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 Supplementary Table 1. Species list of (A) Ontario fish species included in this study, based on 4 

species captured by BSM surveys in at least 40 of the 721 lakes, and (B) species grouped into the 5 

category of ‘small prey’: these species are assumed to be prey for most other fish species, and mostly 6 

inhabit the littoral zone of lakes. Further, their small size means they tend to be under-sampled by the 7 

BSM net-based fish sampling. The remaining species (C) occurred in fewer than 40 lakes, and were 8 

excluded from the analysis due to their infrequency. The 721 lakes occur over an 11-degree latitudinal 9 

gradient (43.06 – 54.52 degrees), range in area from 21-90,484 ha, have maximum depths of 1-214 m, 10 

range in phosphorus levels from 1.7-52.5 units, and have a range of total degree days from 1059-2246. 11 

Average length for each species are from Ontario lakes, and taken from Holm et al (2010)1. Thermal 12 

guilds (water temperature preferences) are taken from Hasnain et al. 20132.  13 

 14 

Common 

Name 

Species name Family Number 

of lakes 

(n = 

721) 

Average 

length 

(cm) 

Thermal 

guild 

Functional 

Group  

       

(A)     Large 

fishes species 

      

Northern Pike Esox lucius Esocidae 528 61.0 Cool Predator 

Muskellunge Esox Esocidae 43 96.5 Warm Predator 
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masquinongy 

Walleye Sander vitreus Percidae 499 42.0 Cool Predator 

Lake Trout Salvelinus 

namaycush 

Salmonidae 298 44.5 Cold Predator 

Burbot  Lota lota Gadidae 250 38.0 Cold/Cool Predator 

Cisco Coregonus artedi Salmonidae 385 25.0 Cold Pelagic 

Lake 

Whitefish 

Coregonus 

clupeaformis 

Salmonidae 374 38.0 Cold Pelagic 

Brook Trout Salvelinus 

fontinalis 

Salmonidae 77 28.0 Cold Pelagic 

Longnose 

Sucker 

Catostomus 

catostomus 

Catostomidae 82 33.5 Cold Littoral 

White Sucker Catostomus 

commersonii 

Catostomidae 678 41 Cool Littoral 

Shorthead 

Redhorse 

Moxostoma 

macrolepidotum 

Catostomidae 90 41.0 Warm Littoral 

Rock Bass Ambloplites 

rupestris 

Centrarchidae 295 20.0 Cool Littoral 

Pumpkinseed 

Sunfish 

Lepomis gibbosus Centrarchidae 154 18.0 Warm Littoral 

Bluegill Lepomis 

macrochirus 

Centrarchidae 48 19.0 Warm Littoral 

Smallmouth 

Bass 

Micropterus 

dolomieu 

Centrarchidae 333 30.0 Warm Predator 

Largemouth Micropterus Centrarchidae 85 30.0 Warm Predator 
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Bass salmoides 

Black Crappie Pomoxis 

nigromaculatus 

Centrarchidae 55 21.5 Cool Littoral 

Brown 

Bullhead 

Ameiurus 

nebulosus 

Ictaluridae 133 28.0 Warm Littoral 

Yellow Perch Perca flavescens Percidae 526 18.0 Cool Littoral 

Sauger Sander 

canadensis 

Percidae 45 33.0 Cool Predator 

(B)    Small 

prey fishes 

      

Mottled 

Sculpin 

Cottus bairdii Cottidae 51 7.5 Cold Small prey 

Slimy Sculpin Cottus cognatus Cottidae 51 7.5 Cold Small prey 

Spoonhead 

Sculpin 

Cottus ricei Cottidae 22 5.5 Cold Small prey 

Deepwater 

sculpin 

Myoxocephalus 

thompsonii 

Cottidae 11 8.0 Cold Small prey 

Lake Chub Couesius 

plumbeus 

Cyprinidae 104 10.0 Cold Small prey 

Common 

Shiner 

Luxilus cornutus Cyprinidae 155 9.0 Cool Small prey 

Northern Pearl 

Dace 

Margariscus 

margarita 

Cyprinidae 50 9.0 Cold/cool Small prey 

Golden Shiner Notemigonus 

crysoleucas 

Cyprinidae 8 10.0 Cool Small prey 
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Emerald 

Shiner 

Notropis 

atherinoides 

Cyprinidae 159 7.5 Cool Small prey 

Blackchin 

Shiner 

Notropis 

heterodon 

Cyprinidae 49 6.0 Cool/warm Small prey 

Blacknose 

Shiner 

Notropis 

heterolepis 

Cyprinidae 127 6.5 Cool/warm Small prey 

Spottail 

Shiner 

Notropis 

hudsonius 

Cyprinidae 344 7.0 Cold/cool Small prey 

Mimic Shiner Notropis 

volucellus 

Cyprinidae 46 6.0 Warm Small prey 

Northern 

Redbelly Dace 

Phoxinus eos* Cyprinidae 42 5.5 Cool/warm Small prey 

Bluntnose 

Minnow 

Pimephales 

notatus 

Cyprinidae 113 6.5 Warm Small prey 

Fathead 

Minnow 

Pimephales 

promelas 

Cyprinidae 42 5.0 Warm Small prey 

Blacknose 

Dace 

Rhinichthys 

atratulus 

Cyprinidae 13 8.0 Cool Small prey 

Longnose 

Dace 

Rhinichthys 

cataractae 

Cyprinidae 12 7.5 Cool Small prey 

Creek Chub Semotilus 

atromaculatus 

Cyprinidae 39 10.0 Cool Small prey 

Banded 

Killifish 

Fundulus 

diaphanus 

Fundulidae 9 7.0 Cool Small prey 

Brook Culaea Gasterosteidae 40 5.0 Cool Small prey 



5 
 

Stickleback inconstans 

Ninespine 

Stickleback 

Pungitius 

pungitius 

Gasterosteidae 64 6.5 Warm/cold* Small prey 

Iowa Darter Etheostoma exile Percidae 13 5.0 Cool Small prey 

Johnny Darter Etheostoma 

nigrum 

Percidae 39 5.0 Cool Small prey 

Logperch Percina caprodes Percidae 180 9.0 Cool/warm Small prey 

Trout-perch Percopsis 

omiscomaycus 

Percopsidae 302 9.0 Cold Small prey 

Central 

Mudminnow 

Umbra limi Umbridae 9 7.5 Cool/warm Small prey 

(C)   Less 

common 

species 

      

Longnose gar Lepisosteus 

osseus 

Lepisosteidae 10 76.0 Warm Predator 

Alewife Alosa 

pseudoharengus 

Clupeidae 5 15.0 Cold Pelagic 

Goldeye Hiodon alosoides Hiodontidae 6 28.0 Warm Pelagic 

Mooneye Hiodon tergisus Hiodontidae 13 28.0 Cool/warm Pelagic 

Rainbow trout Oncorhynchus 

mykiss 

Salmonidae 4 53.0 Cold Pelagic 

Round 

whitefish 

Prosopium 

cylindraceum 

Salmonidae 12 25.0 Cold Pelagic 

Bowfin Amia calva Amiidae 9 54.0 Warm Littoral 
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Silver 

Redhorse 

Moxostoma 

anisurum 

Catostomidae 21 40.0 Cool Littoral 

Greater 

Redhorse 

Moxostoma 

valenciennesi 

Catostomidae 10 41.0 Cool/warm Littoral 

Common Carp Cyprinus carpio Cyprinidae 14 37.0 Warm Littoral 

Fallfish Semotilus 

corporalis 

Cyprinidae 13 20.0 Cool Littoral 

Yellow 

Bullhead 

Ameiurus natalis Ictaluridae 20 25.5 Warm Littoral 

 15 
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Supplementary Table 2. Species association values, measured as null-adjusted Pearson correlation 29 

coefficients for abundances of 16 species identified as potential ‘interaction’ species by the SEM 30 

analysis (Figs. 1, Suppl. Fig. 3). The association analysis tests the direction and statistical significance 31 

of these ‘interactions’, correcting for bias in zero-inflated data arising because the correlation 32 

coefficient is not double-zero symmetrical3. Significantly negative (32/120) pairings are grey or black 33 

highlighted cells. These results cannot test whether the significant associations derive from species 34 

interactions, or if negative associations derive from divergent habitat affinity (e.g., species x is absent 35 

when species y is present, because they prefer different lake conditions). However, by organizing 36 

these results by temperature affinity (BLUE = cold water species, RED = cool, or GREEN = warm), 37 

most negative interactions occur among temperature groups (grey cells) – for example, warm and cold 38 

water species tending not to co-occur. Only five negative species pairings were within- group (black 39 

cells). There were 37/120 positive pairings and 51/120 non-significant pairings – we assumed these 40 

associations to not reflect antagonistic species interactions, and thus could not generate restricted co-41 

occurrence between the species pairs.   42 

 43 
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Supplementary Table 3. Boosted regression tree (BRT) model results, for species with one or more 45 

significantly negative species associations corrected for null expectation (Supplementary Table 2). The 46 

results from the association analysis cannot distinguish between species interactions versus habitat 47 

affinity – the BRT analysis tests the relative influence (%) of 22 possible drivers of variation affecting 48 

the presence of each species, including species composition (the presence of each of the other species) 49 

and abiotic factors including degree days, pH, phosphorus, minimum depth, maximum depth, lake 50 

area, Secchi depth, and small prey species richness. Correlation refers to how much a predictor model 51 

estimates the variation within the raw data (%). The seven grey-shaded cells are the only species 52 

pairings where the explanatory species (top row) was one of the ten strongest factors negatively 53 

associated (see Suppl. Fig. 5) with the presence of the response species (vertical column on the left 54 

side of the table). The species are organized by temperature affinity: blue = cold, green = cool, red = 55 

warm.  56 

 57 
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Supplementary Table 4. Environmental range comparisons of the negatively associated species pairs 59 

identified in Supplementary Table 2. Species AB refers to lakes where both species co-occur. Ten 60 

pairs had range overlap in environmental factors yet rarely co-occur. Nine pairs had range 61 

compression in lakes of co-occurrence, where the range of environmental conditions in lakes where a 62 

species occurs in the absence of the other is wider than when the two species co-occur. BRT refers to 63 

pairs where the presence of one species significantly and directly predicts the absence of another (see 64 

Suppl. Table 3, Suppl. Fig. 5). Cold water species, cool water species, warm water species - most 65 

rarely co-occurring pairs or those with compressed co-occurrence involve species of different 66 

temperature groupings.  67 

species pair % lakes 

co-

occur 

RANGE OVERLAP* 

Species A vs 

Species B 

(ANOSIM) 

RANGE 

COMPRESSION† 

Species A vs AB 

(PERMDISP) 

RANGE 

COMPRESSION 

Species B vs AB 

(PERMDISP) 

BRT 

The presence of 

A predicts B 

and vice versa 

CO-OCCURRENCE 

RANKING 

Brooktrout/Pike 0.50% 0.138 (0.02%) ns ns Yes species rarely co-

occurring (Fig. 

2A) 

 

Brooktrout/Walleye 0.30% 0.150 (0.02%) ns ns Yes 

Brooktrout/SMBass 0.60% 0.193 (0.02%) ns ns Yes 

SMBass/LongnoseSucker 3.50% 0.203 (0.02%) ns ns  

Brooktrout/Burbot 1.40% 0.293 (0.02%) ns ns  

Brooktrout/Brownbullhead 1.08% 0.361 (0.02%) ns ns  

Brooktrout/LakeTrout 4.80% 0.381 (0.02%) ns ns Yes 

LMBass/Whitefish 3.10% 0.448 (0.02%) ns ns  

Brooktrout/LMBass 0.15% 0.565 (0.02%) NA^ NA^  

LakeTrout/LMBass 4.50% 0.641 (0.02%) ns ns  

LakeTrout/Pike 27.90% 0.318 (0.02%) ns compressed (p<0.001) Yes one or both 

species occur in a 

compressed 

range of 

environments 

Pike/Rockbass 36.40% 0.383 (0.02%) ns compressed p=0.049)  

Pike/SMBass 38.20% 0.389 (0.02%) ns compressed (p=0.008)  

LakeTrout/Pumpkinseed 12.20% 0.475 (0.02%) ns compressed (p<0.001)  

LakeTrout/Walleye 23.70% 0.287 (0.02%) compressed  (p=0.01) compressed (p<0.001) Yes 



12 
 

Rockbass/Whitefish 23.30% 0.305 (0.02%) compressed (p<0.001) compressed (p=0.006)  when co-

occurring, 

compared to 

when found alone 

(Fig. 2B) 

 

Burbot/Pumpkinseed 9.70% 0.348 (0.02%) compressed (p=0.01) compressed (p<0.001)  

Whitefish/Pumpkinseed 10.50% 0.363 (0.02%) compressed (p=0.021) compressed (p<0.001)  

LakeTrout/ShrtnoseRedhorse 3.70% 0.428 (0.02%) compressed (p=0.003) compressed (p=0.017)  

Pike/Whitesucker 71.50% 0.223 (0.10%) ns ns  no compression 

of environmental 

lake conditions 

when together 

compared to 

when alone (Fig. 

2C) 

 

Pumpkinseed/Walleye 7.90% 0.276 (0.02%) ns ns  

Rockbass/Walleye 36.50% 0.326 (0.02%) ns ns  

LMBass/Walleye 12.20% 0.376 (0.02%) ns ns  

SMBass/Walleye 39.60% 0.407 (0.02%) ns ns  

SMBass/Whitesucker 45.10% 0.448 (0.02%) ns ns  

Whitesucker/Rockbass 41.14% 0.428 (0.02%) ns ns  

Brownbullhead/Whitefish 6.30% 0.425 (0.02%) ns ns  

LMBass/Whitesucker 12.90% 0.448 (0.02%) ns ns  

LongnoseSucker/Pike 7.60% 0.030 (3.2%) expanded (p<0.001) ns  species is found 

in a wider range 

of environmental 

conditions when 

the other is 

present (Fig. 2D)  

Brooktrout/YellowPerch 2.20% 0.104 (0.3%) expanded (p=0.04) ns Yes 

LongnoseSucker/Walleye 6.90% 0.123 (0.5%) expanded (p=0.017) ns  

WhiteSucker/Walleye 69.20% 0.311 (0.02%) expanded (p=0.036) ns  

* Overlap refers to the degree of overlap in the multivariate environmental conditions of lakes where Species A and 68 

Species B occur without each other - R values closer to 0 indicate greater similarity in multivariate environmental 69 

conditions. Numbers in brackets are the percentage of 5000 randomizations for which an R value as high or higher 70 

occurred (i.e., a R value equal or greater to the calculated value less than 5% of the time is considered significant).  71 

 72 

†Compression refers to a significant change in the multivariate spread or range of environmental conditions, with 73 

‘compressed’ meaning that the range is NARROWER when the species is in the presence of the other species compared to 74 

when alone; ‘expanded’ means the range is WIDER for lakes with both species present compared to when the species is 75 

alone  76 
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 77 

^ The PERMDISP test is not applicable (NA) in this case, because only 1 lake contained both species. 78 

 79 

 80 

 81 

Supplementary Figure 1: Bivariate relationships (with linear fits where significant) between total fish 82 

diversity and major explanatory drivers of fish occurrences in lakes. These graphs reveal the potential 83 

influence of each explanatory factor on fish.  84 

 85 

 86 

 87 

 88 

 89 
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Supplementary Figure 2: Bivariate relationships between abiotic factors in 721 lakes. All relationships 90 

were significant with linear fits shown, except latitude despite the concentration of human populations 91 

in the southern regions of Ontario. Again, these graphs reveal how any given combination of bivariate 92 

factors can significantly interact in lakes, suggesting that integrative analyses testing all 93 

simultaneously should better capture how they affect each other, and by extension, the fish 94 

communities found within.  95 

 96 

 97 

 98 
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Supplementary Note 1 – Structural Equation Modeling 99 

Our model construction for the SEM analysis began with the entire presence/absence dataset,  for 100 

22 fish species in 721 lakes with ten associated environmental measures relating to climate (degree 101 

days), lake morphometry (area [ha], maximum depth [m], mean depth [m]), and lake water quality 102 

(total P concentration, ph, conductivity, dissolved solids, Secchi depth). To minimize strong co-103 

linearity in our model and maximize parsimony, we screened the correlation matrix among the 104 

environmental variables (e.g., see some correlations displayed in Suppl. Fig. 2). This allowed us to 105 

reduce the number of environmental variables in the SEM from 10 to 5, with these 5 factors 106 

corresponding to our three hypothesized abiotic-based models of influence: climate (degree days), lake 107 

morphometry (lake area, maximum lake depth), and water quality (P, pH). All SEM analyses were 108 

conducted with R 3.1.2 (R Core Team 2016), using the lavaan package version 0.5-204.  109 

For the ‘biotic’ components of the SEM, we broadly classified the 22 large-sized species 110 

(average length > 10 cm) into three functional groups based on habitat affinity and foraging strategy as 111 

described in Holm et al.1 – major predators, littoral species, and pelagic species (Suppl. Table 1). We 112 

also grouped the 28 small-sized species (mean length < 10 cm) into a single functional group “small 113 

prey species”, as described above in the Methods. We tested for influences on total numbers of species 114 

per functional group (‘functional diversity’) and also shifts in species composition (see Methods). For 115 

the latter (composition shifts), we identified which functional groups in the SEM were associated with 116 

significant species composition changes among lakes using PCA analyses on Hellinger transformed 117 

fish data (see Suppl. Fig. 3 and Methods for details). That is to say, which species were significantly 118 

associated with the presence of other species. Finally, to satisfy the SEM assumption of multi-119 

normality we log-transformed variables with skewed distributions. 120 
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Our SEM analysis was based on the recognized combined importance of abiotic and biotic 121 

factors in shaping fish diversity in freshwater lakes5. Starting from our initial model that incorporated 122 

all levels of interaction among degree days, measures of lake morphometry and water quality, and 123 

numbers of species per major functional group, we used modification indices4 to guide decisions about 124 

adding missing paths to the model. We used the “modindices” function from the lavaan package4, 125 

which provides a list of all missing linkages in the model and the expected effect of additions on 126 

model fit (Maximum likelihood estimator [MLEST]). We used the modification indices incrementally, 127 

adding one path at a time, until no modification indices were higher than 2. After this process, we 128 

scanned path regressions and incrementally pruned the less significant ones until there was no more 129 

gain in model fit (decreasing MLEST
6). Our final model converged after 171 iterations (n = 648, 130 

MLEST = 4.91, Degree of freedom = 13, P=0,977).  131 

Our SEM analysis focused on the hypothesis that an integrated model capturing abiotic and 132 

biotic interactions within and among functional groups would best capture the regulation of species 133 

richness5. Yet, there is also evidence in the fish literature of more singular models shaping the 134 

regulation of richness, specifically (I) top-down regulation by major predators, (II) bottom-up models 135 

where richness in lower levels of the food chain influences diversity levels above, and (III) abiotic-136 

based models where climate and resources primarily affect species richness at all trophic levels. To 137 

further disentangle the relative contribution of abiotic and biotic associations, we decomposed our 138 

‘Integrative’ model into its different components each representing a contrasting hypothesis on the 139 

regulation of fish diversity (i.e., no biotic associations between functional groups, top-down 140 

associations only, bottom-up associations only). 141 

 To make our models comparable we used the same variable structure for all candidate models 142 

but altered the direction of effects among functional groups. The models of ‘Top-down’ effects of 143 
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consumers on prey (Suppl. Fig. 4b) and the ‘Bottom-up’ effects of prey on consumers (Suppl Fig. 4c) 144 

were started from an initial model including all possible top-down or bottom-up associations among 145 

fish functional groups. The abiotic factors were then added using modification indices and the less 146 

significant regression paths were pruned (using a similar approach as described above). The model 147 

without biotic associations (thereafter ‘Abiotic only’ model) included no effects (arrows) between 148 

functional groups so that only direct effects of environmental factors were possible (Suppl Fig. 4a). 149 

We compared the four models using Akaike Information Criterion  (see Suppl. Table 5 and Suppl. Fig. 150 

4). By examining our main ‘Integrative’ model against its reduced components, we were interested in 151 

contrasting the magnitude of each factor in the SEM (effect size) versus its contribution to the overall 152 

fit of the model (e.g., some factors might have large effect size, but not contribute much to our overall 153 

understanding of the system).    154 

Results from our model comparison indicate that the model including only abiotic factors 155 

performed the weakest, suggesting that despite being important drivers in terms of effect size, abiotic 156 

factors are insufficient to explain the system (i.e., lowest model fit, Suppl. Table 5). That is to say, 157 

ignoring biotic associations among fish functional groups led to a significant decline in analytical 158 

power (Suppl. Table 5). Alternatively, top-down factors had smaller effect sizes compared to some 159 

abiotic factors yet strongly contributed to model fit. This contribution centered largely on two top-160 

down associations: from ‘predator PCA1’ to ‘small prey richness’ and from ‘predator richness’ to 161 

‘pelagic richness’. Removing either of those associations from the ‘Top-Down’ model lead to a jump 162 

in the Maximum Likelihood estimator of 40 and 30 points respectively, sending the model at the 163 

bottom of the ranking in the AICc comparisons. Overall, the ‘Integrative' model balanced the factors 164 

with the greatest effect sizes while maximizing model fit, including the described top down 165 
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associations, the strong effects of degree days and lake morphometry, and the bottom-up effect of 166 

littoral richness on predator richness (Fig. 1).  167 

The R code for the SEM analysis is provided in full, in Supplementary Note 4. 168 

 169 

Supplementary Table 5. Comparison of our best model with more simple alternative hypotheses.  170 

Model K AICc Δ AICc Difference support 

Top-down 48 40119.91 0.00  

Integrative 50 40120.85 0.94 None 

Bottom-up 52 40130.71 10.80 Strong 

Abiotic 57 40135.64 15.73 Strong 

Critical values for model difference support are: none ΔAICc < 2; substantial 4 < ΔAICc < 7; and 171 

strong: ΔAICc > 107.  172 

 173 

 174 

 175 

 176 

 177 

 178 

 179 

 180 

 181 

 182 

 183 
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Supplementary Figure 3. PCA analysis of Hellinger transformed species associated with significant 184 

shifts in species composition in the SEM model (Fig. 1), divided into three functional groups based on 185 

broad lake habitat associations.  The mechanisms underlying the association shifts cannot be 186 

determined by the SEM, and may possibly reflect species interactions, habitat affinity not relating to 187 

species interactions, or some combination of the two. All subsequent analyses tested the likelihood of 188 

interactions versus habitat in explaining these association shifts, targeting these 16 species with the 189 

greatest vector-length separation out of the initial 22 species used in the study.  190 

 191 

 192 

 193 

 194 

 195 

 196 

 197 

 198 

 199 

 200 
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Supplementary Figure 4. Visual representation of all the alternative hypotheses considered in this 201 

study to explain fish functional group richness and compositional shifts.  Each model was built 202 

iteratively with modifications indices4 starting from an initial model which structure was constrained 203 

by specific rules as a function of the hypothesis tested (see Supplementary Notes 1). The a) Abiotic 204 

only model represents the effects of abiotic factors of fish functional group richness and composition 205 

in the absence of any biotic associations (n = 648, MLEST = 3.03, Degree of freedom = 6, P=0.805), b) 206 

Top-down model represents the effects of abiotic factors interacting with top-down associations on 207 

richness and composition (n = 648, MLEST = 8.66, Degree of freedom = 15, P=0.895), c) Bottom-up 208 

model represents the effects of abiotic factors interacting with bottom-up associations on richness and 209 

composition (n = 648, MLEST = 10.04, Degree of freedom = 11, P=0.527), and d) Integrative model 210 

represents the combined effects of abiotic factors, bottom-up and top-down associations on richness 211 

and composition (n = 648, MLEST = 4.91, Degree of freedom = 13, P=0,977). 212 



21 
 

 213 

 214 

 215 

 216 

 217 

 218 

 219 
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 Supplementary Note 2 - Individual fish species boosted regression tree (BRT) models  223 

We developed BRT models8 to assess the relative importance of 22 biotic and abiotic predictor 224 

variables for explaining the variation in fish species presence in lakes for 14 of the fish species, i.e. 225 

brown bullhead, pumpkin seed, walleye, lake whitefish, pike, cisco, yellow perch, rock bass, white 226 

sucker, large-mouth bass, lake trout, small-mouth bass, burbot, and brook trout. In the model 227 

developed for each species, we included presence data for the other 13 species to look for possible 228 

species relationships, as well as a biotic predictor of the species richness of small prey and seven 229 

abiotic characteristics of the lakes, i.e. degree days, pH, phosphorous levels, minimum depth of water, 230 

maximum depth of water, area of the lake, and Secchi depth. 231 

All models were fitted in R statistical computing program V. 3.2.1 using the gbm package 232 

version 2.1.19. BRT models are simple classification or rule-based models that partition observations 233 

into groups based on similar values in the response variables using binary splits that are based on 234 

predictor variables10.  The boosting algorthim then iteratively develops a final model using a forward 235 

stage-wise approach that progressively adds trees to the model. BRT models are advantageous for 236 

analyzing our data because they can be used to assess different types of predictor variables in the same 237 

model, which fits our questions well11. We used a tree complexity rate of two (which allows for 238 

possible two way interactions) and a learning rate of 0.05 to allow for a suitable predictive 239 

performance10. Because response variables were based on presence and absence data from surveys 240 

conducted within each of the lakes we used a Bernoulli distribution. We show the relative influence of 241 

each of the 22 possible predictors of variation in the presence of the 14 fish species in Suppl. Table 3. 242 

We also show the number of trees included in the final model and estimates of the correlation between 243 

the observed and predicted response variables. Variation in the presence of the different fish species 244 

predicted by each BRT model is shown in Suppl. Figure 5, where values are predicted for each 245 
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variable by keeping all other variables at mean values. 246 

 247 

 248 
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 267 
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Supplementary Figure 5: The BRT tests if the occurrence of a species was associated with significant 268 

negative changes in the occurrence of the target species, versus all abiotic factors used in our analyses. 269 

Only two target species – brook trout (A) and lake trout (B) showed negative relationships versus the 270 

occurrence of other species, indicated by the red boxes. These data are the same as shown 271 

in Suppl. Fig. 3. Negative relationships are indicated by declining slopes, with the x-axis ranging from 272 

0 (absent) the 1 (present). For the remaining 14 species tested with the BRT (Suppl. Fig. 3), all major 273 

drivers of occurrence were abiotic.  274 

 275 

(A) 276 

 277 

 278 

 279 

(B) 280 
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 Supplementary Note 3 - Multivariate analyses of environmental conditions for species pair 292 

combinations 293 

  For all species pairs, we calculated the Euclidian distance between three lake combinations 294 

(Species A only, Species B only, both) based on seven of the measured abiotic/biogeographic factors 295 

that were minimally inter-correlated. These factors are lake area, maximum depth of the lake, summer 296 

Secchi depth, conductivity, pH, total phosphorus, and degree days. We eliminated lakes for which one 297 

or more of these factors were not measured, leaving 649 of 721 lakes. We log transformed and 298 

normalized all variables before the analysis. 299 

To determine the overall degree of overlap in environmental space between lakes with species 300 

A only versus lakes with species B only, we used an ANOSIM analysis12. This analysis tests the null 301 

hypothesis that there are no differences in terms of multivariate environmental conditions, and is 302 

equivalent to a non-parametric MANOVA, with permutation to test for significance12.   The test 303 

computes the R statistic, which ranges from 0 (complete overlap in environmental space) to 1 304 

(complete separation in environmental space).  As recommended by Clarke et al. (2014)12, we 305 

considered the pairwise test between lakes with species A only versus lakes with species B only after 306 

confirming that the global ANOSIM test (considering all lake types: species A only, species B only, 307 

both A and B, and neither) was significant. This was true in all cases. In all cases we used 5,000 308 

random permutations to test for significant differences. 309 

If a difference in multivariate environmental conditions was found via the ANOSIM analysis 310 

above, it could be due to a shift in location (multivariate average of environmental conditions) and/or a 311 

difference in dispersion (multivariate variation or range of environmental conditions). To test for the 312 

latter possibility, we determined for each species pair whether lakes with both species co-occurring 313 

had a reduced range of environmental conditions compared to lakes with species A only or species B 314 
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only. This could happen, for example, if a subordinate competitor or prey species can only co-occur 315 

with a dominant competitor or predator in deep and large lakes, with those lake conditions allowing 316 

the subordinate more possibilities to persist. Relatedly, we would predict that the subordinate could 317 

occur in smaller and shallower lakes, if the dominant species is absent from those lakes. To do this, we 318 

used a test of difference in multivariate dispersions (PERMDISP13). This is a multivariate extension of 319 

Levene’s test, measuring the average distance from each lake to the centroid of the group of lakes in 320 

the same category, and comparing this average distance between different categories14. If coexistence 321 

of species A and B is limited to a smaller range of environmental conditions than lakes inhabited by 322 

species A without species B, then we would expect to find a significant decline in multivariate 323 

dispersion of lakes with both species compared to lakes with species A only. This test also uses 324 

permutation to determine significance of the test. We again set the number of permutations to 5,000. 325 

We note that for species pairs where the number of lakes containing both species was very small, our 326 

power to detect differences in multivariate dispersion was likely limited. For both the ANOSIM and 327 

PERMDISP analyses we used the program PRIMER14. These tests are also available in the ‘vegan’ 328 

package in R, but R does not allow pairwise tests in the ANOSIM function. 329 

 To visualize the similarity among lakes in terms of their environmental conditions, we used 330 

PCA to ordinate all lakes in environmental space. We used the ‘vegan’ package in R to create 331 

ordination plots, with vectors to visualize the correlation of each environmental factor with the first 332 

two PCA axes. 333 

 334 

Supplementary Note 4 – R code for SEM analysis 335 

 336 

#..........................................# 337 
#..........BSM project (SEM)...............# 338 
#..........................................# 339 
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#.......................................................................................................................................... 340 
# 341 
#... Collaborators: Andrew MacDougall et al# 342 
# 343 
#... Author of the script: Eric Harvey (http://ericharvey.weebly.com/) 344 
# 345 
#... Creation date: January 05 2016 346 
# 347 
#... Latest edits: November 07 2016 348 
# 349 
#.......................................................................................................................................... 350 
# 351 
#... Clear variables 352 
rm(list=ls()) 353 
#... Directories paths 354 
datapath = "~/Documents/Research/1.Projects/3.BSM_project/3.Analysis/" 355 
#...Load needed packages 356 
library(vegan) 357 
library(ade4) 358 
library(lavaan) 359 
library(corrplot) 360 
#... Load the data 361 
setwd(datapath) 362 
presence.dat = read.delim("BSM_presence.txt") 363 
presence.dat = na.omit(presence.dat) 364 
#... Identify species of interest for each functional group 365 
predator.of.interest = 366 
c("walleye","lake.trout","pike","smallmouth.bass","largemouth.bass","burbot") 367 
bentho.pelagic.species = c("cisco","brook.trout","round.whitefish","lake.whitefish") 368 
bentho.litoral.species = 369 
c("shorthead.redhorse","silver.redhorse","goldeye","longnose.sucker","white.sucker","br 370 
own.bullhead","channel.catfish","yellow.bullhead","black.crappie","bluegill","pumpkinsee 371 
d","rock.bass","yellow.perch","mooneye","fallfish") 372 
small.prey.species = c("blackchin.shiner","blacknose.shiner","bluntnose.minnow", 373 
"brook.stickleback","central.mudminnow","common.shiner", 374 
"creek.chub","deepwater.sculpin","eastern.blacknose.dace", 375 
"emerald.shiner","fathead.minnow","finescale.dace", 376 
"golden.shiner","Iowa.darter","johnny.darter","lake.chub", 377 
"logperch","longnose.dace","mimic.shiner","Mottled.Sculpin","ninespine.stickleback", 378 
"northern.redbelly.dace","Pearl.dace","sculpin.spp","Slimy.Sculpin", 379 
"spoonhead.sculpin","spottail.shiner","trout.perch") 380 
#... Generate presence/absence matrix with species of interest 381 
pred.comp.mat = presence.dat[,predator.of.interest] 382 
pelagic.comp.mat = presence.dat[,bentho.pelagic.species] 383 
litoral.comp.mat = presence.dat[,bentho.litoral.species] 384 
small.prey.comp.mat = presence.dat[,small.prey.species] 385 
###################################################################### 386 
################################### 387 
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#...Extract variables for SEM 388 
#.....Ordinations analyses for compositional shifts 389 
#.......Change in species composition with PCA 390 
pred.PCA = rda(decostand(pred.comp.mat,"hell")) 391 
pelagic.PCA = rda(decostand(pelagic.comp.mat,"hell")) 392 
litoral.PCA = rda(decostand(litoral.comp.mat,"hell")) 393 
#..........PCA results 394 
pred.PCA 395 
cumsum(pred.PCA$CA$eig/sum(pred.PCA$CA$eig)*100) 396 
pelagic.PCA 397 
cumsum(pelagic.PCA$CA$eig/sum(pelagic.PCA$CA$eig)*100) 398 
litoral.PCA 399 
cumsum(litoral.PCA$CA$eig/sum(litoral.PCA$CA$eig)*100) 400 
#..........PCA diagnosis plots 401 
source ('http://www.davidzeleny.net/anadat-r/doku.php/en:numecolr:cleanplot.pca? 402 
do=export_code&codeblock=0') 403 
cleanplot.pca(pred.PCA) 404 
cleanplot.pca(pelagic.PCA) 405 
cleanplot.pca(litoral.PCA) 406 
dev.off() 407 
#define "evplot" function first: 408 
source ("http://www.davidzeleny.net/anadat-r/doku.php/en:numecolr:evplot? 409 
do=export_code&codeblock=0") 410 
# select the data frame with eigenvalues of particular axes: 411 
ev.pred <- pred.PCA$CA$eig 412 
ev.pelagic <- pelagic.PCA$CA$eig 413 
ev.litoral <- litoral.PCA$CA$eig 414 
# calculate axis-importance and draw the barplots: 415 
evplot (ev.pred) 416 
evplot (ev.pelagic) 417 
evplot (ev.litoral) 418 
dev.off() 419 
#.....Create variables for SEM 420 
#.......Axes representing changes in species composition 421 
pred.PCA1 = scores(pred.PCA)$sites[,1] 422 
pred.PCA2 = scores(pred.PCA)$sites[,2] 423 
pelagic.PCA1 = scores(pelagic.PCA)$sites[,1] 424 
pelagic.PCA2 = scores(pelagic.PCA)$sites[,2] 425 
litoral.PCA1 = scores(litoral.PCA,choices=c(1:4))$sites[,1] 426 
litoral.PCA2 = scores(litoral.PCA,choices=c(1:4))$sites[,2] 427 
#.......Species richness per functional group 428 
pred.richness = specnumber(pred.comp.mat) 429 
small.prey.richness = specnumber(small.prey.comp.mat) 430 
pelagic.richness = specnumber(pelagic.comp.mat) 431 
litoral.richness = specnumber(litoral.comp.mat) 432 
#.......Environmental variables 433 
#..........Geo 434 
Latitude = presence.dat$Latitude_DD 435 
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Longitude = presence.dat$Longitude_DD 436 
DD = presence.dat$DegreeDays 437 
#..........Morphology 438 
Area = presence.dat$Area_ha 439 
Perimeter = presence.dat$Perimeter_km 440 
Depth = presence.dat$Depmn_m 441 
Depth.max = presence.dat$Depmax_m 442 
#..........Productivity 443 
Secchi = presence.dat$Secchi_Summer_m 444 
Conductivity = presence.dat$Conductivity..uS.cm.s. 445 
TDSolids = presence.dat$TDSolids_mgL 446 
TotPhosphorus = presence.dat$TotPhosphorus 447 
PH = presence.dat$pH 448 
###################################################################### 449 
################################### 450 
#...Correlations among variables 451 
#Among biotic factors 452 
biotic.cor = 453 
cor(cbind(litoral.PCA1,litoral.PCA2,pelagic.PCA1,pelagic.PCA2,pred.PCA1,pred.PCA2, 454 
pred.richness,litoral.richness,pelagic.richness,small.prey.richness)) 455 
corrplot(biotic.cor,method="number",type="full") 456 
#Among environmental variables 457 
env.cor = 458 
cor(na.omit(cbind(Latitude,Longitude,DD,Area,Perimeter,Depth,Secchi,Conductivity,TD 459 
Solids,TotPhosphorus,PH))) 460 
corrplot(env.cor,method="number",type="full") 461 
###################################################################### 462 
################################### 463 
#...Data frame for SEM ananalysis 464 
#........variables are log transformed if necessary 465 
#........variables need to be all at the same variance scale - to achieve this some are 466 
divided/multiplied by a factor of 10 or 100 467 
data.mod = data.frame(DD/100,Latitude, 468 
Area/1000,Perimeter/100,Depth, 469 
Secchi,TotPhosphorus,Conductivity/10,PH,TDSolids/10, 470 
as.numeric(pred.richness),as.numeric(small.prey.richness),pelagic.richness,litoral.richne 471 
ss, 472 
pred.PCA1*100,pred.PCA2*100,pelagic.PCA1*100,pelagic.PCA2*100,litoral.PCA1*100, 473 
litoral.PCA2*100) 474 
colnames(data.mod) = c("DD","Latitude", 475 
"Area","Perimeter","Depth", 476 
"Secchi","TotPhosphorus","Conductivity","PH","TDSolids", 477 
"pred.richness","small.prey.richness","pelagic.richness","litoral.richness", 478 
"pred.PCA1","pred.PCA2","pelagic.PCA1","pelagic.PCA2","litoral.PCA1","litoral.PCA2") 479 
#........Correlation matrix of the data 480 
round(cov2cor(cov(data.mod)),3) 481 
###################################################################### 482 
################################### 483 
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#...Structural equation models 484 
#Each model is built by starting from a simplified model from which paths are 485 
sequentially added based on the modification indices until no modification indices are 486 
>2. 487 
#The initial simplified model for each alternative model is built as follow: 488 
#Model 1 - Abiotic factors only 489 
#Model 2 - Top-down regulation: Initial model was only top-down interactions and then 490 
abiotic factors are added sequentially 491 
#Model 3 - Bottom-up regulation: Initial model was only bottom-up interactions and then 492 
abiotic factors are added sequentially 493 
#Model 4 - Integrative model (main model from the paper): Abiotic + Top-down + 494 
Bottom-up (based on our intial meta-model - see Supp.Mat) 495 
#If the modification indice proposed to add a path that is forbidden according to the 496 
model (e.g., between trophic groups in the abiotic model), the proposition is ignored and 497 
the next best proposition is implemented. 498 
#If the modification indice value of adding a path between an abiotic factor and a 499 
functional group is the same as the value of adding a path between said trophic group 500 
and another trophic group, then it was interpreted as a signal that the effect of said 501 
abiotic factor might be mediated by a trophic interaction 502 
library(semTools) 503 
#.......Model 1 --> Model with only abiotic factors 504 
BSM.mod1 <- " 505 
# Regression 506 
small.prey.richness ~ DD + PH + Area + TotPhosphorus + Depth 507 
pelagic.richness ~ DD + PH + Depth + Area + TotPhosphorus 508 
pelagic.PCA2 ~ DD + TotPhosphorus 509 
litoral.richness ~ DD + Area + TotPhosphorus + PH + Depth 510 
litoral.PCA2 ~ DD + Area + PH + TotPhosphorus 511 
pred.richness ~ PH + Depth + Area + DD 512 
pred.PCA1 ~ DD + PH + TotPhosphorus + Depth 513 
" 514 
BSM.mod1.fit = sem(BSM.mod1,data=data.mod) #run the SEM 515 
BSM.mod1.fit #visualize fitting results 516 
summary(BSM.mod1.fit,stand=T,rsq=T) #visualize path coefficients 517 
modindices(BSM.mod1.fit) #modification indices 518 
# To inspect model estimates and parameters 519 
varTable(BSM.mod1.fit) #Variance table 520 
inspect(BSM.mod1.fit,"cov.ov") #co-variance matrix 521 
inspect(BSM.mod1.fit,"est") #regression estimates 522 
# 523 
#.......Model 2 Top-down regulation --> paths only from higher to lower trophic groups + 524 
abiotic factors 525 
#Notice that Depth - a factor that was very important in Model 1 is now mainly important 526 
for top-predators - it suggests that the effect of depth on other groups is mediated by 527 
top-predators 528 
BSM.mod2 <- " 529 
# Regression 530 
small.prey.richness ~ pred.PCA1 + pred.richness + pelagic.richness + pelagic.PCA2 + 531 
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litoral.richness + PH + Area + TotPhosphorus 532 
pelagic.richness ~ pred.richness + DD + Depth + PH + Area + TotPhosphorus + 533 
pred.PCA1 534 
pelagic.PCA2 ~ pred.richness + litoral.richness + DD 535 
litoral.richness ~ pred.richness + pred.PCA1 + DD + TotPhosphorus + Area + PH 536 
litoral.PCA2 ~ pred.richness + pred.PCA1 + DD + Area + pelagic.PCA2 537 
pred.richness ~ PH + Depth + Area + DD 538 
pred.PCA1 ~ DD + PH + TotPhosphorus + Depth 539 
# Residual correlations 540 
pred.richness ~~ pred.PCA1 541 
pelagic.richness ~~ pelagic.PCA2 542 
litoral.richness ~~ litoral.PCA2 543 
" 544 
BSM.mod2.fit = sem(BSM.mod2,data=data.mod) 545 
BSM.mod2.fit 546 
summary(BSM.mod2.fit,stand=T,rsq=T) 547 
modindices(BSM.mod2.fit) 548 
# To inspect model estimates and parameters 549 
varTable(BSM.mod2.fit) #Variance table 550 
inspect(BSM.mod2.fit,"cov.ov") #co-variance matrix 551 
inspect(BSM.mod2.fit,"est") #regression estimates 552 
# 553 
#.......Model 3 Bottom-up regulation --> Ppaths only from lower to higher trohpic groups+ 554 
abiotic factors 555 
BSM.mod3 <- " 556 
# Regression 557 
small.prey.richness ~ PH + Depth + Area + TotPhosphorus 558 
pelagic.richness ~ small.prey.richness + DD + Depth + PH + Area + litoral.PCA2 559 
pelagic.PCA2 ~ small.prey.richness + litoral.richness + Area + DD + TotPhosphorus 560 
litoral.richness ~ small.prey.richness + DD + TotPhosphorus + Area + PH 561 
litoral.PCA2 ~ small.prey.richness + DD + PH 562 
pred.richness ~ small.prey.richness + pelagic.richness + pelagic.PCA2 + litoral.richness 563 
+ litoral.PCA2 + Depth + DD + Area + TotPhosphorus 564 
pred.PCA1 ~ small.prey.richness + pelagic.richness + pelagic.PCA2 + litoral.richness + 565 
litoral.PCA2 + Depth + DD + TotPhosphorus + PH 566 
# Residual correlations 567 
pred.richness ~~ pred.PCA1 568 
pelagic.richness ~~ pelagic.PCA2 569 
litoral.richness ~~ litoral.PCA2 570 
pelagic.richness ~~ litoral.richness 571 
" 572 
BSM.mod3.fit = sem(BSM.mod3,data=data.mod) 573 
BSM.mod3.fit 574 
summary(BSM.mod3.fit,stand=T,rsq=T) 575 
modindices(BSM.mod3.fit) 576 
# To inspect model estimates and parameters 577 
varTable(BSM.mod3.fit) #Variance table 578 
inspect(BSM.mod3.fit,"cov.ov") #co-variance matrix 579 
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inspect(BSM.mod3.fit,"est") #regression estimates 580 
# 581 
#.......Model 4 Integrative model (main model from our meta-model) --> Abiotic factors + 582 
top-down + bottom-up 583 
BSM.mod4 <- " 584 
# Regression 585 
small.prey.richness ~ PH + Area + TotPhosphorus + pred.PCA1 + pelagic.richness + 586 
pelagic.PCA2 587 
pelagic.richness ~ DD + PH + Depth + Area + TotPhosphorus + pred.richness 588 
pelagic.PCA2 ~ DD + TotPhosphorus + pred.richness 589 
litoral.richness ~ DD + Area + TotPhosphorus + PH + pred.richness 590 
litoral.PCA2 ~ DD + Area + PH + TotPhosphorus 591 
pred.richness ~ PH + Depth + litoral.richness + litoral.PCA2 + pelagic.richness + 592 
pelagic.PCA2 + TotPhosphorus + small.prey.richness + Area 593 
pred.PCA1 ~ DD + PH + TotPhosphorus + Depth + litoral.richness + litoral.PCA2 594 
# Residual correlations 595 
litoral.richness ~~ litoral.PCA2 596 
pelagic.richness ~~ pelagic.PCA2 597 
pred.richness ~~ pred.PCA1 598 
litoral.richness ~~ small.prey.richness 599 
" 600 
BSM.mod4.fit = sem(BSM.mod4,data=data.mod) 601 
BSM.mod4.fit 602 
summary(BSM.mod4.fit,stand=T,rsq=T) 603 
modindices(BSM.mod4.fit) #modification indices 604 
resid(BSM.mod4.fit,type="raw") 605 
# To inspect model estimates and parameters 606 
varTable(BSM.mod4.fit) #Variance table 607 
inspect(BSM.mod4.fit,"cov.ov") #co-variance matrix 608 
inspect(BSM.mod4.fit,"est") #regression estimates 609 
# 610 
####################### 611 
#Model goodness of fit and comparaison 612 
####### 613 
#AIC comparaisons 614 
library(AICcmodavg) 615 
aictab(list(BSM.mod1.fit,BSM.mod2.fit,BSM.mod3.fit,BSM.mod4.fit),c("Abiotic","TD","BU 616 
","Integrative")) 617 
# Model selection based on AICc: 618 
# 619 
# K AICc Delta_AICc AICcWt Cum.Wt LL 620 
# TD 48 40119.91 0.00 0.61 0.61 -20008.03 621 
# Integrative 50 40120.85 0.94 0.38 1.00 -20006.15 622 
# BU 52 40130.71 10.80 0.00 1.00 -20008.72 623 
# Abiotic 57 40135.64 15.73 0.00 1.00 -20005.22 624 
#After removing 'Predator PCA1 --> 'Small prey richness' from the 'Top-down' model 625 
# Model selection based on AICc: 626 
# 627 



34 
 

# K AICc Delta_AICc AICcWt Cum.Wt LL 628 
# Integrative 50 40120.85 0.00 0.99 0.99 -20006.15 629 
# BU 52 40130.71 9.86 0.01 1.00 -20008.72 630 
# Abiotic 57 40135.64 14.79 0.00 1.00 -20005.22 631 
# TD 47 40157.95 37.10 0.00 1.00 -20028.22 632 
#After removing 'Predator richness' --> 'Pelagic richness' from the 'Top-down model' 633 
# K AICc Delta_AICc AICcWt Cum.Wt LL 634 
# Integrative 50 40120.85 0.00 0.99 0.99 -20006.15 635 
# BU 52 40130.71 9.86 0.01 1.00 -20008.72 636 
# Abiotic 57 40135.64 14.79 0.00 1.00 -20005.22 637 
# TD 47 40150.85 30.00 0.00 1.00 -20024.66 638 
#Observations on AIC comparisons 639 
# 1. Abiotic only is last 640 
# 2. The difference between TD and ALL is not substantial 641 
# 3. The difference between TD/ALL and BU/Abiotic is substantial 642 
# 4. It is important to note that no interactions in the TD model does not indicate 643 
of actual top-down interactions (none of them are negative!) except for one strong topdown 644 
interaction between top-predators and small prey richness 645 
# 5. In the context of observation #4 - It seems that the only reason why BU does not 646 
perform well is because it is lacking the very important top-down effect of top-predators 647 
on small prey richness 648 
# 6. Observation #5 can be verified easily by removing the top-down path from toppredators 649 
to small prey richness in the top-down model ( 'Predator PCA1' --> 'Small 650 
prey richnes':ML increases by 40 points and the P-value = 0.0000, 'Predator richness' -- 651 
> 'Pelagic richness': ML increase 33 points) - therefore the good fit of the dop-down 652 
model is driven by this keystone interaction in the model 653 
#Conclusion: 654 
# 1. A mixture of all variables is essential to understand the system. Both bottom-up 655 
and top-down effects are very important, and in many case they seem to mediate the 656 
effect of abiotic factors (e.g., Lake depth). 657 
# 2. Thus, Model 4 is confidently the best model to understand the system because it 658 
integrates all information and the mediated effects in the most parsimonious way 659 
# 3. Model 4 could be analyzed further to gain better insights about the system. 660 
#END 661 
##### 662 
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