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SUMMARY

The expression levels of SLC or ABC membrane
transporter transcripts typically differ 100- to
10,000-fold between different tissues. The Gini coef-
ficient characterizes such inequalities and here is
used to describe the distribution of the expression
of each transporter among different human tissues
and cell lines. Many transporters exhibit extremely
high Gini coefficients even for common substrates,
indicating considerable specialization consistent
with divergent evolution. The expression profiles of
SLC transporters in different cell lines behave simi-
larly, although Gini coefficients for ABC transporters
tend to be larger in cell lines than in tissues, implying
selection. Transporter genes are significantly more
heterogeneously expressed than the members of
most non-transporter gene classes. Transcripts
with the stablest expression have a low Gini index
and often differ significantly from the ‘‘house-
keeping’’ genes commonly used for normalization
in transcriptomics/qPCR studies. PCBP1 has a low
Gini coefficient, is reasonably expressed, and is
an excellent novel reference gene. The approach,
referred to as GeneGini, provides rapid and simple
characterization of expression-profile distributions
and improved normalization of genome-wide
expression-profiling data.

INTRODUCTION

Given that the basic genome of a differentiated organism is con-

stant between cells (and we here ignore epigenomics), what

mainly discriminates one cell type from another is its expression

profile. The ‘‘surfaceome’’ (those proteins expressed on the cell

surface) attracts our interest in particular, as it contains the trans-

porters that determine which nutrients (and xenobiotics such as

drugs) are taken up by specific cells (da Cunha et al., 2009; Palm
230 Cell Systems 6, 230–244, February 28, 2018 ª 2018 The Author(
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and Thompson, 2017). Transporters are the second largest

component of the membrane proteome (Almén et al., 2009),

and also a (surprisingly) understudied clade (César-Razquin

et al., 2015). They are classified into solute carriers (SLCs) (Colas

et al., 2016; Fredriksson et al., 2008; Hediger et al., 2013; Perland

and Fredriksson, 2017; Schlessinger et al., 2010; Sreedharan

et al., 2011), mainly involved in uptake, and ABC transporters

(ABCs), mainly involved in efflux (e.g., Chen et al., 2016; Eadie

et al., 2014; Montanari and Ecker, 2015; Rees et al., 2009).

Transporters are also responsible for the uptake of pharma-

ceutical drugs and xenobiotics into cells, and their efflux there-

from (Colas et al., 2016; Dobson and Kell, 2008; Giacomini and

Huang, 2013; Giacomini et al., 2010; Kell, 2015, 2016; Kell et al.,

2011, 2013; Kell and Oliver, 2014; Lin et al., 2015; Stanley et al.,

2009). This means that, to understand drug distributions, we

must understand transporter distributions. In many cases, we

do not know either the ‘‘natural’’ (O’Hagan and Kell, 2017b,

2018; Perland and Fredriksson, 2017) or the pharmaceutical

drug substrates of these transporters, and one clue to this

may be to understand transporters’ differential tissue

distribution.

In the present work we used absolute transcription profiles

acquired (via RNA sequencing) as part of the tissue atlas (Uhlén

et al., 2015) and cell atlas (Thul et al., 2017). Altogether there are

four main datasets, namely 409 SLCs in 59 tissue types and

56 cell lines, and 48 ABCs in the same tissue types and cell lines.

Some of the SLCs do not (yet) have the official terminology (Per-

land and Fredriksson, 2017; Sreedharan et al., 2011), but, based

on a variety of phylogenetic and other evidence, as well as their

UniProt annotations, they clearly have this function, and these

are noted accordingly. Similarly, some of the ‘‘ABC’’ families

(especially family F) are probably not functionally membrane

transporters, but they are nonetheless included.

The availability of extensive and high-quality transcriptomic

datasets allows us to develop a series of novel analyses. They

are necessarily illustrative, but by making the data available in

a convenient form, we think that readers will be encouraged to

make their own analyses of other aspects. In particular, the

Gini index serves to highlight unusual features of the biology of

a great many transcripts; we refer to this strategy of using the

Gini index to analyze expression profiling data as GeneGini.
s). Published by Elsevier Inc.
commons.org/licenses/by/4.0/).
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Figure 1. Overall Assessment of Variation in Gene Expression Profiles

(A) The Gini index. Many equivalent definitions are possible. In the usual form, the Gini coefficient is defined mathematically based on the Lorenz curve, which

plots the proportion of the total income or wealth of a population (ordinate) that is earned cumulatively by the bottom x% of the population (see diagram) as

x increases. Here ‘‘income’’ is the percentage of total transcripts, while the ‘‘population’’ is the individual transporter transcripts considered at one time. (The same

general form results if the abscissa is reversed, startingwith the top earners, where it takes on the appearance of themore familiar receiver-operator characteristic

curve or ROC curve; Baker, 2003; Broadhurst and Kell, 2006; Linden, 2006.) The line at 45� represents uniform expression of each transcript. The Gini coefficient

can then be seen as the ratio of the area that lies between the line of equality and the Lorenz curve (labeled A in the figure) to the total area under the line of equality

(labeled A and B), i.e., G = A/(A + B).

(B) Median and maximum expression levels (ignoring those with undetectable expression even at the median) in the 59 tissues considered.

(C) Gini coefficient for the expression of all SLCs in 59 tissues; those with Gini coefficients above 0.9 or below 0.25 are shown.

(legend continued on next page)
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A preprint has been deposited at bioRxiv (O’Hagan

et al., 2017).

RESULTS

Gini Index
Our first interest was to provide a convenient method for summa-

rizing the variation in gene expression profiles in different sam-

ples (in this case different tissues and cell lines). A variety of

means exist to capture variation; however, none of the more

common statistical measures captures the full range well, espe-

cially including the many zeroes (undetectable expression

levels). One that does is the Gini index (Ceriani and Verme,

2012; Gini, 1909, 1912) or Gini coefficient (GC). This is a non-

parametric measure that is widely used in economics to describe

distributions of incomes between individuals in a given group or

political jurisdiction (e.g., country or region) (Kondo et al., 2012;

Pickett and Wilkinson, 2015; Wilkinson and Pickett, 2009). As a

summary statistic of the entire Lorenz curve (Lee, 1999) (see Fig-

ure 1), it is a statistical measure of the degree of variation repre-

sented in a set of values. It ranges between 0 (no variation) and 1

(extreme variation, in which all non-zero values are contained in

one individual or example). Clearly it can be used to describe the

distribution of anything else, e.g., the structural diversity in

chemical libraries (Weidlich and Filippov, 2016) (modulo;

O’Hagan and Kell, 2017b). It has very occasionally been used

in gene expression profiling studies (Ainali et al., 2012; Jiang

et al., 2016; Torre et al., 2017; Tran, 2011). However, in each of

these latter cases, including a very recent and nicely done

example on cancer cell susceptibility to drugs (Shaffer et al.,

2017), where it varied from 0.05 to 1, the Gini index was used

for choosing subsets of transcripts that differentiate rare cell

types or diseases. Here we know the cell types, and the novelty

of GeneGini lies in using the Gini index to assess individual genes

in terms of the uniqueness of their expression levels. Amore intu-

itive, graphical illustration is given in Figure 1A.

Variation in Expression Profiles of SLCs in Tissues

As is typical in exploratory data analysis (Tukey, 1977), we begin

with the following general comments (the full datasets are given

in Supplemental Information: Tables S1 and S2):

(1) The variation of transporter expression levels between

different tissues or cell lines is very far from being normal

(Gaussian) (see Broadhurst and Kell, 2006 for methods;

data not shown). The extreme here (and see below) is

probably SLCO1B1 (Hagenbuch and Stieger, 2013),

whose expression is virtually confined to the liver alone

(a fact that has been exploited effectively for drug target-

ing purposes [Pfefferkorn, 2013]);

(2) The tissue with the maximum overall expression of trans-

porters (SLC and/or ABCs) is the kidney (S10,950); that

with the fewest is the pancreas (S1,490);

(3) The SLCswith, overall, the greatest expression in total are

SLC6A15 (a neutral amino acid transporter [Pramod et al.,
(D) SLC25A31 is almost exclusively expressed in the testes (the expression level

(E) SLCO1B1 is almost exclusively expressed in the liver (with the expression lev

(F) Antibody-based expression of the SLC22A12, SLC6A18, and SLC2A14 transpo

in renal proximal tubules, whereas SLC2A14 is expressed in cells in seminiferou
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2013]), whose activity has been implicated in depression

(Kohli et al., 2011), and SLC25A3 (a mitochondrial phos-

phate transporter [Palmieri, 2013]), while that least

expressed in toto is SLC6A5 (glycine transporter).

(4) Almost every transporter ranges in its expression by over

two orders of magnitude in different tissues, and several

by more than three or even four orders of magnitude

(see also Sreedharan et al., 2011; Winter et al., 2014).

(5) The heatmap of expression levels shows a number of

major co-expression clusters.

Figure S1 shows the minimum and maximum expression

levels (as TPM [transcripts per million]) for each transporter,

with the top 20 (maximum expressions) labeled explicitly. Open

circles are those not explicitly labeled as SLC family members.

Interestingly, the mitochondrial transporters (Palmieri, 2013)

SLC25A3 (for phosphate) and SLC25A5 (for adenine nucleotide

translocase [Clémençon et al., 2013]) are among the most highly

expressed, as is the non-SLC MTCH1, which, as its name

implies, is amitochondrial carrier homologue. The co-expression

of SLC25A3 and SLC25A5 is entirely logical (not shown, but see

data files), as ATP synthesis and export require the transport of

equimolar amounts of its substrates. Many other SLC25 (mito-

chondrial transporter) family members are well represented as

high expressers in at least one tissue. Note that expression levels

below 0.01 TPM are not shown. Figure 1B shows similar data for

the median versus the maximum expression in the different

tissues, which again serves to highlight the considerable hetero-

geneity of expression. The median of the set of median expres-

sion levels for all the SLCs was 3.19 TPM. In addition, it is not at

all the case that a transporter tends to be either highly expressed

or weakly expressed; although as many transporters are widely

distributed, there is a considerable degree of specialization

(see also Sreedharan et al., 2011).

The Gini index for the variation in (inequality of distribution of)

transporters (Figure 1C) is fully consistent with this, with a signif-

icant number having an exceptionally high value (66 at 0.9 or

above), not least SLC22 family members, often in the kidney

(see below), and with only 23/409 SLCs having a GC below

0.25. One interpretation is that, mostly, individual transporters

may be quite specialized; another is that different tissues require

different amounts of specific substrates, although such large dif-

ferences are thereby not easily explained in general. Themedian

GC for this overall class of SLCs and related transporters is

0.587. A number of those with the lowest GCs are again in the

SLC25 (mitochondrial transporter) family; this is not unreason-

able, since every cell is likely to have mitochondria, but some

family members are clearly very specialized for particular

mitochondria. Thus (Figure 1D) SLC25A31 (AAC4), a particular

isoform of the adenine nucleotide translocase (Palmieri, 2013),

is essentially expressed only in the testes (Dolce et al., 2005)

(GC = 0.965), a finding of unknown biological significance

(Hamazaki et al., 2011). However, since its removal inhibits sper-

matogenesis (Brower et al., 2007), and thus causes infertility
s for others being 100 times less).

el in other tissues being 100 times lower or less).

rters in kidney, testis, and liver tissues. SLC22A12 and SLC6A18 are expressed

s ducts. Image edge length is 320 mm.



(Brower et al., 2009), it is potentially a target for the development

of male contraceptives. Thus, SLCs with very high GCsmay pro-

vide very tissue-specific targets.

SLCO1B1 (a major transporter of so-called statins) is

confined essentially to expression only in the liver (Figure 1E),

and its GC is �0.96. By contrast (GC = 0.188), transporters

such as SLC35A4 are almost universally expressed at a similar

level (Figure S2). However, this is not true of all SLC35

family members, since SLC35F2 enjoys a very wide distribu-

tion of expression levels in both tissues (Figure S3) and cell

lines (Winter et al., 2014). We also have an interest in the

ergothioneine transporter (SLC22A4, previously known as

OCTN1) (Gr€undemann et al., 2005), as an example of a trans-

porter that definitely favors the transport of an exogenous

substrate (O’Hagan and Kell, 2017b); Figure S4 shows its

expression profile distribution in the tissues considered; its

GC is 0.502. Finally, we illustrate (Figure 1F) the spatial expres-

sion of SLC22A12 (URAT1, a urate transporter) (Koepsell,

2013) in the kidney, virtually the only tissue in which it shows

expression (Gini index = 0.978). Biologically this implies that

uric acid is to be seen more as a product than as a substrate

here.

One hypothesis around transporters might be that major

nutrient transporters (Palm and Thompson, 2017) might be

more universally expressed, since such substrates are nominally

available via the bloodstream to most tissues. However, this

does not seem to hold up, and the GC again provides a conve-

nient means of clarifying that. Thus, SLC6A18, a neutral amino

transporter, has the 15th highest GC (0.955), and its expression

is essentially confined to the kidney proximal tubule. Similarly,

SLC2A14, a glucose transporter (Mueckler and Thorens, 2013),

has a GC of 0.853 and is again largely confined to the testes (Fig-

ure 2I). Mueckler and Thorens (2013), however, comment that its

physiological substrate is unknown, despite it having 95%

sequence identity to the SLC2A3 gene that definitely encodes

a glucose transporter.

Correlations and Heatmaps

Some unexpected correlations arise, e.g., that between the

expression of SLC39A5 (ZIP5, a Zn2+ transporter [Jeong and

Eide, 2013]) and SLC17A4 (supposedly a sodium/phosphate

transporter in the vesicular glutamate transport family, of

unknown function [Reimer, 2013]; r2 = 0.86) (Figure 2A). Such

findings raise many questions but provide few present an-

swers. However, they do provide useful starting points for the

testing of biological hypotheses. In this case, one might hy-

pothesize that they are co-regulated, and indeed both are

downregulated during a Clostridium difficile infection (Carter

et al., 2015).

Co-clustered heatmaps of expression levels provide a conve-

nient visual summary of large amounts of data. Thus, Figure 2B

shows the full heatmap for SLC expression in tissues. Although,

as stated, all the data are provided in full (Supplemental Informa-

tion) to allow readers to explore them, we have marked four ma-

jor clusters (zoomed in in Figures S5–S8). With the exception of a

slight preponderance of families SLC 25 and 35 in cluster 3 (Fig-

ure S7) and of SLC35 in cluster 4 (Figure S8), there was no

obvious clustering at the level of families. This gives weight to

the idea that SLC transporters have mainly exhibited divergent

evolution (Höglund et al., 2011).
SLCs in Cell Lines

Figure 3A shows the minimum non-zero versus maximum

expression levels of SLCs in cell lines (Figure 3A). The trends

are broadly similar, with some of the most highly expressed

transporters again being SLC25A3, SLC25A5, MTCH1, and

SLC3A2, although there are also differences. The overall spread

seems broadly similar to those of tissues, with a preponderance

of transporters havingminima in the decade 1–10 TPM andmax-

ima in the decade 20–200 TPM. In this sense, cell lines are a

reasonable representation of the behavior of tissues. The num-

ber of SLCs with a GC over 0.9 is 70, while those with GCs below

0.25 is 35 (Figure 3B). These numbers and behaviors are also

close to those for tissues. The median GC for SLCs in cell lines

(0.595) is very close to that for tissues (0.587). We note that

there may be a mixture of cell types in the tissues, and that

some (or even many) transporters likely exhibit a cell-type-spe-

cific expression pattern such as SLC22A12, SLC6A18, and

SLC2A14 (Figure 2I). Finally (Figure 3C) we show the extensive

(4,000-fold) variation in expression profiles of SLC22A4 (the

ergothioneine transporter) in the different cell lines, again illus-

trating very substantial differences in ‘‘need’’ for this exogenous

antioxidant (Halliwell et al., 2016) compound. Consistent with

this, the cell line with the greatest expression is a skin cell line,

that is normally exposed to atmospheric oxygen.

ABC Transporters in Tissues

Figure 4A shows the minimum and maximum expression levels

for all 48 ABCs, many of which lack detectable expression in at

least one tissue type. Again, the ranges of expression are consid-

erable, but their expression levels tend to be slightly lower than

those of the SLCs. The total numbers are small, but no family

(encoded in color in Figure 5A), except possibly F, seems espe-

cially highly expressed. The overall most highly expressed ABC

transporter is ABCC4. The GCs (Figure 4B) vary more than those

of the SLCs, and have a median value of 0.496. Five of 48 GCs

are greater than 0.9, while four are below 0.25. Several ABCs

exhibit very high GCs, that (0.939) of ABCG5 being the largest;

it is mainly expressed in the duodenum and the liver. Those of

the F family, however, while highly expressed, also have a low

GC, indicating that they tend to be among the more highly

expressed in most tissues. Indeed, consistent with their being

outliers, they are probably not in fact transporters (e.g., Nishi-

mura et al., 2007).

ABC Transporters in Cell Lines

Figure 4C shows the minimum and maximum expression levels

for all 48 ABCs, many of which lack detectable expression in at

least one cell line. Again, the ranges of expression are consider-

able, and somewhat more so than those of the SLCs in tissues.

No family (encoded in color in Figure 4C) seems especially highly

expressed. The overall most highly expressed ABC transporter is

ABCE1. The GCs (Figure 4D) are also larger and vary more than

those of both the SLCs and of the ABCs in tissues, with amedian

value of 0.692, suggesting adaptive selection for specialized pur-

poses in the relevant cell lines. Eleven of 48 GCs are greater than

0.9, while five are below 0.25. Several ABCs exhibit very high

GCs, that (0.964) of ABCG5 (a sterol transporter [Kerr et al.,

2011]) again being the largest; here it is effectively expressed

only in the HepG2 liver carcinoma cell line.

Overall, the median expression levels for SLCs are 3.27 and

1.26 TPM for tissues and cell lines, respectively, while those
Cell Systems 6, 230–244, February 28, 2018 233



Figure 2. Clustering of (Co-)Expression Profiles of SLC Transporters

(A) Significant correlation (in log-log space) between the expression profiles of SLC39A5 and SLC17A4 (r2 = 0.86).

(B) Overall heatmap, with four major clusters highlighted.
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Figure 3. Expression Profiling of Various Trans-

porters in 56 Cell Lines

(A) Minimum and maximum expression levels (as in

Figure S1 not showing those with undetectable expres-

sion) in the 56 cell lines considered.

(B) Median and maximum expression levels (ignoring

those with undetectable expression even at the median)

in the 56 cell lines considered.

(C) SLC22A4 expression levels (in TPM) in different

cell lines.
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Figure 4. Expression Profiling of Various ABC Transporters in 59 Tissues and 56 Cell Lines

(A) Minimum and maximum expression levels in the 59 tissues considered.

(B) Gini coefficient for the expression of all ABC transporters in 59 tissues.

(C) Minimum and maximum expression levels in the 56 cell lines considered.

(D) Gini coefficient for the expression of all ABC transporters in 56 cell lines.
for ABCs are 4.23 and 1.48 TPM. Thus, while many of these cell

lines are cancer derived, the majority of differentially expressed

genes (as transporters are) are downregulated in cancer cells

(Danielsson et al., 2013). By contrast, if (as helpfully pointed

out by a referee) we consider maxima, the median of the maxima

in cell lines is close to double that in tissues, both for SLCs (646

versus 368 TPM) and ABCs (98 versus 48 TPM). Thus some

transporters are indeed substantially overexpressed in cancer

cell lines.

Overall Analysis and Clustering of Cell Lines Based on
Transporter Transcripts
Although the data are far from being normally distributed, it is

of interest to see which tissues and cell lines are most different

from each other based solely on the expression profiles of their

transporters; these data (normalized to unit variance) are given

as a principal components plot in Figures 5A and 5B, where

tissue type is encoded by color, and in the former, whether it

is a tumor (gray) or not, is also encoded by a circular shape.

Only a small amount of the variance is explained by the first
236 Cell Systems 6, 230–244, February 28, 2018
two principal components, consistent with the high variability

between tissues and cells, and scree plots are given as insets.

The cell line expressing the largest total amount of transporter

transcripts (11,566 TPM) in toto is BeWo (a placental carci-

noma), while that expressing the fewest (5,215 TPM) is ASC

TERT1 (a human telomerase-immortalized human adipose-

derived mesenchymal stem cell line); the variance in transcripts

that may be observed between these two cell lines is given in

Figure 5C, with several of those with the greatest differences

illustrated. That the total variation in transporter expression is

just 2-fold shows (1) the limitation of membrane ‘‘real estate’’

area that partly controls membrane protein expression (Kell

et al., 2015), and (2) their overall importance to the cellular

economy.

Unusually Heterogeneous Nature of Cell Transporter
Expression Profiles
Tissues

While the values of GC for the expression profiles of transporters

between different tissues and cells tend to be unusually high, we



Figure 5. Overall Variance of SLC plus ABC Trans-

porter Expression in Different Tissues, A, and

Different Cell Lines, B

(A and B) Analyses were run in KNIME using the expression

profiles of both SLCs and ABCs, each normalized to unit

variance. Inserts in (A and B) represent the scree plots of

percent variance explained by different principal compo-

nents (PCs).

(C) Variance in transcript levels of both SLC (blue) and ABC

(red) transporters in just two cell lines (BEWO and

ASC/TERT1) (r2 = 0.50).
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have not yet quantified their differences relative to those of

other genes.

From such data, the most transcribed gene over any other in

cell lines is the ATP6 gene (mitochondrial ATP synthase subunit

a, UniProt P00846, 42,706 TPM in HeLa cells), while that in

tissues is ALB (albumin, UniProt P02768, 105,947 TPM in liver).

The median of all the maxima for tissues is 46 TPM, and for

cell lines 40 TPM. Obviously the first of these (ATP6 and ALB)

aremuch larger numbers than those for any transporters (Figures

1 and 4), but the medians (see also Figure 1B) are in quite a

similar range; this again illustrates the rather specialist nature

of different tissue expression profiles.

The overall picture of the distribution of tissue GCs between

the three classes of molecule (SLC/ABC/other) is given in Fig-

ure 6 (422 genes had very little expression at all [max = 0.25

TPM] and were ignored). Gene names are in alphabetic order,

so it is clear where most of the ABCs (in blue) and SLCs (red)

lie. Simply by inspection of this figure we can tell that many

more ‘‘other’’ genes (19%) have a GC below say 0.25 than those

for SLCs (9%) and ABCs (10%). In a similar vein, 33% of SLCs

and 24% of ABCs have a GC exceeding 0.75, while 24% do

for other genes. This latter high number is because of several

clusters that are visible (and marked) in Figure 6A, specifically

those for olfactory receptor proteins (over 300 genes, expressed

in specific tissues, which, given their high GCs, necessarily var-

ied for different olfactory receptor proteins) and keratin (over 150

genes, mainly in the melanoma tissues, of which 58 are KRT for

keratin and 58 KRTAP for keratin-associated proteins). Note,

however, that the maximum expression level for most ORs,

and for 69%of the 94 KRTAP (keratin-associated protein) genes,

was mainly less than 1 TPM; it is thus uncertain whether they

encode detectable levels of protein. By contrast, transcriptional

activators in the form of zinc-finger proteins (over 500 tran-

scripts, 82%/97% of which had a median/maximum expression

greater than 1 TPM) have very low GCs as they seem to play

regulatory roles in almost all cells. Cyclins are of interest, as

these should be expressed only in dividing cells. Thus CCNA1,

the gene for cyclin A1, has a GC of 0.844. However, because

our focus here is on transporters, we shall not pursue all these

other very interesting questions here.

Genes with Low Expression Profiles as Candidate

‘‘Housekeeping’’ Genes

A variety of genes have previously been proposed as house-

keeping or reference genes (Bustin et al., 2009; de Jonge

et al., 2007; Gur-Dedeoglu et al., 2009; Hoerndli et al., 2004; Li

et al., 2009; Ohl et al., 2005; Oturai et al., 2016; Silver et al.,

2006; Tatsumi et al., 2008; Vandesompele et al., 2002; Wang

et al., 2010; Zampieri et al., 2010).

However, the expression of most so-called housekeeping

genes (that are at least expressed in all tissues) actually varies

quite widely between tissues (e.g., de Jonge et al., 2007; Eisen-

berg and Levanon, 2003; Lee et al., 2002; Robinson and Osh-

lack, 2010); indeed they are sufficiently different that they can

be used to classify different tissues (Hsiao et al., 2001)! Here,

the housekeeping genes with the lowest GCs, hence those

possibly best for normalizing transcriptome or proteome exper-

iment, are FAM32A (an RNA-binding protein; GC = 0.137),

ABCB7 (a mitochondrial heme/iron exporter; GC = 0.137),

MRPL16 and MRPL21 (mitoribosomal proteins; GC = 0.138),
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and PCBP1 (an oligo-single-stranded-dC-binding protein;

GC = 0.139). Clearly their ubiquitous distribution speaks to their

essentiality, and it is certainly of interest that mitoribosomal pro-

teins have such ubiquitous expression, being somewhat equiva-

lent to the 16S rRNA genes widely used in microbial taxonomy

and metagenomics. Most of the other 49 large (MRPLxx) and

30 small (MRPSxx) ribosomal protein subunits also had low

GCs; others with a GC of 0.15 or below are illustrated in Fig-

ure 6B, which also serves to show that most low-Gini gene prod-

ucts have median expression levels in the decade 20–200 TPM

(so it is not a strange low-expression artifact).

We note that Eisenberg and Levanon (2013) provide a list

of candidate housekeeping genes based on earlier RNA

sequencing data. This provides a valuable benchmark for com-

parison with our approach. However, their list (see http://www.

tau.ac.il/�elieis/HKG/HK_genes.txt) consists of no fewer than

3,804 genes (out of the �25,000 human genes), but provides

no quantification of either how good they are as housekeeping/

reference genes or of their typical expression levels. Finding

the best 6 or 7 out of such an unranked list of 3,804 is a combi-

natorial problem that would require testing 4.1018 or 2.1021 com-

binations, respectively. By contrast we provide both the rank

order (and its justification via the Gini index) and the transcription

level. Secondly, the paper itself (Eisenberg and Levanon, 2013)

used only 16 (not, as here, 59) tissues, and no cell lines. Thirdly,

the paper does contain a Table of eleven ‘‘genes proposed for

calibration’’, representing (on an unstated basis) ‘‘a short list of

highly uniform and strongly expressed genes that may be used

for calibration in future experimental settings’’; Table S3 lists

these, together with their correct names, UniProt ID, and (from

our data) Gini index and median tissue expression levels.

It is rather obvious (Table S3) that the choices in this Table are

far poorer than those we suggest in terms of both GC (only one

has a GC below 0.15 [for tissues we show 23] Figure 6B) and

expression level (e.g., PCBP1 has a GC of 0.139 and an expres-

sion level of 209 TPM in tissues).

Indeed, the GCs of other gene products commonly used

by experimental biologists to normalize expression profiles

were often considerably larger (Table S4), although the more

recently proposed CTBP1 (C-terminal-binding protein 1,

UniProt Q13363; 0.204) and GOLGA1 (Golgin subfamily A

member 1, UniProt Q92805; 0.189) (Lee et al., 2007) both

seem like much better choices. However, the lowest GCs in tis-

sues are FAM32A, ABCB7, MRPL21, and PCBP1 (GC = 0.137–

0.139), while the lowest three in cell lines are SF3B2, NXF1,

andRBM45 (GC= 0.115–0.122). PCBP1 is both reasonably high-

ly expressed and has a low GC in both tissues (0.139) and cell

lines (0.135), and is an excellent novel housekeeping gene. While

reference genes are often chosen to be stably expressed across

variants of the same cell type rather than across different cells,

our very low GC between cell types suggests that the GC is

indeed a novel and effective way of identifying very useful house-

keeping or reference genes in expression profiling studies.

While there was no relationship between the GC and the

maximum expression (not shown), there was an interesting

inverse relationship between the GC and the median expression

level over all genes (Figure 6C), where the correlation coefficient

was 0.62. Clearly the exact correlation is also likely to depend on

the value of the GC, where at higher levels the Lorenz curve

http://www.tau.ac.il/%7Eelieis/HKG/HK_genes.txt
http://www.tau.ac.il/%7Eelieis/HKG/HK_genes.txt
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Figure 6. Variation of Gini Coefficients of Different Protein Classes in 59 Tissues

(A) All transcripts, alphabetically, in tissues.

(B) Transcripts with a particularly low Gini coefficient in tissues.

(C) Inverse relationship between Gini index and median expression level in tissues.

(D) Distribution of Gini coefficients in the three classes of transcript in tissues.

(E) Low-Gini PCBP1 expression in tissues.

(F) Antibody-based assessment of the expression of SLC22A12 in a variety of tissues. Image edge length is 320 mm.
(Figure 1) can become highly nonlinear. The overall distribution of

GCs for the three classes of protein (SLC/ABC/other) is given in

Figure 6D. Finally, because it was one of the gene products with

the lowest GC, as well as having a reasonable expression level
(median over 100 TPM), in both tissues and cell lines, we show

the tissue expression profile of PCBP1 (an intronless gene;

Makeyev et al., 1999) in Figure 6E; the overall variation of the

great majority of these transcripts is within a 2-fold range. We
Cell Systems 6, 230–244, February 28, 2018 239



Figure 7. Variation of Gini Coefficients of Different Protein Classes in 56 Cell Lines
(A) All transcripts, alphabetically, in cell lines.

(B) Transcripts with a particularly low Gini coefficient in cell lines.

(C) Inverse relationship between Gini index and median expression level in cell lines.

(D) Distribution in cell lines of Gini coefficients in the three classes.

(E) PCBP1 expression in different cell lines.
also illustrate its distribution in several tissues in Figure 6F. This

makes a very strong case for it being a highly useful reference or

housekeeping gene.
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Cell Lines

The overall data are broadly similar for cell lines (Figure 7A,

although the expression of zinc fingers is less homogeneous



than in the tissues). However, the genes with the lowest GC

(Figure 7B) are mostly very different from those in tissues.

Note that SLC4A1AP that appears is an adaptor protein for

SLC4A1 (a chloride-bicarbonate exchanger, commonly known

as band 3 protein), so it is not itself a true SLC (and it did not

appear in Figure 3B). The gene whose expression showed the

very lowest GC, SF3B2 (UniProt Q13435), is a subunit of an

RNA splicing factor, while NXF1 (UniProt Q9UBU9) is a nuclear

export factor, and RBM45 (UniProt Q8IUH3) an RNA binding

protein 45. It is entirely reasonable that these might be ex-

pressed in all cells, and evidently at a fairly constant level. Over-

all, we conclude that the GeneGini approach is capable of

finding novel housekeeping genes to act as references for mi-

croarrays and for qPCR, and will be particularly beneficial in

studies employing several differentiated cell/tissue types. There

is again a correlation between the Gini index and median

expression level (r2 = 0.67) (Figure 7C). Overall, we find that

8.5% of SLCs, 16% of ABCs (including two F-family members),

and 18% of other genes have a GC below 0.25, while those

above 0.75 are ABC 32%, SLC 25%, and other 19%. Again,

there is a significantly greater heterogeneity among transporter

genes than among other genes when taken as a whole (Fig-

ure 7D). Finally, Figure 7E shows the expression profile of

PCBP1 in cell lines; again the overwhelming majority is within

a 2-fold range, indicating its excellent candidature as a novel

reference gene.

Discussion
The present paper has highlighted at least three main areas.

First, we exploit the GC as a novel, convenient, and easily under-

standablemetric for reflecting how unequally a given transcript is

expressed in a large series of tissues or cell lines. In contrast to

its usual use in economics, where it ranges from �0.25 to �0.51

in different countries, the Gini index here ranged from as low as

0.11 to as high as 0.98, reflecting in the latter case virtually

unique expression in a particular tissue. In many cases, the

biology underpinning this is quite opaque, but the purpose of

data-driven studies is to generate rather than to test hypotheses

(Kell and Oliver, 2004). We also recognize here that we have paid

relatively little attention to the distribution of transporters within

different tissues and their potential cell-type-specific distribution

within an organ (e.g., Bahar Halpern et al., 2017), where they pre-

sumably account for the very striking intra-organ distributions of

drugs (e.g., Römpp et al., 2011); that will have to be a subject for

further work.

A second chief area of interest is the distribution of trans-

porters between different tissues. A detailed analysis showed

that they tended to have significantly higher GCs than did other

gene families. This illustrates the point that despite the fact that

their substrates are almost uniformly available via the blood-

stream, and biochemistry textbooks and wallcharts largely

show this, they clearly use substrates differentially (ergothio-

neine and the SLC22A4 transporter being a nice example;

Gr€undemann et al., 2005). It also implies strongly that in many

cases we do not in fact know the natural substrates, many of

which are clearly exogenous (O’Hagan and Kell, 2017b).

The third main recognition is that the Gini index provides a

particularly useful, convenient, non-parametric, and intelligible

means of identifying those genes whose expression profile
varies least across a series of cells or tissues, thus providing a

novel and convenient strategy for the identification of those

reference or housekeeping genes best used as genes against

which to normalize other expression profiles in a variety of

studies. We have here highlighted quite a number that have

not previously been so identified.

Overall, we consider that assessing the Gini index for the dis-

tribution of particular transporters and other proteins between

different cells has much to offer the development of novel

biology; it should prove a highly useful addition to the armory

of both the systems biologist and the data analyst.
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Hediger, M.A., Clémençon, B., Burrier, R.E., and Bruford, E.A. (2013). The

ABCs of membrane transporters in health and disease (SLC series): introduc-

tion. Mol. Aspects Med. 34, 95–107.

Hoerndli, F.J., Toigo, M., Schild, A., Götz, J., and Day, P.J. (2004). Reference
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Software and Algorithms Gini coefficient https://CRAN.R-project.org/package=ineq

RESOURCE: Cell Atlas, cell line RNA-seq data Human Protein Atlas https://www.proteinatlas.org/download/rna_celline.tsv.zip

RESOURCE: Tissue Atlas, tissue RNA-seq data Human Protein Atlas https://www.proteinatlas.org/download/rna_tissue.tsv.zip
CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Douglas B. Kell (dbk@

manchester.ac.uk).

METHOD DETAILS

The expression profile data are not new; themeans bywhich theywere obtained is described elsewhere (Thul et al., 2017; Uhlén et al.,

2015). mRNA sequencing was performed on Illumina HiSeq2000 and 2,500 platforms (Illumina, San Diego, CA, USA) using the

standard Illumina RNA-seq protocol with a read length of 2x100 bases. Transcript abundance estimation was performed using

Kallisto (Bray et al., 2016) v0.42.4. For each gene, we report the abundance in ’Transcripts Per Million’ (TPM) as the sum of the

TPM values of all its protein-coding transcripts. For each cell line and tissue type, the average TPM values for replicate samples

were used as abundance score. Thus each transcript level does represent an absolute value, but it is then normalised to the total

expression in the particular sample. The data were extracted and extended in the form of Microsoft Excel sheets (Raw SLC and

ABC data in Tables S1 and S2).

Most of the analyses are self-explanatory, but are noted below. As in many of our cheminformatics analyses (e.g. (O’Hagan and

Kell, 2017a; O’Hagan et al., 2015)) we used the freely available KNIME software environment (Berthold et al., 2008; O’Hagan and Kell,

2015; O’Hagan et al., 2015) (http://knime.org/), with visualisation often provided via the Tibco Spotfire software (Perkin-Elmer

Informatics).

Gini Index
The Gini Index was calculated using the ineq package (Achim Zeileis (2014). ineq: Measuring Inequality, Concentration, and Poverty.

R package version 0.2-13. https://CRAN.R-project.org/package=ineq) in R (https://www.R-project.org/). These calculations were

incorporated into KNIME via KNIME’s R integration R Snippet node. The Rank Correlation used was Spearman’s rho, using the

KNIME Rank Correlation node.

Minimum and Maximum Expression Profiles
These and the other similar analyses were done using the functions contained in MS-Excel.

Immunohistochemistry

Immunohistochemical (IHC) images detailing protein expression patterns in 48 different normal tissues and 20 common cancer types

are from the Human Protein Atlas database (www.proteinatlas.org). Tissue microarrays, immunostaining and image evaluation was

performed as previously described (Uhlén et al., 2015). Briefly, 1mm duplicate cores were used for immunostaining using the

following antibodies: HPA024575 for SLC22A12, HPA011885 for SLC6A18, HPA006539 for SLC2A14 (all from the Human Protein

Atlas) and CAB037113 for PCBP1 (R1455 from Sigma-Aldrich). The immunostaining intensity and pattern was manually evaluated

and scored by certified pathologists.

QUANTIFICATION AND STATISTICAL ANALYSIS

For each cell line and tissue type, the average TPM values for replicate samples were used as abundance score.

DATA AND SOFTWARE AVAILABILITY

The data on which we base our analyses are all available online at https://www.proteinatlas.org/about/download (and see Key

Resources Table).
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SUPPLEMENTARY INFORMATION 

The extra subsetted data that we give in the Supplementary Information are as follows:   

Supplementary Table S1. Related to Fig 1. Expression profiles of the SLC transporters. 
Separate XL File: Supplementary Table S1 SLC_transporters_RNA_data_HPA.xlsx 

Supplementary Table S2. Related to Fig 4. Expression profiles of the ABC transporters. 
Separate XL File:  Supplementary Table S2 ABC_transporters_RNA_data_HPA.xlsx 

Supplementary Table S3. Related to STAR Methods.  A previously proposed set of useful 
reference genes, annotated here with their correct names and Uniprot IDs, together with 
their median expression levels and Gini indices in tissues as determined in this work. 

Supplementary Table S4. Related to STAR Methods. Some genes that have previously 
been proposed as housekeeping or reference genes.  

Supplementary Figures.  

S1 (Relates to Fig 1.) Expression profiling of various SLC transporters in 59 tissues. 
Minimum and maximum expression levels of various SLCs in the 59 tissues considered 
(those with undetectable expression (i.e. <0.01 TPM, coded as zero) are not shown).  

S2. (Relates to Fig 1.) Expression profiling of various SLC transporters in 59 tissues. The 
expression level of SLC35A4 is relatively homogeneous, with ¾ of all tissues within a factor 
two.  

S3. (Relates to Fig 1.) Expression profiling of various SLC transporters in 59 tissues. The 
expression levels of SLC35F2 vary much more considerably, by a range of ~200 in these 59 
tissue types.  

S4. (Relates to Fig 1.) Expression profiling of various SLC transporters in 59 tissues. 
Expression profile of the transcripts for SLC22A4.  

S5. (Relates to Fig 2.) Zoomed-in version of cluster 1 of Figure 2.  

S6. (Relates to Fig 2.) Zoomed-in version of cluster 2 of Figure 2.  

S7. (Relates to Fig 2.) Zoomed-in version of cluster 3 of Figure 2.  

S8. (Relates to Fig 2.) Zoomed-in version of cluster 4 of Figure 2.  

 

  



 

Gene name Protein name Uniprot 
ID 

Gini 
index in 
tissues 

Median 
expression 
level (TPM) 

C1orf43 Chromosome 1 open reading frame 43 Q9BWL3 0.204 137 

CHMP2A Charged multivesicular body protein 
2A 

O43633 0.141 126 

EMC7 ER membrane protein complex 
subunit 7 

Q9NPA0 0.210 69 

GPI Glucose-6-phosphate isomerase P06744 0.259 137 

PSMB2 Proteome subunit beta type 2 P49721 0.186 32 

PSMB4 Proteome subunit beta type 4 P28070 0.200 209 

RAB7A RAS-related protein 7A P51149 0.171 167 

REEP5 Receptor expression-enhancing 
protein 5 

Q00765 0.315 65 

SNRPD3 Small nuclear ribonucleoprotein Sm 
D3 

P62318 0.192 55 

VCP Transitional endoplasmic reticulum 
ATPase (originally valosin containing 
protein) 

P55072 0.198 48 

VPS29 Vacuolar protein sorting associated 
protein 29  

Q9UBQ0 0.146 74 

Supplementary Table S3. A previously proposed set of useful reference genes, annotated 
here with their correct names and Uniprot IDs, together with their median expression levels 
and Gini indices in tissues as determined in this work. 

  



Gene Protein Uniprot ID Gini index 
GAPDH  Glyceraldehyde 3-

phosphate 
dehydrogenase 

P04406 0.344 

LDHA Lactate 
dehydrogenase 
subunit A 

P00338 0.32 

SDHA Succinate 
dehydrogenase 
subunit A 

P31040 0.308 

HRPT1 Hypoxanthine 
phosphoribosyl 
transferase 1 

P00492 0.277 

HBS1L HBS1-like protein Q9Y450 0.184 
OAZ1 Ornithine 

decarboxylase 
antizyme 1 

P54368 0.202 

PPIA1 Peptidyl-prolyl cis-
trans isomerase 

P62937 0.24 

AHSP Alpha-haemoglobin 
stabilising protein 

Q9NZD4 0.97 

B2M β2-microglobulin P61769 0.349 
ACTB β-actin P60709 0.291 
HMBS Porphobilinogen 

deaminase 
P08397 0.303 

UBC Polyubiquitin C P0CG48 0.183 
POLR2F DNA-directed RNA 

polymerases I, II, 
and III subunit 
RPABC2 

P61218 0.235 

GUSB β-glucuronidase P08236 0.25 
TBP TATA-box binding 

protein 
P20226 0.22 

YWHAZ 14-3-3 protein 
zeta/delta 

P63104 0.255 

 

Supplementary Table S4. Some genes that have previously been proposed as 
housekeeping or reference genes. 

  



 

 

Supplementary Fig S1 (Relates to Fig 1.) Expression profiling of various SLC transporters 
in 59 tissues. Minimum and maximum expression levels of various SLCs in the 59 tissues 
considered (those with undetectable expression (i.e. <0.01 TPM, coded as zero) are not 
shown).  

  



 
Supplementary Fig S2. (Relates to Fig 1.) Expression profiling of various SLC transporters 
in 59 tissues. The expression level of SLC35A4 is relatively homogeneous, with ¾ of all 
tissues within a factor two. 

 

  



Supplementary Fig S3. (Relates to Fig 1.) Expression profiling of various SLC transporters 
in 59 tissues. The expression levels of SLC35F2 vary much more considerably, by a range 
of ~200 in these 59 tissue types.  

 

  



 

 

 

Supplementary Fig S4. (Relates to Fig 1.) Expression profiling of various SLC transporters 
in 59 tissues. Expression profile of the transcripts for SLC22A4.  

 

  



 

Supplementary Fig S5. (Relates to Fig 2.) Zoomed-in version of cluster 1 of Figure 2.  

 

  



 

 

Supplementary Fig S6. (Relates to Fig 2.) Zoomed-in versions cluster2 of Figure 2.  

 

  



 

Supplementary Fig S7. (Relates to Fig 2.) Zoomed-in version cluster 3 of Figure 2.  

 

  



 

 

 

 

Supplementary Fig S8. (Relates to Fig 2.) Zoomed-in version of cluster 4 of Figure 2.  
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