
S1 Appendix: Justification of heuristic method for quadratic
observables

In this Appendix we give the details of the projection method with linear and quadratic observables,
applied to an expanded network as outlined in Sec. Nonlinear projected equations. The expanded network
is one of unary and binary reactions involving the concentrations of subnetwork proteins, xs, of bulk
proteins, xb, and of DNA species, xa. The mass action kinetics for this network can be put into the form
of an L-matrix, defined for linear and quadratic observables as in (10). We partition this into blocks
according to

L =

(
LS,S LS,B

LB,S LB,B

)
=

L
s̃,̃s Ls̃,b̃ Ls̃,ã

Lb̃,̃s Lb̃,b̃ Lb̃,ã

Lã,̃s Lã,b̃ Lã,ã

 (S1.1)

Here s̃ contains the “subnetwork only” observables {s} (linear) and {ss} (quadratic, like δxsδxs′), while
{b̃} collects the slow bulk observables {b, sb, bb}. The fast bulk observables are gathered in {ã}, which
contains {a, sa, ba, aa}. Note that with this partitioning of observables we have allocated all fast (DNA)
species to the bulk. This is different from the approach in [21] where some fast (enzyme) species were
retained in the subnetwork in order to retain more of the nonlinearities. In our case one could similarly
keep in the subnetwork those DNA species that produce subnetwork proteins, but it turns out that this
makes the final elimination of fast variables rather intricate and so we leave this as an option to pursue
in future work.

For our GRN equations, subnetwork and bulk protein species do not interact, so the blocks Ls̃,b̃ and

Lb̃,̃s are in fact zero. This restriction is not required for our treatment, however, and direct protein-
protein interactions could be included in the formalism without modification. As in the case of the
linearised dynamics (Sec. Equivalence to heuristic linearisation), only the third column of (S1.1) is fast,
i.e. has entries proportional to γ (plus subleading terms of order unity arising from the time derivatives
of slow-fast product observables such as ba).

From (S1.1) one can obtain the rate matrix and memory functions for the projected subnetwork
equations, for any finite γ. The limiting values of these quantities for γ → ∞ can then be found
from a matrix Leff for only the slow (protein) observables. Our aim in this Appendix is to show that
this Leff is identical to the analogous matrix that one obtains by directly expanding the original slow
(GRN) equations to second order in the protein concentrations. This then justifies the heuristic method
of constructing the nonlinear rate matrix and memory functions described in Sec. Nonlinear projected
equations.

S1.1 Generic form of notation

It will be useful to write the full time evolution equations for the expanded network in the generic form

∂tx
l = Rl(xl,xa) (S1.2)

γ−1∂tx
a = Ra(xl,xa) (S1.3)

These are equations (1, 14) from the main text, or more generically (21), but we have grouped together
the subnetwork and bulk concentration vectors xs and xb into a single vector of slow variables xl to keep
the notation for the following discussion compact. The vector xa contains the fast variables, which in
the GRN context are concentrations of DNA conformations, while γ is a fast rate parameter as before.
In the limit of large γ, the fast variables are always in QSS with the slow ones so that the expanded
network reduces to the thermodynamic state ensemble (in the GRN case) dynamics

∂tx
l = Rl(xl,xa) (S1.4)

0 = Ra(xl,xa) (S1.5)

where the second equation implicitly determines xa as a function of xl. (In the main text we marked
this QSS value by an asterisk; we omit this here for notational simplicity.) This is the generic form of
equations (1,2) in the main text.

1



The matrix L is obtained in the above generic setting by expanding around a fixed point to second
order to write the equations of motion as

∂tx
lT = xlTLll + xaTLal + xllTLll,l + xlaTLla,l + xaaTLaa,l (S1.6)

γ−1∂tx
aT = xlTLla + xaTLaa + xllTLll,a + xlaTLla,a + xaaTLaa,a (S1.7)

All x appearing here and below are deviations δx from steady state; we drop the δ to lighten the notation.
The xll etc are product variables – we assume the indices are ordered to avoid duplicate observables –
and the L matrices contain the appropriate derivatives of the “drift” functions R at the fixed point, e.g.
Lll,a has elements Lll′,a = ∂xl

∂xl′Ra for l < l′ and Lll,a = (1/2)∂xl
∂xl

Ra when the two indices are equal.
From the above equations then follow the evolution equations for the slow product variables xll and the
fast products xla and xaa; see (S1.13, S1.18) below. From the product rule these equations only involve
product variables on the r.h.s.; third order terms are in principle present but discarded within the second
order expansion. Collecting all variables into a vector z that concatenates xl, xll, xa, xla, xaa gives the
time evolution equation in the form ∂tz

T = zTL, where the matrix L has the block form (S1.1) if one
restores the split of slow observables into subnetwork and bulk.

S1.2 Heuristic method

The heuristic method involves a direct expansion of the slow equations. To obtain the general form of
this, one writes the dynamical equations as

∂tx
lT = xlTLll + xaTLal + (xl ◦ xl)TLll,l + (xl ◦ xa)TLla,l + (xa ◦ xa)TLaa,l (S1.8)

γ−1∂tx
aT = xlTLla + xaTLaa + (xl ◦ xl)TLll,a + (xl ◦ xa)TLla,a + (xa ◦ xa)TLaa,a (S1.9)

where the “circle” product indicates the actual products of the regular linear observables, with the same
index ordering as in the projection approach (so that all the L-matrices are as before). One now needs
to determine xa by setting the r.h.s. of (S1.9) to zero, and substitute the result into (S1.8). As we are
only expanding to second order in xl, it is enough also to obtain xa to this order. Starting with the first
order of (S1.9) one obtains

xaT = −xlTLla(Laa)−1 ≡ xa
0
T (S1.10)

where xa
0 will be a convenient shorthand. (Note that the coefficient matrix −Lla(Laa)−1 is the one we

worked out in the main text below (26), in a slightly more pedestrian fashion.) All second order terms
in (S1.9) can now be evaluated to the required accuracy by replacing xa by xa

0. Solving for xa then gives

xaT = xa
0
T −

[
(xl ◦ xl)TLll,a + (xl ◦ xa

0)TLla,a + (xa
0 ◦ xa

0)TLaa,a
]

(Laa)−1 (S1.11)

Inserting into (S1.8) and dropping terms of higher than quadratic order gives the required expansion of
the slow equations,

∂tx
lT = xlTLll + xa

0
TLal + (xl ◦ xl)TLll,l + (xl ◦ xa

0)TLla,l + (xa
0 ◦ xa

0)TLaa,l

−
[
(xl ◦ xl)TLll,a + (xl ◦ xa

0)TLla,a + (xa
0 ◦ xa

0)TLaa,a
]

(Laa)−1Lal (S1.12)

This then determines the L-matrix for the slow variables from which rate matrix and memory functions
are determined in the heuristic approach.

S1.3 Expanded network approach

As explained in the main text based on the reasoning in [21], if one writes down expressions for the rate
matrix and memory functions from the full matrix L and then takes the fast rate limit γ → ∞, the
resulting rate matrix and (slow) memory function can be found from a matrix Leff describing only the
dynamics of the slow variables xl and xll. This Leff is obtained by eliminating the fast variables xa, xla

and xaa using the condition that they are in QSS. These conditions are, within the projection approach,
linear equations because product observables are treated as independent from linear observables.

What we then need to demonstrate is that this distinct elimination assigns to xla and xaa the same
values as the direct expansion approach, namely (xl ◦ xa

0) and (xa
0 ◦ xa

0). Once this is shown, it follows
that the linear fast variables xa are eliminated in the same way in the two approaches, because the same
quadratic fast variables are substituted into the relevant equations (S1.7,S1.9). Thus all fast variables
are eliminated in the same way from the time evolution equation for the slow variables, to the quadratic
order we consider here. As the slow L-matrix in the heuristic approach and the Leff in the expanded
networm method are both obtained from this time evolution equation for the slow variables, they are
therefore equal as we want to show.

2



S1.3.1 Elimination of xla

Using the product rule of differentiation, the equations of motion for the xla are

∂tx
laT = γ((xlT ◦ xlTLla)) + γ((xlT ◦ xaTLaa)) + ((xlTLll ◦ xaT)) + ((xaTLal ◦ xaT)) (S1.13)

Here the double brackets on the right indicate that after the circle products are taken the real products
have to be replaced by product variables, to remain within the projection framework.

We want to eliminate the xla from the condition that the r.h.s. vanishes. Fortunately for large γ the
first two terms, which stem from the time evolution of xa, dominate; the last two become negligible in
comparison. Thus one has to solve

((xlT ◦ xlTLla)) + ((xlT ◦ xaTLaa)) = 0 (S1.14)

From the structure of this one sees that the xl only act as “spectators”, while considering the second
factors one has to solve the same equation as at linear order. The solution is therefore expected to be
xlaT = ((xlT ◦ xa

0
T)) as we want to show.

To see this in more detail we write out (S1.14) in components:∑
l′

x(ll′)Ll′a +
∑
a′

xla′La′a = 0 (S1.15)

Here we have written x(ll′) to indicate that the indices are to be taken as ordered, i.e. x(ll′) = xll′ if
l ≤ l′ and x(ll′) = xl′l otherwise. The proposed solution is

xla = ((xlT ◦ xa
0
T))la = −

∑
l′a′

x(ll′)Ll′a′(L
aa)−1

a′a (S1.16)

This does solve (S1.15) because∑
a′′

xla′′La′′a = −
∑
l′a′a′′

x(ll′)Ll′a′(L
aa)−1

a′a′′La′′a = −
∑
l′

x(ll′)Ll′a (S1.17)

S1.4 Elimination of xaa

We proceed again using the product rule of differentiation, which gives as the equations of motion for
the xaa

∂tx
aaT = γ((xlTLla ◦ xaT)) + γ((xaTLaa ◦ xaT)) + γ((xaT ◦ xlTLla)) + γ((xaT ◦ xaTLaa)) (S1.18)

Here all terms contribute for large γ, but one sees that in the first two the right factor of xa is again a
“spectator” and similarly with the left factor for the last two terms. Accordingly one can show that the
proposed solution, which is xaaT = ((xa

0
T ◦ xa

0
T)), ensures that each pair of terms vanishes separately.

For explicit calculation it is again useful to write out components. The aa′ component of the first
two terms of (S1.18), without the overall factor of γ, reads∑

l′

xl′a′Ll′a +
∑
a′′

x(a′a′′)La′′a (S1.19)

The proposed solution is

xaa′ = ((xa
0
T ◦ xa

0
T))aa′ =

∑
l1l2a1a2

x(l1l2)Ll1a1(Laa)−1
a1aLl2a2(Laa)−1

a2a′
(S1.20)

Substituting this and the solution (S1.16) for xla turns (S1.19) into

−
∑
l′l′′a′′

x(l′l′′)Ll′′a′′(L
aa)−1

a′′a′Ll′a +
∑

a′′l1l2a1a2

x(l1l2)Ll1a1(Laa)−1
a1a′

Ll2a2(Laa)−1
a2a′′

La′′a (S1.21)

The last factors in the second term again cancel, reducing it to∑
l1l2a1

x(l1l2)Ll1a1(Laa)−1
a1a′

Ll2a (S1.22)

After a relabelling of summation indices this is identical to the first term. This means that (S1.19)
vanishes, i.e. the first two terms on the r.h.s. of (S1.18) cancel. Similarly the last two terms vanish,
showing that (S1.20) is the correct QSS assignment of the xaa.

3



S1.4.1 Equations of motion for xll

Above we have shown that the direct and the projection elimination procedures give the same time
evolution equation for xl. The same can then also be checked straightforwardly for the product variables
(xl ◦xl) and their projection analogues xll. By analogy with (S1.13), the latter evolve in time according
to

∂tx
llT = ((xlT ◦ xlTLll)) + ((xlT ◦ xaTLal)) + ((xlTLll ◦ xlT)) + ((xaTLal ◦ xlT)) (S1.23)

The real products obey the same equation, just written differently:

∂t(x
l ◦ xl)T = (xlT ◦ xlTLll) + (xlT ◦ xaTLal) + (xlTLll ◦ xlT) + (xaTLal ◦ xlT) (S1.24)

From both, the fast products (xl ◦ xa) (respectively xla) and (xa ◦ xa) (respectively xaa) then need to
be eliminated. As we have already established that these eliminations are identical, also the resulting
equations for the ll-product variables must be identical.

4


