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* Supplementary Note 1: Genome diversity

Variant discovery and calling

A total number of 33,395,376 polymorphic SNPs were discovered and successfully called on
the 73 Ovis samples. Comparatively, 22,969,973 SNPs were discovered and called on the
72 Capra samples. Related to the genome sizes, these numbers corresponded to densities

of one SNP every 74bp and 105bp in Ovis and Capra, respectively.
Cross-genus alignments

The cross alignments between the two reference genomes produced a high coverage of the
non-reference genome (above 90%), which is almost as high as the percentage covered for
the reference genome itself (Supplementary Table 6). In Ovis, we found that 23,839,165
SNPs could be placed on the goat reference unambiguously (71.7% of discovered sites).
Similarly, 16,359,479 SNPs in Capra could be placed on the sheep reference unambiguously

(71.2% of discovered sites).

* Supplementary Note 2: Demographic inferences

The demographic inferences of the Ovis and Capra populations (Supplementary Fig. 2)
show similar variations in both genera, in particular between 1 million years ago (ya) and
~30,000 ya. For both genera the MSMC analysis suggests an initial effective population size
(Ne) decline between 1 million ya and 500 kya to 300 kya, which was followed by an
expansion reaching a maximum Ne at ~170 kya. At this time Ovis presented a relatively
larger Ne than Capra. This initial expansion was followed by a second decrease that ended
around 50,000 ya prior the start of the last glacial period. Following this period both genera

started recovering demographically. In Capra the demographic variations are heterogeneous



for both the ancestors of wild and domestic modern populations since about 30 kya. This is
in line with the contribution of an assembly of different ancestral lineages to the modern

domestic stocks and wild populations, as already shown by the study mitochondrial

haplogroups’. In Ovis the variations of Ne were similar in the ancestors of both wild and
domestic populations. From the period of domestication (~10,500 ya), two distinct
demographic histories are inferred for the bezoar ibex (corresponding to different genetic
subgroups of IRCA represented in blue in Supplementary Fig. 7b) with one of the lineages
being quite stable while the other carried on expanding demographically until recently. For
the goats lineage, the Ne shows a marked decline until the recent past. A similar pattern is
observed for Ovis, where the mouflon started to present a different demographic history with
respect to sheep near the onset of domestication. However, contrary to the bezoar ibex,
mouflon seem to have carried on expanding until the recent past. Sheep, similarly to goats,

achieved a dramatically Ne decline.

MSMC does not have sufficient resolution for very recent time points preventing us from
saying much about the demographic history of these species over the last 1,000 years. For
the earliest period (i.e., before 300 kya), the ancestral Ne of Capra appears larger than that
of Ovis, but current methods prevent us from seeing further back in time and better
characterise that period. We must also caveat the fact that the mutation rate used is not

goat/sheep specific, what might affect the interpretation of the timing (see Methods).

* Supplementary note 3 : Genetic structure

Genetic diversity within groups

Among Ovis groups, the IROO group displayed 24.9 million polymorphic SNPs, while the
IROA, MOOA and wpOA groups had respectively 20.7, 21.4 and 21 million polymorphic
SNPs (Supplementary Table 1). Although the IROO group presented the lowest sample size
with 13 individuals, it also showed the highest level of mean nucleotide diversity (7=2.68x10
® against m=2.20x10° on average for the three domestic groups). Individual inbreeding

values varied largely within groups (Supplementary Data 5), however the average inbreeding



coefficient in the IROO group (F=0.08) was significantly lower (p-value<10*) than in the
wpOA group (F=0.18), while IROA and MOOA showed intermediate values (Supplementary
Fig. 1). The average relatedness was 0.859 for the 60 sheep and 0.823 for the Asiatic

mouflon.

Among Capra groups, IRCH, showed the highest number of polymorphic SNPs (15.4
million). MOCH showed 13.1 million SNPs polymorphic, while IRCA and wpCH had
respectively 11.3 and 10.4 million SNPs polymorphic (Supplementary Table 1). Nucleotide
diversity was higher for IRCH (17=1.65x10?) than for IRCA (17=1.53x10") wpCH (17=1.54x10
%) and MOCH (m=1.47x10?®). The wpCH and IRCA groups showed similar average
inbreeding (F=0.22 for both), which was significantly higher than IRCH (F=0.08), while it was
intermediate for MOCH (F=0.15) (Supplementary Fig. 1). The average relatedness was
around 0.915 between the 54 domestic goats, and 0.916 between Bezoar ibex
(Supplementary Data 5).

Genetic structure among groups

The weighted whole-genome Fst index showed an overall level of genetic differentiation
among all Ovis groups of 0.050. The highest values were obtained for pairwise comparisons
including the wild group IROO and one of the domestic groups (Fst = 0.075 on average). On
the other hand the average pairwise Fst value among the IROA, MOOA and wpOA groups
was only 0.013. For Capra, the overall Fst was 0.047 considering the four groups together.
The average pairwise Fst value between the three domestic groups IRCH, MOCH and
wpCH was 0.030. For pairwise comparisons between each domestic group and the wild

group IRCA, Fst was 0.048 with IRCH and 0.065 both with MOCH and wpCH.

For the following analyses of genetic structure and admixture we removed the SNPs
showing high LD (see Methods), keeping 6,155,224 and 6,511,536 SNPs for Ovis and
Capra, respectively. Using sSNMF? we estimated the number of genetic clusters in the data
and the admixture between them. The best partition of samples into clusters for each genus

was estimated with the cross-entropy criterion resulting in K=2 for Ovis and K=3 for Capra.



Nevertheless, we further investigated the effect of higher values of K to assess how the
partition of individuals changed for different levels of the genetic structure. For both Ovis and
Capra, the clustering analysis first separated the wild animals from the domestics. For K=2,
the domestic and the wild Ovis animals belonged clearly to two different clusters. For K=3,
the domestics were split in different clusters according to their geographic origins, with the
wpOA individuals being assigned to the cluster representing either IROA or MOOA or being
admixed between both. For K=4 and K=6 two inbred and one other IROO individuals were
clustered apart, while at K=5 a new cluster appeared with various levels of admixture in the
wpOA group (Supplementary Fig. 7a). For Capra, the clustering for K=2 showed one cluster
representing the domestic animals, while the second cluster regrouped 8 IRCA animals and
the remaining 12 animals were admixed. At K=3, the European goat breeds belonged to a
distinct cluster, and at K=4 the Iranian and the Moroccan goats were clustered separately.
Then, for K=5 and K=6 the admixed IRCA individuals were largely assigned to two new
clusters of respectively 7 and 3 individuals (Supplementary Fig. 7b). Notably, when
increasing the number of clusters we found no admixture between wild and domestic
animals for both Ovis and Capra.

Tests for admixture

As the genetic clustering clearly separated wild and domestic individuals, we rooted the
TreeMix tree by the split between both lineages. In sheep, most of the wpOA individuals
were more closely-related to MOOA than IROA individuals, that clearly clustered separately
(Supplementary Fig. 3a). In goats, the IRCH and MOCH groups were also clearly separated,
and while the European breeds from wpCH were close to the MOCH group, the Australian

breeds clustered with IRCH (Supplementary Fig. 3b). Further post-processing with the

dedicated TreeMix R package® confirmed that the topologies recovered in absence of
migration edges explained nearly all differences in the allelic frequencies among groups
(99.1% and 98.2 of the total variance for Ovis and Capra, respectively, Supplementary Table

3). Moreover the residual values were high only for intra-species pairs of individuals (i.e., not



between wilds and domestics, see residuals heat maps in Supplementary Figure 3). We also
explored the possibility of minor admixture events, adding an increasing number of migration
edges, from 1 to 4 (Supplementary Table 3). All the migration edges involved individuals
from the same species (no wild-domestic migration). For Ovis no sensible increment of the
variance was observed. The maximum increment of the variance in Capra (>99%) was
reached by adding a single migration edge between domestics, which was inferred from one

Moroccan individual to a European breed. A formal test of admixture based on the f3

statistics*, however, showed no significant results for any combination of groups (Z-scores >
0, Supplementary Table 6), providing no evidence for any recent admixture among the wild
and domestic species within each genus. It is worth noting that this finding does not reject
ancient introgressions of genetic material, as domestication and intensive selective breeding

may have eroded the molecular signature of admixture.

* Supplementary Note 4: Detection of selection signatures

The subsets of variants filtered on allelic frequencies (see Methods) were 22,134,330 for the
53 Ovis samples and 12,412,758 for the 58 Capra samples used in this analysis.

hapFLK results

We filtered out from hapFLK results the genomic regions for which the haplotype clustering
was not congruent among the domestics. Thus, we retained a total of 8,498 SNPs for Ovis
and 10,571 SNPs for Capra with g-values<10? from the FDR framework applied to the whole
set of variants. Merging these SNPs, we obtained respectively 30 and 44 genomic regions in
Ovis and Capra, respectively, among which 3 pairs of regions were homologous between
both genera (Supplementary Table 4 and Supplementary Data 3).

Detection of homologous regions under selection

Before running the stratified FDR analysis, we first removed one region detected by hapFLK

in Ovis due to repeated sequences that affected the quality of the cross-alignment with



Capra. We then applied the stratified FDR approach, analysing separately for each genus
the regions homologous to those detected as significant in the other genus on one hand

(shared stratum), and the rest of the genome on the other hand (general stratum).

Applying the stratified FDR to the shared stratum, we detected among the segments
homologous to the 44 regions previously detected in Capra 12,016 SNPs corresponding to
19 genomic regions in Ovis (g-values<10?). In Capra, 1,698 SNPs located on 4 regions were
detected. These regions contained 3 homologous regions previously detected without
stratification. When applying the stratified FDR method to the general stratum, we detected
7,091 SNPs and 9,121 SNPs, which were located in 27 and 40 regions in Ovis and Capra,
respectively (Supplementary Table 4). These regions were identical to the non-homologous

regions detected without stratification, minus one that was not significant anymore in Capra.

Thus, the stratified FDR approach globally detected 46 genomic regions including 18,556
SNPs as genomic signatures related to domestication in Ovis. Their size varied between
2.4kb to 254kb and they represented a cumulated length of 3.402Mb, which is equivalent to
0.13% of the total autosome length. According to gene annotations, 9 regions were
intergenic and 37 contained a total of 145 genes, which represents 0.6% of the genes
annotated in sheep. In Capra, a total of 10,819 SNPs located in 44 genomic regions were
detected as signatures related to domestication. Their size ranged between 0.1kb to 278kb
for a cumulated length of 2.811Mb, which represented 0.11% of the autosomes. While 8
regions were intergenic, the 37 remaining regions contained 147 genes, i.e. 0.7% of the total

number of genes annotated in goat.

Based on the cross alignments between the sheep and goat reference genomes, we found
20 pairs of regions to be homologous between genera (Supplementary Fig. 8). Using the
coordinates of SNPs on the two reference genomes we found that the signals were
overlapping in 13 cases.

Assessment of the patterns of selection

Based on the difference in nucleotide diversity (Am) between wilds and domestics in the



detected regions, we identified 45 regions with a lower diversity in sheep than in mouflon
(i.e., stabilizing and/or directional positive selection) and one region with a higher diversity in
domestics (i.e., relaxation or diversifying selection in the domestics, or recent positive
selection in the wilds). For Capra, 27 regions displayed a lower diversity in goats (e.g.,
positive selection) and 17 a higher diversity corresponding to other patterns of selection.
Among the homologous regions, the pattern of selection was concordant in both sheep and
goat for 16 regions and different for 6 regions (Supplementary Data 3).

Functional interpretations

Among the genes found in the genomic regions under selection, we kept the closest to the
SNP with the lowest g-value (i.e. top signal) as the most likely gene targeted by selection. In
addition to 3 genes with unknown functions, we found a total of 59 genes that were involved
in several GO child terms of Biological Processes (Supplementary Data 4). The distribution
of these 59 genes in the GO categories differed from that of the reference distribution (i.e.,
the 18,689 human genes associated to GO terms in Swiss-Prot) due to an excess of genes

related to pigmentation and, to a lesser extent, in biological adhesion and rhythmic process

(Chi-square test, p-value<0.05, Supplementary Data 4). The overrepresentation of genes

involved in pigmentation might reflect the importance of coat colour as a target of selection in

livestock®9- °. Furthermore, most of the 59 genes found under selection have already been
associated to phenotypic effects in livestock species. We found 14 genes related to
immunity, 25 genes to different productivity traits such as milk (11 genes), meat (11 genes),
fertility (2 genes) and/or hair (4 genes) characteristics, and 5 genes related to the neural
development or nervous system (Supplementary Data 3). The other genes mostly
corresponded to general functions without identified phenotypic effect in livestock species, or
to uncharacterised functions. We classified these genes in an "Other " category in Table 1
and Supplementary Data 3, and their related GO terms are available in Supplementary Data
4. The representation of the GO terms did not differ between the genes from homologous

regions and the whole set of genes under selection (Chi-square test, p-value>0.9,



Supplementary Data 4). In 10 cases where a gene was found in the homologous regions,
the genes most likely impacted by selection were the same between Ovis and Capra (Table
1). In 4 other cases the genes were different but involved in similar phenotypic effect in
livestock, while the genes from 3 regions corresponded to different classes. Three regions
were intergenic in both Capra and Ovis. Four genes common to sheep and goat (HMGI-C,
KITLG, MTMR7, and NBEA) show clear pleiotropic effects. HMGI-C is involved in body size
in sheep® and was also described as being responsible of dwarf size in chicken’. MTMR7 is
expressed in the central nervous system in human® and is also involved in fatty acid
composition in pig®. KITLG is known to have an effect on coat coloration in numerous
mammal species'’, is associated to litter size in goat' and is also implicated in nerve cells
development and mast cells development, migration and function'®>. NBEA is associated to
wool crimp in sheep™ but is also known to regulate neurotransmitter receptor trafficking to

synapses in human™ and was suspected to play a role in docility in cattle'.

In 21 regions among the 46 detected with hapFLK in Ovis, 148 SNPs showed combined FLK
p-values<10*. According to VEP, they were mostly located in intergenic regions (92 SNPs)
and intronic sequences (44 SNPs), whereas 12 SNPs were upstream or downstream genes
and two SNPs were exonic (one missense and one synonymous, see Supplementary Table
5). This distribution was not significantly different from that of the whole set of SNPs initially
tested. In Capra, 928 SNPs located in 29 out of the 44 regions detected with hapFLK
showed combined FLK p-values<10*. They were found in intronic sequences (544 SNPs), in
intergenic regions (296 SNPs), upstream or downstream genes (190 SNPs). Within coding
sequences, only one missense variant was found. There was here a clear enrichment for
variants located in non-coding regions close to genes (intronic, upstream gene and
downstream gene) compared to the whole set of SNPs analysed (Chi-square test; p-

value<2x107'%; see Supplementary Table 5).



* Supplementary Note 5 : Comparison between selection detection methods

Following a reviewer’'s comment for exploring and discussing the differences between our

approach and that of Naval-Sanchez et al. (2018)'® who studied a sampling including some
identical individuals, we provide the following information about the impact of the method
and sampling on the detection of signatures of selection.

Our study was specifically designed to detect selected sweeps in common between sheep
and goat. This stems from both the sampling (ie. working on traditionally-managed

domestics with the same origin and wild populations from the cradle of domestication) and

the choice of the method (ie. hapFLK with stratified FDR approach). Naval Sanchez et al.™

used an other approach based on Fst and pi (nucleotide diversity variation) to contrast the
genomes of wild mouflon to that of a worldwide panel of 43 breeds (each represented by
only a few individuals). This experimental design is very different from ours and designed to
detect different selective processes. The method used by Naval-Sanchez et al. for detecting
selective sweeps on 20 kb windows combined the mean Fst value and the difference in
nucleotide diversity between wilds and domestics — estimated by In(pi_wilds/pi_domestics).
Combining the two variables make this method relaxed in a statistical sense. The thresholds
applied for selecting the outlying windows (e.g., p-values on z-scores of 102 in Naval
Sanchez et al.'® does not reflect the true level of significance due to the non-independence
of the two distributions that are combined. This relationship between Fst and In(pi-ratio) can
be seen on Supplementary Figure 9 (shape of the scatter-plot). The selection of outliers with
the Fst/pi-ratio approach is thus very likely to be less stringent. hapFLK, however, is based
on the difference in haplotype frequencies between populations and takes into account the
hierarchical structure of the sampling. Its detection power has been proved to be greater
than that of the Fst approach®, is only slightly affected by migration and is not affected by
bottlenecks. Even if Fst approaches are more commonly used for detecting selective

sweeps, our study is much more suited to the hapFLK approach, even more when
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considering our sampling made of populations with different drift effects.

Whatever this better theoretical support for the hapFLK approach, we analysed the same
dataset with the two methods (HapFLK versus Fst/pi-ratio) in order to assess how the
detection method would affect the result. We also assessed the effect of the sample set on
the detection of selected genomic regions. As hapFLK is designed to detect selection among
hierarchically structured populations, it cannot be applied to the worldwide panel, which are
too heterogeneous as they are composed of breeds with very different demographic
histories admixture, bottlenecks,...), and each breed is represented by a few individuals.
Thus we applied the Fst/pi-ratio method on our sheep dataset and performed the following
analyses:

- Effect of the method used. Reproducing the design used for the hapFLK analysis and using
the method used by Naval-Sanchez et al., Fst and pi ratios were calculated for 20kb
windows between (i) Moroccan (MOOA) and wilds (IROQ), (ii) Iranian (IROA) and wilds
(IROO). Mean values were computed and outlying windows were detected using the
combined z-transformed values with Bonferroni correction (Supplementary Figure 9). We
then looked at the significant 20 kb windows which fell into the regions detected with hapFLK
(green dots on Supplementary Figure 9). This represented 35 regions out of the 46 retained
with hapFLK. On the 11 remaining regions, 6 were close (5-100 kb) to an outlying window
with the Fst/pi method (represented by green stars on Supplementary Figure 10). Three
regions found with hapFLK did not contain any 20kb windows with at least 20 SNP and were
not analysed with the Fst/pi method to follow Naval-Sanchez et al. As a result 91% of the
genomic regions (41/46) found with hapFLK in our study were also found with the Fst/pi
method which, as expected, was more permissive (see above) with many other outlying
windows (Supplementary Figure 9).

- Effect of the sampling. We also performed the Fst/pi analysis by contrasting to the wild
group IROO either the whole worldwide panel (67 individuals used by Naval-Sanchez et al.)
or our worldwide panel (wpOA: 20 individuals, subsample of the previous group). 41 %

(798/1937) of the selective sweeps (for 20kb regions) detected were common to both

11



analyses. This shows the effect of subsampling in the world panel which is heterogeneous
and composed of 43 different breeds. At the gene level (after merging 20kg regions closer
than 50kb and looking at overlapping genes), this corresponded to an overlap of about 46 %
(254/ 557, see Supplementary Figure 11).

To conclude, the Fst/pi method is not adequate to analyse our dataset, as the result might be
affected especially by the differential effects of drift in the populations. However, it confirmed
most of the sweeps detected with hapFLK but appeared to be more permissive. Moreover,
the sweeps that we describe are confirmed by the haplotypes shown on Supplementary
Figure 5. The genomic regions detected as under selection might depend on the
composition of the worldwide panel, probably due to the different demographic and selective
history of the component breeds. This justifies that we did not use the worldwide panel to
detect selective sweeps in our study, but only a posteriori, to confirm the sweeps detected in

traditionally managed populations.
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* Supplementary Table 1 : Genetic statistics for the different groups of Ovis and
Capra.

For each group the sample size, the number of segregating SNPs (S), the average
nucleotide diversity (1), the mean inbreeding coefficient (F) and the mean genetic load over
the whole genome are indicated. The p-value of the difference between the wild group and
each domestic group is given in brackets (one-sided t-test for F and load, Mann-Withney test
for 1). For 11, the Mann-Whitney tests between all pairs of groups for each genus all showed
p-values < 2.2e-16. For mean inbreeding F and mean genetic load, the p-values of the one-
sided t-tests on individual values between the wild group and each of the domestic group

correspond to: ns: p-value>10-1 ; a: 5x10-2<p-value<10-1 ; b: 10-2<p-value<5x10-2 ; c: p-

value<10-2 .
Ovis
Group Sample size S T (x10-3) Mean F Mean load (x10)
All 73 33,233,605 2.41 0.139 8.4
IROO 13 24,928,891 2.68 0.083 8.1
IROA 20 20,659,837 2.15 0.128 (a) 8.4 (a)
MOOA 20 21,351,476 2.22 0.139 (a) 8.5 (a)
wpOA 20 21,041,532 224 0.186 (c) 8.7 (b)
Capra
Group Sample size S ™ (x10-3) Mean F Mean load (x10%)
All 72 22,969,973 1.70 0.163 4.7
IRCA 18 11 369 495 1.53 0.220 4.9
IRCH 20 15,425,601 1.65 0.084 (c) 4.5 (c)
MOCH 20 13,054,034 1.47 0.150 (c) 4.6 (c)
wpCH 14 10,384,091 1.54 0.219 (ns) 4.7 (c)
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* Supplementary Table 2: Enrichment analysis for genes showing higher genetic load

in sheep than in Asiatic mouflons.

Analysis performed with Webgestalt, showing significant results only for the category

"phenotype" in Human.

adjusted
Model organism Phenotype p value
Human Cervical subluxation 0.002
Human Hypoplasia of the odontoid process 0.002
Human Abnormality of the odontoid process 0.003
Human C1-C2 subluxation 0.01
Human Hypertelorism 0.01
Human Abnormality of the curvature of the vertebral column 0.01
Human Aplasia/Hypoplasia of the nasal septum 0.01
Human Abnormality of the ilium 0.01
Human Scoliosis 0.01

* Supplementary Table 3: Part of the variance explained by the Treemix model

according to the number of migration events.

# migrations Ovis Capra
0 0.9910066 0.9817221
1 0.9923272 0.9904986
2 0.9930432 0.9904883
3 0.9931297 0.9904724
4 0.9932956 0.990492
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* Supplementary Table 4: Number of genomic regions detected with and without the

stratified FDR approach

Capra Homologous
SNPs SNPs  Regions Regions

FDR whole genome 8,498 10,571 44 3
stratified FDR general 7.091 9,121 40 0
stratum

stratified FDR shared 11,465 1,698 4 20
stratum

Total stratified FDR 18,556 10,819 44 20

* Supplementary Table 5: Variant Effect Predictor categories of SNPs with FLK p-

values<10*in Ovis and Capra.

The differences between the distributions of SNPs with FLK p-values<10* and all SNPs

used for detecting selection signatures are tested with a Chi-square test.

Up/Down
Intergenic stream Exonic  Chi square test
. -4
Ovis FLK (p<10%) 92 12 2 p-value=0.3436
All SNPs 14,560,617 1,697,583 125,442
-4
Capra FLK (p<10™) 296 221 1 p-value < 2x10°
All SNPs 7,671,667 882,600 9,007
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* Supplementary Table 6: Results of the pairwise alignment between the two reference

genomes using a) sheep or b) goat as the reference species.

Genomic regions of the reference species are forced to map uniquely to single loci of the

non-reference species, whereas non-reference genomic regions are allowed to map to

multiple locations of the reference species.

a)
Genome coverage in Total genome Percentage genome
Genome . .
alignment length covered by alignment
Sheep 2,390,790,161 2,619,037,772 91.3%
Goat 2,357,251,044 2,607,448,494 90.4%

b)
Genome coverage in Total genome Percentage genome
Genome . .
alignment length covered by alignment
Sheep 2,357,262,884 2,619,037,772 90.0%
Goat 2,388,436,682 2,607,448,494 91.6%
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* Supplementary Figure 1
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Supplementary Fig. 1: Correlation between inbreeding coefficient and genetic load.

Blue: wild, green: Iranian domestics, red: Moroccan domestics, orange: world panel.
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* Supplementary Figure 2
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Supplementary Fig. 2: Time variations of the effective population size inferred with MSMC

for Capra and Ovis groups.

Two samples of 2 different individuals were analysed for each group, except for IRCA where
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* Supplementary Figure 3
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Supplementary Fig. 3: Maximum Likelihood trees showing genetic affinities among each
genus in the TreeMix analysis, and the semi-matrix of residual values for O migration edges

for Ovis and Capra.
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* Supplementary Figure 4
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Supplementary Fig. 4: General strategy for detecting signatures of selection.



* Supplementary Fig. 5
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Supplementary Fig. 5 continued
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Supplementary Fig. 5 continued
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Supplementary Fig. 5 continued
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Supplementary Fig. 5: Midpoint rooted Neighbour-Joining trees based on the % of identity between sequences for regions under selection in Ovis and Capra.
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The 2n haplotypes are represented as leaf/row in the panels. The colour bars (center panel) relates each haplotype to its group (blue: wild, green: Iranian domestics, red: Moroccan
domestics, orange: world panel). The right panel depict all SNPs in the considered haplotype (brown and blue squares represent minor alleles. Black squares represent missing data).



* Supplementary Figure 6
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Supplementary Fig. 6: Sampling positions in Iran and Morocco for Ovis and Capra.



* Supplementary Figure 7
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» Supplementary Fig. 7: Clustering by genetic ancestry using sNMF with increasing number

of ancestral populations (K) for Ovis and Capra.
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Supplementary Fig. 8: Combined hapFLK analyses in homologous regions detected under selection in Ovis and/or Capra.

Information is given on position, annotation and function when available for candidate regions. The figure gives the -Log10 of the stratified FDR g-
value. The red line represents the g=10-2 threshold.



* Supplementary Figure 9

nbMin SNP = 20
08

0.6

Joint z-score
(Bonferroni)

* p>=0.001
¢ p<0.001

o
ES

mean_Fst

selectUS
FALSE
+ TRUE

02

0.0

-2 0 2
pi_ratio

Supplementary Figure 9. Comparison between Fst/pi-ratio and hapFLK approaches for detecting
selection.
The figure gives the Fst/In(pi_ratio) plots for 20kb regions. Of the red dots corresponding to the

selective sweeps detected, those within green circles fall into regions detected by hapFLK.
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* Supplementary Figure 10
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Supplementary Figure 10. Fst (red) and pi_ratio values (blue) along the

chromosomes for the 11 regions detected with hapFLK (central demarcated areas)

and not with the Fst/In(pi-ratio) method.
Among them six were close to at least a significant 20 kb region (green stars). Some

regions with low SNP densities (< 20 SNPs) were filtered out in the Fst/In(pi-ratio)

method
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* Supplementary Figure 11
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Supplementary Figure 11. Effect of subsampling in the worldwide panel.
The Venn diagrams show the sweeps dtected with the Fst/In(pi-ratio) method and
conserved in domestic animals, wild animals and both according to the world panel

chosen. The numbers are for the 20kb-genomic regions detected.
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