a longer segregation lag as ploidy increases. In the case of a completely

26



recessive mutation, the net effect is a reduction of PDN with ploidy. Consider the expression

from Equation 25:

PDN,R ≈ 1− exp

(
−2n ·m · 2pnS

2− 1/pR
1− pS/2

)
The factor 2n reflects the gain in mutational influx with ploidy, while the factor pnS reflects

the number of successful divisions of sensitive cells required for complete segregation of mutant

chromosomes. Since pS < 1/2 by assumption, the net effect is that (2pS)n and in turn PDN,R

are decreasing with n. Intuitively, each doubling of ploidy doubles the mutational influx, but

requires one additional cell division, occurring with probability less than one half, to produce

a resistant cell.

On the other hand, for a completely dominant mutation, the net effect is an increase of PDN

with ploidy. Consider Equation 26:

PDN,D ≈ 1− exp

(
−2n ·m · 2pnR

2− 1/pR
1− pS/2

)
The detrimental effect of the segregation lag even on dominant mutants is reflected by pnR,

which decreases with n (unless pR = 1). However, this is now more than compensated by the

gain in mutational influx (factor 2n). By assumption, pR > 1/2, thus (2pR)n and in turn PDN,D

increase with n.

Putting together the effects of ploidy on both SGV and de novo sources, we find that the

overall probability of rescue, Ptot, depends only weakly on ploidy in the recessive case, but

is increasingly contributed by SGV at higher ploidy. In the dominant case, Ptot is clearly

increasing with ploidy. The relative contribution of SGV (PSGV/PDN) tends to be decreasing

over reasonable ploidy levels, but this trend can reverse at higher ploidy, especially when s

and/or pS are large. We briefly note that if we were to account for stochasticity in the number

of mutants in the SGV, just as we already accounted for stochasticity in the number of de novo

mutations occurring, we would expect the contribution of SGV to decrease (see derivation of

PSGV above).

It is interesting to compare our results on rescue to previous results on the rate of sub-

stitutions or adaptation in a constant-sized population. As a baseline, in the case of neutral

mutations, any individual chromosome has equal probability of ultimately fixing in the pop-

ulation. In a population of N individuals of ploidy c, where each chromosome mutates at

rate µc, the overall substitution rate is thus (mutation influx rate) × (fixation probability)

= (cµcN)× 1/(cN) = µc, which is independent of ploidy, as in the mutation accumulation as-

say (section 3). On the other hand, selection either against deleterious mutations (as examined
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in the mutation-selection balance, section 4.2) or for beneficial mutations (as examined here)

introduces dependencies on ploidy. Previously, Otto and Whitton24 considered how the “rate

of adaptation”, defined as the rate of fitness increase due to adaptive substitutions, depends

on ploidy. For adaptation from a single, previously deleterious allele in the SGV that becomes

beneficial, they found that the rate of adaptation increases with ploidy if the selective benefit of

the allele when in a single copy is sufficiently large relative to the prior selective disadvantage,

and the population size is not too large. In the rescue situation, the population is declining and

mutations are strongly favoured. Thus this previous result is in qualitative agreement with our

results for rescue, where PSGV increases with ploidy for both recessive and dominant mutations.

For adaptation from ongoing, beneficial de novo mutations, in an asexual population, Otto and

Whitton found that adaptation rate in a small population increases with ploidy for sufficiently

dominant mutations, but decreases with ploidy for more recessive mutations. Again, this is in

qualitative agreement with our finding that PDN,D increases but PDN,R decreases with ploidy.

Effect of dominance: PDN is always larger for the dominant case than for the recessive case,

since in the former, heterozygotes are already capable of rescuing the population, whereas in

the latter, only homozygous mutants can rescue. The idea that recessive adaptive mutations

are at a disadvantage in establishment dates back to Haldane29 and is now commonly known as

“Haldane’s Sieve”30. Moreover, in our model, PDN increases with ploidy for dominant mutations

and decreases for recessive mutations; thus the advantage of dominance clearly is greater at

higher ploidy. These effects of ploidy, and thus the magnitude of the difference between recessive

and dominant mutations, are weakest at high pS (as this increases the chance that recessive

mutations survive until homozygosity) and low pR (as this reduces the advantage of dominant

mutations being expressed in heterozygotes).

In contrast, the effect of dominance on PSGV can go in either direction. Indeed, Orr and

Betancourt30 have previously pointed out that Haldane’s Sieve does not hold for adaptation

from standing genetic variation, since more dominant mutations have higher per-copy proba-

bility of establishment but are present at lower frequency. Specifically, in our model PSGV,R/R

can exceed PSGV,D/D when pS is sufficiently high and pR sufficiently low (for the same reasons

that the advantage of dominance weakens in PDN), or when s is high (so that masking this cost

in heterozygotes yields a greater advantage to recessive mutations). Our results are in qual-

itative agreement with Orr and Betancourt30, who found (with the implicit assumption that

dominance coefficients are not environment-dependent) that completely recessive mutations
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have a higher probability of establishment than (semi-)dominant mutations when the selective

disadvantage in the old environment is high and/or the benefit in the new environment is small.
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