SUPPLEMENTAL MATERIAL

Kara et al., https://doi.org/10.1084/jem.20171067

Figure S1. **Follicular T cell responses are enhanced in the absence of B cell ACKR4 (related to Figs. 1 and 3 A). (A)** TFH (B220⁻CD4⁺CD44^{hi}PD1^{hi}CX-CR5^{hi}Foxp3⁻) and TFR (B220⁻CD4⁺CD44^{hi}PD1^{hi}CXCR5^{hi}Foxp3⁺) cell numbers in spleen of H-WT and H-*Ackr4^{-/-}* mice after SRBC immunization as described in Fig. 1 (C and D; means \pm SEM). Representative plots are from day 5 after SRBC immunization. Data were analyzed using a two-tailed, unpaired Student's *t* test or a two-tailed, nonparametric Mann-Whitney test. **(B)** TFH and TFR cell numbers in B-WT and B-*Ackr4^{-/-}* mice described in Fig. 1 (E and F; means \pm SEM). Data were analyzed using a two-tailed, unpaired Student's *t* test or a two-tailed, nonparametric Mann-Whitney test. **(C)** Representative flow-cytometric gating strategy identifying naive CD4⁺ T cells, thymic-derived T regulatory (tTreg) cells, TFH, and TFR cells in mixed BM chimeras, as described in Fig. 3 A. Left: Representative histograms of CD45.2⁺ cells among concurrent naive CD4⁺ T cell and TFH compartments. Right: Representative histograms of CD45.2⁺ cells among concurrent treg cell and TFR compartments. Numbers in plots indicate means \pm SEM frequencies of CD45.2⁺ cells among indicated cell populations (*n* = 6 mice/group). Data are representative of two independent experiments.

Figure S2. $Cd23^{Crel+}$. $Rosa26^{LSL-Ackr4/+}$ mice (related to Fig. 3 C). (A) Rosa26 targeting strategy. (i) $Rosa26^{LL-Ackr4}$ targeting construct; (ii) WT Rosa26 locus; (iii) targeted Rosa26 locus; and (iv) targeted Rosa26 locus after Cd23-Cre-mediated recombination. loxP:loxP, targets for Cre-mediated recombination; Puro-STOP, puromycin resistance gene, followed by STOP cassette (transcriptional pause sequence with two polyA sites); IRES, internal ribosome entry site; Bgeo, fusion of β -gal and neomycin resistance cDNA; PGK-DTR, diphtheria toxin receptor control by the PGK promoter. (B) Quantitative PCR analysis of Ackr4 transcript abundance in sorted marginal zone B cells and Fo B cells (n = 3 mice/genotype; gated as shown in D). Data are presented relative to the housekeeping gene Rplp0 (means \pm SD). (C) CCL19 scavenging assay. Sorted Fo B cells from WT (n = 3) or $Cd23^{Crel+}$. $Rosa26^{SL-Ackr4/+}$ (n = 3) mice were incubated with 10 or 5 ng/ml recombinant CCL19 for 3 h at 37°C. CCL19 concentration in cell-free supernatants was determined by ELISA. Samples with no addition of cells (chemokine only) were used to determine input CCL19 concentration. One-way ANOVA with the Bonferroni multiple comparisons test (means \pm SEM). (D) Representative flow cytometric analysis of marginal zone B cell (B220+CD11b-CD93-CD23^{Io/-}CD21^{I+}) and Fo B cell (B220+CD11b-CD93-CD23^{Io/-}Rosa26^{ISL-Ackr4/+} B cells. (F) Anti-IgM-stimulated (24 h) WT and $Cd23^{Crel+}$. $Rosa26^{ISL-Ackr4/+}$ B cell transwell chemotaxis to CCL21 and CXCL13 (means \pm SEM). Unpaired, two-tailed Student's t test. (C and F) *, P < 0.05; **, P < 0.01;