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Figure S1. Transgenes encoding WT untagged and mNeonGreen tagged TPXL-1 are functional. Related to Figs. 4 and 5. (A) Schematics showing TPXL-1WT 
or TPXL-1FD tagged with mNeonGreen. (B) Immunoblots of control (N2) and transgenic animals expressing RNAi-resistant TPXL-1WT::NG or TPXL-1FD::NG 
after depletion of endogenous TPXL-1 by RNAi. Immunoblots were probed for TPXL-1 and α-tubulin as a loading control. (C) Schematic representation 
of intron-exon organization of the C. elegans tpxl-1 gene. To make the tpxl-1 transgene RNAi resistant, a region including exon 3 and parts of exons 2 
and 4 was reencoded. The intron between exons 2 and 3 was maintained, but the long intron between exons 4 and 5 was deleted. (D) The untagged 
and NG-tagged TPXL-1 transgenes, under control of the mex-5 promoter and tbb-2 3′ UTR, were integrated into chromosome II using MosSCI (Frøkjaer- 
Jensen et al., 2008). (E) Graph plotting percentage embryonic lethality for the indicated conditions. Error bars are SD; n = number of progeny analyzed.  
(F) Maximum-intensity projections of five confocal planes (1.5 µm apart) of embryos expressing GFP::SPD-5 with TPXL-1WT or TPXL-1FD or without a transgene 
(control). Endogenous TPXL-1 was depleted by RNAi. The distance between the two centrosomes was measured and is quantified in Fig. 5 C. Time after 
NEBD is indicated. Bar, 5 µm.
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Figure S2. Endogenous TPXL-1 and Aurora AAIR-1 localize to astral microtubules in anaphase. Related to Fig. 4. (A) Confocal images of fixed metaphase 
and anaphase embryos stained for endogenous TPXL-1, α-tubulin, and DNA (prometaphase and metaphase, n = 8; anaphase, n = 9 embryos). To visu-
alize astral microtubules without saturating the aster centers, a gamma of 2 was introduced in Photoshop for all images, which were scaled identically.  
(B) Confocal images of fixed metaphase (n = 5) and anaphase (n = 5) embryos stained for Aurora AAIR-1, α-tubulin, and DNA. To visualize astral microtu-
bules without saturating the aster centers, a gamma of 1.5 was applied to all images in Photoshop, which were scaled identically. (C) Representative pro-
jections of the images acquired every 400 ms over a 4-s interval in metaphase (n = 9), early anaphase (160–220 s after NEBD; n = 9), and late anaphase 
(255–315 s after NEBD; n = 10) control embryos expressing EBP-2::GFP. To visualize EBP-2::GFP without saturating the aster centers, a gamma of 1.2 
was introduced in Photoshop. Kymographs generated for the indicated conditions (right) were used to count the number of EBP-2::GFP foci that crossed an 
arc 9 µm away from the anterior centrosome (yellow). (D and E) Graphs plot the number of EBP-2::GFP foci crossing an arc 9 µm from the centrosome (D) 
and the microtubule growth rates (E) at the indicated times in control embryos. Error bars are SD; p-values are two-tailed Student’s t test (***, P < 0.001);  
n = number of embryos in D; N = number of microtubules tracked in three or more embryos per condition in E. (F) Representative time-lapse images of the 
first division of a myosin-depleted rga-3/4(RNAi) embryo expressing GFP::anillin (cyan, n = 5 embryos). Time points are seconds after NEBD. (G) Kymo-
graph of the anterior pole of the embryo in F beginning 180 s after NEBD. (H) Normalized cortical GFP::anillin fluorescence was quantified as depicted 
in Fig. 1 F and is plotted for the anterior (red), posterior (blue) and equatorial (green) cortex in myosin-depleted rga-3/4(RNAi) embryos. Error bars are 
SEM and n = number of linescans. Bars, 5 µm.
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Video  1. C.  elegans one-cell embryos expressing GFP::anillin (cyan) and mCherry::histone (red) without (control, left) and 
with (right) myosin depletion. Related to Fig. 1. Images were acquired every 20 s on an UltraVIEW VoX spinning disk confocal 
microscope (PerkinElmer) attached to an Axio Observer D1 stand (Zeiss), equipped with a 63× 1.4-NA Plan-Apochromat oil 
immersion objective and a EMC CD C9100-50 camera (1,000 × 1,000 pixels). Video starts 60 s after NEBD. Playback rate is 
60× real time (3 frames/s).

Video 2. Two representative myosin-depleted rga-3/4Δ embryos expressing GFP::anillin (cyan) and mCherry::histone (red). 
Related to Fig. 1. Images were acquired as described in Video 1 every 20 s. Video starts 60 s after NEBD. Playback rate is 60× 
real time (3 frames/second).

Video 3. Myosin-depleted rga-3/4Δ C. elegans embryos without (left) and with hcp-4(RNAi) (right) expressing GFP::anillin and 
a GFP-tagged centrosome marker (cyan) along with mCherry::histone (red). Related to Fig. 2. Images were acquired as described 
in Video 1 every 20 s. Playback rate is 60× real time (3 frames/s). Video starts 180 s after NEBD.

Video  4. Myosin-depleted rga-3/4Δ C.  elegans embryos expressing GFP::anillin and a GFP-tagged centrosome marker 
(cyan) along with mCherry::histone (red). Related to Fig. 3. TPXL-1 (left) or TPXL-1 and HCP-4 (right) were additionally depleted 
by RNAi. Images were acquired as described in Video 1 every 20  s.  Playback rate is 60× real time (3 frames/s). Video 
starts 180 s after NEBD.

Video 5. Myosin-depleted rga-3/4Δ C. elegans embryos expressing LifeAct::mKate2. Related to Fig. 3. HCP-4 (left) or HCP-4 
and TPXL-1 (right) were additionally depleted by RNAi. Images were acquired every 20 s on a Nikon eclipse Ti spinning disk con-
focal controlled by NIS Elements 4.51 software equipped with a 100× 1.45-NA Plan-Apochromat oil immersion objective and 
Andor DU-888 X11056 camera. Elapsed time and anaphase onset are indicated. Playback rate is 60× real time (3 frames/s). 
Video starts 80 s after NEBD.

Video 6. Representative examples of C. elegans embryos expressing TPXL-1WT::NG (left) or TPXL-1FD::NG (right) from RNAi- 
resistant transgenes after depletion of endogenous TPXL-1 by RNAi. Related to Fig. 4. Images were acquired as described in 
Video 5. To visualize TPXL-1 localization on astral microtubules without saturating the astral centers, a gamma of 0.5 was intro-
duced in Fiji. Elapsed time and anaphase onset are indicated.

Video  7. C.  elegansone-cell control (left), myosin-depleted rga-3/4(RNAi) (middle), or myosin-depleted hcp-4 tpxl-1(RNAi) 
(right) embryos expressing EBP-2::GFP. Related to Fig. 4. Images were acquired as described in Video 5 every 400 ms. Playback 
rate is 2.4× real time (6 frames/s). To visualize EBP-2::GFP without saturating the aster centers, a gamma of 0.7 was introduced 
in Fiji. Movie starts 255 s after NEBD.

Video 8. Representative examples of C. elegans embryos expressing GFP::Aurora AAIR-1 without (left) and with tpxl-1(RNAi) (right). 
Related to Fig. 4. Images were acquired as described in Video 5. To visualize GFP::Aurora AAIR-1 localization on astral microtu-
bules without saturating the aster centers, a gamma of 0.6 was introduced in Fiji. Elapsed time and anaphase onset are indicated.

Video 9. Representative myosin-depleted rga-3/4Δ C. elegans embryos expressing TPXL-1WT (left) or TPXL-1FD (right) together 
with mKate2::anillin. Related to Fig. 5. Embryos were additionally depleted of endogenous TPXL-1 and HCP-4 by RNAi. Images 
were acquired as described in Video 1 every 20 s. Playback rate is 60× real time (3 frames/s). Video starts 180 s after NEBD.
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Table S1. C. elegans strains

Strain name Genotype Reference

N2 Wild type (ancestral)
OD184 ltIs108 [pOD564/pFM005; pie-1::LAP::AIR-1WT reencoded; unc-119(+)] This study
OD296 ltIs37 [pAA64; pie-1/mCherry::his-58; unc-119 (+)] IV; ltIs28 [pASM14; pie-1/GFP-TEV- Stag::ANI-1; unc-119 (+)]; Zanin et al., 2013
OD314 unc-119(ed3) III; ltIs37 [pAA64; pie-1/mCherry::his-58; unc-119 (+)] IV; ltIs28 [pASM14; pie-1/GFP-TEV- 

Stag::ANI-1; unc-119 (+)]; rga-4(ok1935) unc-62(e644) rga-3(ok1988) V/nT1[qIs51] (IV;V)
Zanin et al., 2013

OD847 unc-119(ed9) III; ltSi202 [pVV103/ pOD1021; Pspd-2::GFP::SPD-5 RNAi- resistant; cb-unc-119(+)]II Woodruff et al., 2015
OD1359 unc-119(ed3)III; ltSi716 [pOD1935/pDC208; Pmex-5::EBP-2::GFP::tbb-2; cb-unc-119(+)]I Wang et al., 2015
OD1959 unc-119(ed9) III; ltSi654 [pVV103; Pspd-2::GFP::SPD-5 reencoded; cb-unc-119(+)]I Wueseke et al., 2016
OD2879 gsp-2(lt27 [GFP::gsp-2)] unc-119(ed3) III?; ltIs37 [pAA64; pie-1/mCherry::his-58; unc-119 (+)] IV Hattersley et al., 2016
OD3421 unc-119(ed3)III?; ltIs37 [pAA64; pie-1/mCherry::his-58; unc-119 (+)] IV;gsp-1(lt94 [gfp::gsp-1])V Kim et al., 2017
EG6699 ttTi5605 II; unc-119(ed3) III; oxEx1578 Frøkjaer-Jensen et al., 2008
EG8081 unc-119(ed3) III; oxTi177 IV. Frøkjaer-Jensen et al., 2008
ZAN43 ltSi202 [pVV103/pOD1021; Pspd-2::GFP::SPD-5 RNAi-resistant; cb-unc-119(+)]II; ltIs37 [pAA64; pie-1/

mCherry::his-58; unc-119 (+)] IV; ltIs28 [pASM14; pie-1/GFP-TEV- Stag::ANI-1; unc-119 (+)];rga-4(ok1935) 
unc-62(e644) rga-3(ok1988) V/nT1[qIs51] (IV;V)

This study

ZAN57 ltSi654 [pVV103; Pspd-2::GFP::SPD-5 reencoded; cb-unc-119(+)]I; estSi24 [pEZ145; pmex-5::TPXL-1WT::tbb-2; 
cb-unc-119(+)]II

This study

ZAN59 estSi31 [pEZ150; pmex-5::TPXL-1FD::tbb-2; cb-unc-119(+)]II; unc-119(ed3) III This study
ZAN103 unc-119(ed3) III; estSi57 [pEZ152; pani-1::mKate2::ANI-1; cb-unc-119(+)]IV This study
ZAN163 ltSi654 [pVV103; Pspd-2::GFP::SPD-5 reencoded; cb-unc-119(+)]I; estSi31 [pEZ150; pmex-5::TPXL-1FD::tbb-2; 

cb-unc-119(+)]II
This study

ZAN181 estSi121 [pEZ185; pmex-5::TPXL-1WT::mNeonGreen:: tbb-2; cb-unc-119(+)]II; unc-119(ed3) III This study
ZAN248 ltSi654 [pVV103; Pspd-2::GFP::SPD-5 reencoded; cb-unc-119(+)]I; estSi31 [pEZ150; pmex-5::TPXL-1FD::tbb-2; 

cb-unc-119(+)]II; rga-4(ok1935) unc-62(e644) rga-3(ok1988) V/nT1[qIs51](IV;V) estSi57 [pEZ152; 
pani-1::mKate2::ANI-1; cb-unc-119(+)]IV

This study

ZAN249 ltSi654 [pVV103; Pspd-2::GFP::SPD-5 reencoded; cb-unc-119(+)]I; estSi24 [pEZ145; pmex-5::TPXL-1WT::tbb-2; 
cb-unc-119(+)]II; rga-4(ok1935) unc-62(e644) rga-3(ok1988) V/nT1[qIs51](IV;V) estSi57 [pEZ152; 
pani-1::mKate2::ANI-1; cb-unc-119(+)]IV

This study

ZAN267 estSi178 [pEZ231; pmex-5::TPXL-1FD::mNeonGreen:: tbb-2; cb-unc-119(+)]II; unc-119(ed3) III This study
ZAN286 estSi71 [pAC257;pmex-5::LifeAct::mKate2 :tbb2; cb-unc-119(+)]IV; rga-4(ok1935) unc-62(e644) rga-3(ok1988) V/

nT1[qIs51](IV;V)
This study

Table S2. Oligonucleotides used for dsRNA production

Gene Oligonucleotide 1 (5′ to 3′) Oligonucleotide 2 (5′ to 3′) Template dsRNA 
concentration

mg/ml
tpxl-1 TAA TAC GAC TCA CTA TAGGACG TCG GTG AGC AAA TTG AC TAA TAC GAC TCA CTA TAGGTGT ACA CAT ATG ATG GCA CAGG cDNA 0.58
nmy-2 TAA TAC GAC TCA CTA TAGGAAT TGA ATC TCG GTT GAA GGAA TAA TAC GAC TCA CTA TAGGACT GCA TTT CAC GCA TCT TATG cDNA 0.36
hcp-4 TAA TAC GAC TCA CTA TAGGGGA AAT GTA CGG AGC GAA AAC TAA TAC GAC TCA CTA TAGGGTT GGT GGG TCC AAT ATT AC cDNA 0.64
rga-3,
rga-4

TAA TAC GAC TCA CTA TAGGGCA ACG CGT CGA AAC ATCG TAA TAC GAC TCA CTA TAGGGTT GGA GTG GCA GTT GGA GTG Genomic DNA 2.9

T7 sequences are underlined.
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