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Abstract

Background: Illumina paired-end sequencing has been increasingly popular for
16S rRNA gene-based microbiota profiling. It provides higher phylogenetic
resolution than single-end reads due to a longer read length. However, the reverse
read (R2) often has significant low base quality and a large proportion of R2s will
be discarded after quality control, resulting in a mixture of paired-end and
single-end reads. A typical 16S analysis pipeline usually processes either
paired-end or single-end reads but not a mixture. Thus, the quantification
accuracy and statistical power will be reduced due to the loss of a large amount
of reads. As a result, rare taxa may not be detectable with paired-end approach
or low taxonomic resolution will be resulted with single-end approach.

Findings: To have both the higher phylogenetic resolution provided by
paired-end reads and the higher sequence coverage by single-end reads, we
propose a novel OTU-picking pipeline, hybrid-denovo, that can process a hybrid
of single-end and paired-end reads. Using high quality paired-end reads as a “gold
standard”, we show that hybrid-denovo achieved the highest correlation with the
“gold standard” and performed better than the approaches based on paired-end
or single-end reads in terms of quantifying the microbial diversity and taxonomic
abundances. By applying our method to a rheumatoid arthritis (RA) data set, we
demonstrated that hybrid-denovo captured more microbial diversity and identified
more RA-associated taxa than paired-end or single-end approach.

Conclusions: Hybrid-denovo utilizes both paired-end and single-end 16S
sequencing reads, and is recommended for 16S rRNA gene targeted paired-end
sequencing data.

Keywords: microbiome; OTU picking; 16S rRNA

Introduction
The microbiome plays an important role in global ecology, nutrient cycling, and

disease [1]. Targeted sequencing of the hypervariable region of the 16S rRNA gene

is now routinely used to profile microbiota. Identifying related groups of organ-

isms known as operational taxonomic units or OTUs remains a central part of the

analysis of microbiome data. Both de novo and reference-based approaches have

been proposed for processing 16S rDNA reads - each with complementary strengths

and weaknesses. De novo OTU-picking naively clusters reads based on sequence

similarity. It has the advantages of not requiring any prior knowledge or reference

about the target molecule, and produces OTU groupings that are more naturally

Manuscript Click here to download Manuscript bmc_article.tex 
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aligned to the data. However, de novo approaches require comparison of the same

gene region. Reference-based approaches can get around this limitation, but rely on

a pre-existing set of OTU representatives that may or may not be appropriate for

a particular dataset [2].

To perform a de novo approach, one of the challenges presented by Illumina

paired-end reads is that the reverse read (R2) often has a much lower base quality

than the forward read (R1). For the 16S datasets generated at the Mayo Clinic Core

Facility, only 24% of R2s passed quality control (QC) between 2013-2015 as opposed

to 83% for R1s (Supplementary Fig. 1). We are then left with a smaller set of high-

fidelity paired-end reads (R1- R2) and a deeper set of single-end reads (R1). Thus,

we would have to choose between the more accurate taxonomic identification using

R1-R2 or improved detection of rare taxa using R1[3]. To integrate information

from both paired-end and single-end reads, we propose hybrid-denovo, a pipeline

that combines paired-end and single-end reads in order to retain the advantages of

de novo OTU-picking while maximizing ability to detect rare taxa.

Methods
Hybrid-denovo first constructs an OTU backbone using only paired-end reads. The

remaining single-end reads (R1) are mapped to the OTU backbone, creating new

OTUs if unmapped (Fig. 1A). The same quality control and OTU-picking process

as implemented in IM-TORNADO is used to build the OTU backbone [3]. Specif-

ically, quality filtering was performed using Trimmomatic [4] with a hard cutoff of

PHRED score Q3 for 5’ and 3’ ends of the reads, trimming of the 3’ end with a

moving average score of Q15, with a window size of 4 bases, and removing any

remaining reads shorter than 75% of the original read length. Reads with any am-

biguous base calls were discarded. Surviving read pairs were further trimmed down

to specified cutoffs to uniform the length of both reads, then concatenated and

sorted by cluster size. Afterwards a de novo OTU-picking was conducted via UP-

ARSE algorithm [5, 6]. Though UPARSE algorithm has performed de novo chimera

removal, we additionally used UCHIME [7] to perform a reference based chimera re-

moval against GOLD database (https://drive5.com/uchime/gold.fa), resulting in a

set of high quality OTU representatives. We then mapped the single-end R1s to the

R1-end of the OTU representatives using USEARCH (if there are multiple hits with

the same score, the most abundant one will be chosen by default). The remaining

unmapped R1s were clustered into new OTUs via UPARSE algorithm and added to

the list of OTUs generated by the paired-end reads. Thus, the OTU representatives

consist of a mixture of single-end and paired-end reads. We then aligned all the

OTU representatives using the structure alignment algorithm Infernal trained on

the Ribosomal Database Project’s (RDP) database [8, 9]. OTU representatives that

were not aligned were removed since they hypothetically represented non-bacteria.

A phylogenetic tree was built from the aligned OTU representatives using FastTree

[10]. FastTree has little penalty on end-gaps, which is favorable when processing a

mixture of single-end and paired-end reads. Finally, R1 and R2 reads were stitched

together with ambiguous nucleotides (a string of “N”s) in between and then as-

signed a taxonomy by the RDP classifier [11] trained on the Greengenes database

(http://greengenes.secondgenome.com/). OTUs not classified as Bacteria and sin-

gleton OTUs were removed as they were presumed contaminants. Note that this
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step may have lost diversity that is not represented in the database and is a tradeoff

between accuracy and completeness. The complete workflow of our pipeline is given

in Supplementary Fig. 2.

To validate our approach, we created a “gold standard” data set with high-quality

paired-end reads based on the 837 high-coverage human fecal samples sequenced at

the Mayo Core Facility (V3-V5 16S amplicon, 694 nt, 357F/926R primers) [12].

These fecal samples were collected from 20 subjects using 6 different methods (no

additive, RNAlater, 70% ethanol, EDTA, dry swab, and fecal occult blood test

(FOBT)). The samples were immediately frozen or stored in room temperature for

four days to study the stability of the microbiota. Each condition had 2-3 technical

replicates to assess the reproducibility. We ran Trimmomatic [4] for quality control

and trimmed R1s down to 250bp and R2s down to 200bp to ensure high base quality,

resulting in non-overlapping paired-end reads. For each sample, we retrieved 8,000

high-quality paired-end reads. We then performed OTU-picking and taxonomy as-

signment based on these paired-end reads using IM-TORNADO. These resulting

OTUs and their associated taxonomy constitute the “gold standard” dataset. We

then subset the “gold standard” with 25%, 50% and 75% of R2 reads remaining.

The three sub data sets represented different levels of R2 quality encountered in

practice. We compared hybrid-denovo to de novo approaches based on single-end

R1s or paired-end reads using the sub data sets. Performance was evaluated by

calculating the Spearman’s correlation with the “gold standard” in terms of micro-

bial β-diversity (unweighted and weighted UniFrac, and Bray-Curtis distance) and

genus-level relative abundances.

We also compared our pipeline to QIIME and mothur (version 1.8.0 and 1.39.3

respectively) [13, 14] on the “gold standard” data set. Since QIIME and mothur

currently do not support de novo OTU-picking based on non-overlapping reads, we

ran QIIME and mothur on the R1 reads. Parameter settings were chosen to be as

comparable to that of hybrid-denovo. Since we created good quality-reads by using

Trimmomatic, we reduced potential variation in performance between pipelines by

not applying additional read QC filters. An RDP classifier trained on Greengenes

v13.5 was used to classify reads for all pipelines. Singletons and non-bacteria OTUs

(based on taxonomy) were filtered out. The major differences between the three

pipelines in addition to the commands used to reproduce the results are documented

in Supplementary Note 1. We assessed performance by investigating (1) the number

of detected genera and percentage of unclassified reads at the genus level, (2) Mantel

correlation using Bray-Curtis matrices, and (3) the intra-class correlation coefficient

(ICC) for these core OTUs and genera observed in more than 90% of the samples.

ICC is a measure of the correlation between the technical replicates. A high value

indicates less measurement error. ICC was calculated using the R ICC package [15].

Finally, we demonstrated the performance of the proposed method on a dataset

from the study of the stool microbiome of RA (rheumatoid arthritis) patients, which

consists of 40 RA patients and 49 controls (V3-V5 16S amplicon, 694 nt) [16]. We

applied DESeq2 to the taxa count data for differential abundance analysis [17] and

compared the RA-associated OTUs and genera recovered by different approaches.

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Chen et al. Page 4 of 9

Results
The correlation of microbial β-diversity with the “gold standard” was generally high

for all the three approaches (Fig. 1B). However, the approach based on single-end

R1 tends to have a lower correlation when BC distance was used (the single-end

R1 approach was invariant to the number of R2s). The paired-end approach, on the

other hand, had a much lower correlation for unweighted UniFrac when only 25%

R2s remain. This is due to the fact that unweighted UniFrac captures community

membership, which is contributed mainly by rare taxa, and many rare taxa are

no longer detectable by the paired-end approach due to loss of reads. In contrast,

Hybrid-denovo was very robust and had the best or close to the best correlation with

the “gold standard” in both diversity measures. For weighted UniFrac distance, the

correlation was similarly high for all the three methods since the weighted UniFrac

is most influenced by dominant taxa and all the methods quantify these dominant

taxa very well (Fig. 1B).

We next studied the performance of taxonomic profiling of the proposed approach.

Based on the 56 genera with prevalence greater than 10%, hybrid-denovo had much

higher correlation with the “gold standard” across all scenarios considered and its

performance was not very sensitive to the percentage of R2 remaining (Fig. 1C).

In contrast, the performance of paired-end approach depends strongly on the R2

quality and had much lower correlation when R2 quality was low. The single-end

R1 approach was invariant to the number of R2s as expected and performed better

than the paired-end approach only when R2 quality was low. Supplementary Fig.

3 showed the individual genus correlations. For the single-end approach, two gen-

era showed zero correlation with the “gold standard” because all of their R1 reads

were re-classified at the family level due to their short length (Lachnobacterium

mapped to Ruminococcaceae and Erwinia mapped to Enterobacteriaceae), indicat-

ing the increased phylogenetic resolution using paired-end reads. For the paired-end

approach, genera with low-abundance exhibited a lower correlation, indicating the

decreased quantification accuracy due to loss of paired-end reads.

We also compared hybrid-denovo to mothur and QIIME, the two pre-dominant

pipelines for 16S data, based on the “gold standard” data set. Mothur and QI-

IME took around 24 and 6 hours respectively to complete the analysis of the “gold

standard” dataset (n=837), compared to around 1 hour for our pipeline. Mothur

and QIIME produced a total of 4,599 and 2,898 non-singleton OTUs respectively

while hybrid-denovo produced 1,094, 1,086, 1,079 and 1,049 non-singleton OTUs

on data sets with different percentages of good quality R2 reads (100%, 75%, 50%

and 25%). Though our pipeline resulted in a smaller number of OTUs, we detected

a larger number of genera than mothur and QIIME. For example, application of

hybrid-denovo to the data set with 50% good quality R2 reads yielded a total of 110

genera, compared to 70 and 84 for QIIME and mothur respectively (Fig. 2, upper

right, Venn diagram). Using BLAST on the paired-end counterparts of the QIIME

and mothur-specific genera (classified based on R1 reads) against the Greengenes

database re-assigns many of the reads to other genera. This indicates that those

genera were probably misclassified due to shorter reads. Though the genus-level

microbiota profiles for the 20 subjects were similar for all the pipelines (Fig. 2),

hybrid-denovo had a much lower proportion of reads with unknown genus identity
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(5%) than mothur and QIIME (14% and 18% respectively). Taken together, these

observations demonstrated that hybrid-denovo had increased taxonomic resolution

due to the use of longer reads. Interestingly, all the pipelines could yield similar

inter-sample relationship as measured by Mantel correlation coefficients based on

Bray-Curtis distance matrices (Table 1). The availability of technical replicates of

the data set allows us to compare different pipelines using intra-class correlation

coefficients (ICCs). A high ICC indicates less variability introduced by the bioin-

formatics pipeline. We calculated the ICCs for different fecal collection methods

for the core OTUs and genera, which occurred in more than 90 % of the samples.

Our pipeline generally had higher ICCs (less variation between technical replicates)

than mothur and QIIME (Fig. 3). In contrast, mothur and QIIME did not perform

as well on the core OTUs and genera respectively.

We also applied our method to a dataset from a RA study [16], where about

40% R2s were discarded after quality control (Supplementary Table 1). Hybrid-

denovo resulted in the largest number of OTUs and genera as expected (Fig. 4A),

and covered all genera from paired-end approach and the majority genera from

single-end R1 approach (Fig. 4C). Among the five R1-specific genera, Bacteria

Firmicutes Clostridia Clostridiales Clostridiaceae 02d0 and Bacteria Firmicutes

Clostridia Clostridiales Clostridiaceae Sarcina were re-classified to Bacteria Fir-

micutes Clostridia Clostridiales Clostridiaceae Clostridium when their paired-end

counterparts were used, indicating that the R1-specific genera were mis-classified

due to their short read length.

Besides the comparison of the detected genera, we also demonstrated the advan-

tage of hybrid-denovo in the context of differential abundance analysis using DESeq2

[17]. We excluded OTUs that occurred in less than 10% samples from testing. A

total of 758, 578 and 393 OTUs were tested using hybrid-denovo, paired and R1

approaches, respectively. Due to higher read counts and increased phylogenetic res-

olution, hybrid-denovo recovered more differential OTUs (Fig. 4B). We identified

a total of 126 significant OTUs at an FDR-adjusted P value of 0.01 compared to

93 and 80 OTUs for paired-end and single-end R1 approaches, respectively. Since

different methods had their own definition of OTUs and direct comparison of the

differential OTUs is difficult, we instead compared the genus identity of the identi-

fied OTUs. The differential OTUs identified by hybrid-denovo were classified into 33

genera, in comparison to 32 and 34 for the paired-end and single-end R1 approaches

(Fig. 4B). There were 20 significant genera shared by all three methods (Fig. 4D),

many of which were reported by previous studies [16, 18, 19]. For example, Bac-

teroides is enriched in control samples, while Collinsella, Eggerthella, Prevotella

and Clostridium are enriched in RA samples. Even though the total number of dif-

ferential genera were similar for all the methods, hybrid-denovo identified the most

genera (n=11) that were shared by either one of the other two approaches, compared

to 6 and 9 for paired-end and single-end R1 approach, indicating that the hybrid-

denovo approach was able to identify differential genera that were otherwise missed

by either paired-end or single-end R1 approach. Furthermore, hybrid-denovo had

the least number of method-specific genera (n=2) in contract to paired-end (n=6)

and R1 single-end (n=5). The method-specific genera might be less reliable due

to lack of the support from other methods. For example, R1 approach found Veil-

lonella to be enriched in control samples, which is conflict with a previous study
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[18]. Interestingly, among the two of the hybrid-denovo specific genera, Klebsiella,

which was enriched in healthy people, was reported by Zhang et al. [19].

Discussion
We proposed hybrid-denovo for de novo OTU-picking based on paired-end 16S se-

quence tags. Through simulations and real data examples, we showed that our

approach had better performance than single-end or paired-end approach in quan-

tifying the microbial diversity and taxonomic abundance, due to the full use of the

information in the paired-end reads.

Based on the size of 16S amplicons and the length of the paired-end reads, we could

have overlapping or non-overlapping paired-end reads. For example, sequencing of

the V4 region (252 nt, 515F/806R primers) produces overlapping paired-end reads

while sequencing of the V3-V5 region (694 nt, F357/R926 primers) results in non-

overlapping paired-end reads using Illumina MiSeq (250 bp ×2). Since QIIME and

mothur currently do not support de novo OTU-picking based on non-overlapping

paired-end reads, the main advantage of our pipeline lies in the ability to process

non-overlapping paired-end reads. However, our pipeline could also be applied to

overlapping paired-end reads by using PANDAseq [20] to stitch the paired-end reads

together. It is noted that some existing pipelines could also process a mixture of

paired-end and single-end reads with different capacities. For example, the recently

proposed LotuS pipeline uses good-quality R1 reads to build OTUs, followed by

a post-clustering merging of R1 and R2 to increase the accuracy of the taxonomy

[21]. However, the OTU-level resolution is still determined by R1 reads.

There are new pipelines that have been developed for 16S data. It is interesting

to benchmark hybrid-denovo against these state-of-the-art pipelines. We selected

DADA2 and LotuS [21, 22] for comparison since they have been demonstrated to

have an overall better performance than QIIME and mothur and have been in-

creasingly used by the community. We repeated the same analysis on the “gold

standard” data set with complete read pairs. The specific command lines used for

DADA2 and LotuS are documented in Supplementary Note 1. DADA2 produced

18,389 sequence variants (SVs) while LotuS produced 472 OTUs. The Mantel cor-

relation on the OTU/SV-level Bray-Curtis distance is high between hybrid-denovo

and LotuS (ρ=0.93) but moderate between hybrid-denovo and DADA2 (ρ=0.71).

Interestingly, the Mantel correlation on the genus-level Bray-Curtis distance is high

between all methods (ρ>0.97), indicating all methods could produce similar genus-

level profiles (Supplementary Fig. 4). Similar ICC analysis demonstrated that all

the methods had relatively high ICCs but hybrid-denovo had overall the best per-

formance (Supplementary Fig. 5).

One problem for de novo OTU-picking is the potential inflated OTU number,

which could be due to sources such as sequencing errors, chimera and environmental

contaminant [6]. In hybrid-denovo, we used various quality filtering criteria to reduce

the number of spurious OTUs. For example, we applied Trimmomatic [4] to trim

and remove reads with low base quality, removed reads with any ambiguous bases,

removed singleton OTUs, used the Infernal package [8] to remove non-structurally

aligned OTUs and used reference-based UCHIME as an additional chimera removal

process[6]. However, even these filters might fall short of reducing inflated diversity
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estimate due to unknown sequencing errors. Improving the diversity estimate from

hybrid-denovo will be the focus of our future work.
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Additional file 1 — Supplementary Figure 1

Percentage of reads remaining after QC 2013-2015 in Mayo Clinic Sequencing Core Facility

Additional file 2 — Supplementary Figure 2

Hybrid-denovo workflow
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Figure 1 Overview and evaluation of the Hybrid-denovo approach. A. Hybrid-denovo
illustration. B. Mantel correlation of β-diversity distance matrices (Unweighted UniFrac, Weighted
UniFrac and Bray-Curtis distance) with the “gold standard” for the three approaches at different
percentages of good-quality R2 reads. Error bars represent standard errors of the estimate based
on 100 bootstrap samples. C. Boxplot of correlations of the relative abundances of 56 prevalent
genera with the “gold standard”.

Figure 2 Comparison of mothur, QIIME and Hybrid-denovo on genus-level profiles.
Hybrid-denovo are run on data sets with different percentages of good quality R2 reads (100%,
75%, 50% and 25%). Each column represents the microbiota profile of an individual averaged
over all replicates. The overlaps of detected genera between the three pipelines are shown in the
Venn diagram.

Figure 3 Comparison of mothur, QIIME and Hybrid-denovo on intra-class correlation
coefficients (ICCs) of the core genera (A) and OTUs (B). ICCs are calculated based on the
technical replicates for six different fecal collection methods. Hybrid-denovo are run on data sets
with different percentages of good quality R2 reads (100%, 75%, 50% and 25%).

Figure 4 Comparison of the R1, Paired and Hybrid approaches on the RA dataset. A. Number
of detected OTUs (red) and genera (blue). B. Number of significant OTUs (red) and genera
(blue) from differential abundance analysis (FDR≤ 0.01). C. Venn diagram of the genera
detected. D. Venn diagram of significant genera from differential abundance analysis.

Table 1 Mantel correlations of inter-sample distances between QIIME, mothur and
Hybrid-denovo. Bray-Curtis distance matrices on the OTU data are used. Hybrid-denovo are run on
data sets with different percentages of good quality R2 reads (100%, 75%, 50% and 25%). Top right:
Mantel correlation P value based on 1,000 permutation; bottom left: Mantel correlation coefficients.

Mothur QIIME Hybrid(100%) Hybrid(75%) Hybrid(50%) Hybrid(25%)
Mothur - < 0.001 < 0.001 < 0.001 < 0.001 < 0.001

QIIME 0.884 - < 0.001 < 0.001 < 0.001 < 0.001
Hybrid (100%) 0.986 0.879 - < 0.001 < 0.001 < 0.001

Hybrid (75%) 0.973 0.909 0.985 - < 0.001 < 0.001

Hybrid (50%) 0.973 0.928 0.982 0.984 - < 0.001
Hybrid (25%) 0.955 0.949 0.960 0.980 0.985 -

Additional file 3 — Supplementary Figure 3

Correlations of 54 prevalent genera (>10%) to the gold standard

Additional file 4 — Supplementary Figure 4

Comparison of DADA2, LotuS and Hybrid-denovo on genus-level profiles. All pipelines are run on data sets with

100% good quality R2 reads (“gold standard”). Each column represents the microbiota profile of an individual

averaged over all replicates.

Additional file 5 — Supplementary Figure 5

Comparison of DADA2, LotuS and Hybrid-denovo on intra-class correlation coefficients (ICCs) of the core genera

(A) and OTUs (B). ICCs are calculated based on the technical replicates for six different fecal collection methods.

All pipelines are run on data sets with 100% good quality R2 reads (“gold standard”).

Additional file 6 — Supplementary Table 1

Number of reads for the RA dataset after quality control

Additional file 7 — Supplementary Note 1

Details of the steps and parameter settings used for comparing hybrid-denovo, QIIME and mothur. Command lines

to run the pipelines including DADA2 and LotuS are supplied for transparency.

Availability and requirements

Project name: Hybrid-denovo (https://scicrunch.org/SCR 015866)

Project home page: http://bioinformaticstools.mayo.edu/research/hybrid-denovo/

Operating system(s): Linux (centOS 6 is prefered)

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Chen et al. Page 9 of 9

Programming language: Python 2.7, Java and shell script.

Other Requirements: QIIME and python libraries: biom-format (ver 1.3.1), bitarray (ver 0.8.1), pyqi (ver 0.2.0),

numpy (ver 1.8.1) and biopython (ver 1.66).

License: Modified BSD.

Any restrictions to use by non-academics: None.

Availability of supporting data

The example files and additional data sets supporting the results of this article are available in the GigaScience

Database[23], as well as from the project home page.
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