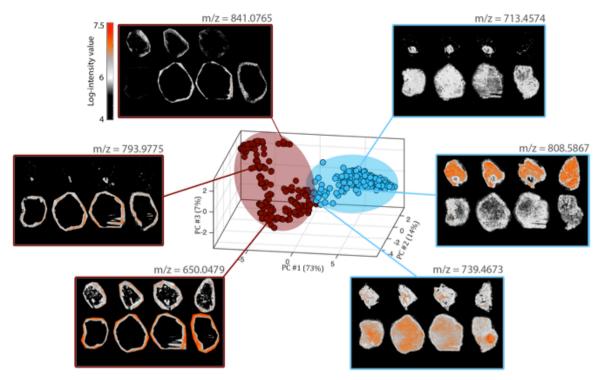

BASIS: High-performance bioinformatics platform for processing of large-scale mass spectrometry imaging data in chemically augmented histology


<u>Kirill Veselkov</u>^{1,*}; Jonathan Sleeman^{2,3}; Emmanuelle Claude⁴; Johannes PC Vissers⁴; Dieter Galea¹; Anna Mroz¹, Ivan Laponogov¹; Mark Towers⁴; Robert Tonge⁴; Reza Mirnezami¹; Zoltan Takats¹; Jeremy K Nicholson¹, James I Langridge⁴

¹Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, UK, ²University of Heidelberg, Medical Faculty Mannheim, Center for Biomedicine and Medical Technology, Mannheim, Germany; ³KIT Karlsruhe, Institute of Toxicology and Genetics, Karlsruhe, Germany; ⁴Waters Corporation, Wilmslow, UK. ^{*}To whom correspondence should be addressed. Email: kirill.veselkov04@imperial.ac.uk

SUPPLEMENTARY INFORMATION

Figure S1. Intra-sample normalization strategy. Spectra with different median log fold changes are zerocentred in order to account for the difference in total ion intensities between spectra within the same sample (intra-sample normalization).

Figure S2. Cluster-driven matrix/solvent removal strategy for large-scale MSI data. The negative intensity correlation between tissue (matrix) and solvent is utilized to perform clustering and subsequent separation of tissue- and background-related signals. The differentiability of such clusters is also visualized by a PCA plot.