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Supplementary Note 1: Topological properties of the SSH chain with loss and gain.  

The notion of topology deals with how discrete features (such as a quantized phase) can 

change under smooth deformations. Expanding the parameter space by considering more 

complex systems having more additional degrees of freedom can either spoil the 

discreteness of the topological features or make different values effectively 

indistinguishable. It is thus not possible to make an intuitive leap by assuming that 

topological robustness persists when new ingredients are added to an otherwise 

topologically protected system. In our experiment, the topological array is, by definition of 

a laser, active and also nonlinear. This in turn necessitates to revisit the topological 

concepts in this system. Given these observations, we first recapitulate the topological 

characterization of the Su-Schrieffer-Heeger (SSH) model in the original Hermitian 

electronic setting1-3 and then explain how this extends to non-Hermitian photonic systems 

with loss and gain4.  

 

Standard (passive) scenario 

The original SSH model can be phrased as a set of coupled-mode equations, 

11"' −−+= nnnn
n BtBt

dt
dAi ,                                                (1) 

1"' ++= nnnn
n AtAt

dt
dBi ,                                                 (2) 

where An and Bn represent amplitudes on the two sites in the nth dimer, and 'nt  and  "nt are 

the effective couplings within and to the next dimer, which we assume to be real and 

positive. In an infinitely periodic chain with fixed '' ttn =  and "' ttn =  (e.g. taking the values  

t1 or t2 from the experiment) we can separate out the periodic time and space dependence, 

)exp( ikntiAAn +−= ω , )exp( ikntiBBn +−= ω which leads to a dispersion of two 

symmetric bands ktttt cos"'2"' 22 ++±=ω that are separate by a gap of size |"'|2 tt −=∆ . 

The symmetry of the spectrum arises from the operation nnnn BABA −→ ,, , whose effect is 

equivalent to inverting all couplings and therefore changes the sign of the effective 

Hamiltonian H, with elements 

odd, is  if ,'' 1,,1 nttH mnnmnnnm ++ += δδ                                     (3) 
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even. is  if ,"" 1,,1 nttH mnnmnnnm ++ += δδ                                    (4) 

In other words, chiral symmetry implies the existence of an operator χ such that 

HH −=−1χχ ,thus forcing the spectrum to be symmetric around the zero line. In our case, 

such an operator χ corresponds to a unitary transformation 

HH zz −=σσ ,                                                        (5) 

 where zσ  is a Pauli matrix in the space of A and B sites, and constitutes a chiral 

symmetry1,3.  

This spectral constraint goes along with a constraint of the wave functions: all 

extended states have equal amplitudes |A| = |B| on both sublattices, which means that their 

intra-dimer polarization P = |A|2 - |B|2 vanishes. Therefore, )exp()exp("' ϕ
ω

iiktt
B
A

=
+

=  

defines a complex phase φ which depends on k. As one inspects the change of the phase 

through the Brillouin zone, one then encounters two scenarios: for "' tt <  this phase 

increases by 2π (winding number 1), while for "' tt >  the phase returns to 0 (winding 

number 0). The transition at "' tt =  between both cases coincides with the closing of the 

gap.  

In a semi-infinite system 0≤n  𝐵𝐵with boundary condition B0 = 0,this winding 

number determines the existence of edge states1. This follows from the behaviour of the 

complex reflection coefficient 
iAB
iBAr

+
+

=  at energies within the gap, where one encounters 

evanescent modes with k = iκ  that decay away from the interface. The winding numbers 

of the bulk solutions fix the reflection coefficient at the band edges to symmetry-protected 

values; for "' tt <  the coefficient r winds from 1 at the lower edge of the gap to -1 at the 

upper edge, while for "' tt > the winding proceeds from -1 to 1.Causality implies that 

between these values, the reflection coefficient monotonously turns into the counter-

clockwise direction, so that only in the case "' tt >  it passes through the boundary condition 

r = -i. Spectral symmetry dictates that this solution sits at ω = 0.Note that this zero-mode 

has a finite polarisation P = 1. Furthermore, perturbations of the couplings do not affect 

the chiral symmetry and do not change the winding numbers, given that the start and end 

points are protected by symmetry. The zero-mode therefore exists even when the system is 

not exactly periodic. Indeed, it also exists when the hard termination is replaced by a weak 



4 
 

coupling to another SSH chain supporting the decay into the opposite direction (hence a 

different winding number), which is equivalent by reflection symmetry and results in the 

interface defect state utilized in the experiment. 

 

Non-Hermitian case 

The presence of gain and loss modifies the coupled-mode equations so that they read 

nnnnnn
n AigBtBt

dt
dAi A

11"' ++= −− ,                                      (6) 

nnnnnn
n BigAtAt

dt
dBi B

11"' ++= +− ,                                       (7) 

where A
ng , B

ng  describe the gain (loss if negative). The effective Hamiltonian now also 

contains complex diagonal elements 

odd, is  if ,A nigH nnn =                                                  (8) 

even, is  if ,B nigH nnn =                                                 (9) 

which render it non-Hermitian. These terms change sign if one includes a complex 

conjugation, that is, an operator η  such that ∗−= HHηη . In the non-Hermitian case 

described by Supplementary Equations (6) and (7), such an operator η  also corresponds to 

the Pauli matrix zσ  in the space of A and B sites, leading to the notion of a non-Hermitian 

charge-conjugation symmetry 
∗−= HH zz σσ ,                                                    (10)  

which constraints the spectrum to be symmetric about the imaginary axis4,5. In an infinitely 

periodic chain the system still possesses two bands, which remain real as long as 

|||"'| BA ggtt −>− .As before, all extended states still have equal amplitudes |A| = |B| on both 

sublattices, so that we can once more inspect the winding of A/B = exp(iφ). Depending on 

the sign of "' tt − ,this results in the same winding numbers as before, which also fixes the 

trajectory of the  reflection coefficient 
||
||

iBA
iAB

iAB
iBAr

+
+

⋅
+
+

=   (now normalized to conserve 

the probability flux), and thus the existence of edge states. Besides a finite polarization, 

this mode now exhibits another distinct feature: its frequency is fixed to ω0 = igA (we 

assume the same termination site as before), i.e. it sits on the symmetry-protected 
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imaginary axis, while all extended states obey Im{ω} = (gA + gB)/2. This difference in life 

time is the key to the topological mode selection, as the zero mode is favoured if gA > gB.  

 

Supplementary Note 2: Nonlinear effects of lasing at the topological state in SSH 

chain. Although it is customary to make linear approximations when discussing laser 

characteristics near lasing threshold, the stabilization of the laser operation (without 

unbounded growth) can be explained only when nonlinear interactions are accounted for.  

However, symmetry consideration under nonlinear conditions can be complex and subtle 

due to the rich effects brought by the breakdown of linear superposition. To establish the 

characteristics of the topological laser device demonstrated in this work, particularly those 

pertinent to the mode competition, we generalize the gain coefficients to include gain 

saturation nonlinearity6: )||1/( 2AA
nnn Agg +→ , )||1/( 2BB

nnn Bgg +→ . Interestingly, even in 

this case, we can formulate a more general charge-conjugation symmetry as a constraint 

on the full dynamical evolution: for any solution An(t), Bn(t) there exists a partner solution 

An
*(t), -Bn

*(t). Stationary states still exhibit a harmonic time-dependence exp(-iωt), where 

ω is now real to signify stabilization at an overall balance between gain and loss. In this 

setting, the zero-modes now emerge as self-symmetric stationary states, which then 

automatically obey ω0 = 0. Therefore, the notion of topological protection also persists in 

the nonlinear case. This observation also opens up the possibility of novel phase transitions, 

due to spontaneous symmetry-breaking and time-dependent states7,8, which in microlasers 

are expected to set in at large gain and are subject to further investigation. 

 

Supplementary Note 3: Mode competition in topological microring lasers with 

multiple transverse modes. The microring resonators used in our experiment have a 

relatively large waveguide cross section with a width of 1 µm (inner and outer ring radii of 

3.5 µm and 4.5 µm) and a height of 720 nm (a 500 nm thick layer of InGaAsP on top of a 

220 nm layer of silicon). This design has two advantages: (1) it increases the lasing 

efficiency by providing a large spatial overlap between the lasing mode and the gain 

material; and (2) it results in bandwidth broadening in the case of a uniform pumping 

scheme (before adding the Cr layer), thus providing us with a spectral fingerprint to clearly 

differentiate between the lasing in the topological and non-topological modes.  
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Supplementary Figure 1a depicts four of the several different TM modes supported 

by the ring structure, including the fundamental TM mode (here labelled as TM11 mode) 

and three higher order modes (TM12, TM21 and TM13 modes). The field profile of the higher 

order modes is less confined inside the ring and thus provides a stronger coupling to the 

corresponding modes in the adjacent ring. As a result, when the Cr layer is added, higher 

order modes exhibit more loss, or equivalently smaller quality factors.  Therefore, although 

every set of transverse modes can form their respective topological states, the deposition 

of loss spoils the modes with higher coupling coefficients, favouring the selection of the 

fundamental TM11 mode in the lasing spectrum.  

This intuition is confirmed in Supplementary Figure 1b, which depicts the 

dispersion of the normalized complex eigenenergies. Clearly, the topological state made of 

the fundamental TM11 mode, which has the smallest coupling coefficients, remains at zero 

energy and exhibits the least loss (smaller imaginary part of the eigen frequency), 

consequently containing the highest quality factor. For completeness, Supplementary 

Figures 1c-e show plots of the topological states corresponding to the TM11, TM12 and 

TM21 modes. As expected, the field profile of the TM12 and TM21 modes hybridizes more 

strongly with the extended multimode states than for the TM11 mode. Because of the 

enhanced hybridization, the topological states of the TM12 and TM21 modes extend into the 

lossy sites (having the Cr layer). As a result, the topological state of the TM11 mode has 

the largest spatial overlap with the gain region made from the InGaAsP multiple quantum 

wells. On the other hand, in the absence of the lossy Cr layer and under uniform pumping 

of the full array, all the TM modes experience the same gain and contribute to the laser 

emission, which explains the observed multiple peaks in the broad emission spectrum of 

Fig. 3a in the main text. 
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Supplementary Figure 1. Mode selection in a multi-mode topological microring laser. a The large cross 

section of the microring structure can support multiple transverse modes with a high quality factor, such as 

TM11, TM12, TM21, and TM13, which all participate in the mode competition process. Scale bars in the pseudo-

coloured mode profiles: 400 nm. b The dispersion of the complex eigenenergies of the multi-mode tight-

binding model shows the topological state of the fundamental TM11 mode having the smallest lasing 

threshold. The field distributions of eigenstates labelled by c, d, e are shown in panels c-e, corresponding to 

the topological states of TM11, TM12, and TM21, respectively. Importantly, the lasing topological state of the 

fundamental TM11 mode shown in c almost stays unchanged in the presence of multi-mode couplings, while 
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the field profiles of the higher order modes TM12 and TM21 diffuse into the lossy sites (labelled in yellow 

marks) because of their stronger couplings. For even higher order modes, the coupling becomes stronger. 

This scheme thus naturally favours the lasing of the topological state made of the TM11 mode. In calculating 

these modes, the cross couplings between different mode families (i.e. TM11, TM12, TM21) are also accounted 

for. 

 

To further elucidate this mechanism of the multi-transverse mode hybridizations as 

another dimension of mode selection of the fundamental TM11 topological state in the 

devised microlaser array, we plot in detail the distributions of the TM11, TM12 and TM21 

topological states in each transverse supermode of the ring array, respectively in 

Supplementary Figures 2-4. Except for the fundamental mode TM11, all other high-order 

transverse topological states strongly couple with other transverse orders and then form 

hybrid supermodes. Such mode hybridizations grow due to the large coupling coefficients 

between the higher order transverse modes, which drags their corresponding topological 

states into the lossy sublattice and consequently spoil the quality factors. 

 

Supplementary Figure 2. Topological state of fundamental TM11 mode in presence of inter transverse 
mode couplings. a The field amplitude distribution on the TM11 mode. b The field amplitude distribution on 
the TM12 mode. c The field amplitude distribution on the TM21 mode. d The field amplitude distribution on 
the TM13 mode. Due to high quality factor of TM11 ring-resonance mode, the interactions between the 
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topological mode with other higher order extended modes are minimum, which preserves the intra-dimer 
polarisation on the gain sites and pins the lasing wavelength at zero energy (the resonance of TM11 mode in 
individual gain site). The yellow marks indicate the sites with loss. 

  

 

Supplementary Figure 3. Topological state of TM12 mode in presence of inter transverse mode 
couplings. a The field amplitude distribution on the TM11 mode. b The field amplitude distribution on the 
TM12 mode. c The field amplitude distribution on the TM21 mode. d The field amplitude distribution on the 
TM13 mode. While the field dominantly locates on TM12 mode of each ring sites, the non-vanishing couplings 
with TM21 and TM13 modes provide hybridizations with the extended supermodes, which drag the field into 
the lossy ring sites (yellow marks) and spoil the topological state from lasing.   
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Supplementary Figure 4. Topological state of TM21 mode in presence of inter transverse mode 

couplings. a The field amplitude distribution on the TM11 mode. b The field amplitude distribution on the 

TM12 mode. c The field amplitude distribution on the TM21 mode. d The field amplitude distribution on the 

TM13 mode. Similar to the topolgical state of TM12 mode, the non-vanishing couplings with the other 

transverse modes deteriorate the intra-dimer polarisation and lower the quality factor of this topological state. 

The yellow bars indicate the sites with loss. 

 

We note, however, if the cross couplings between different transverse orders in two 

adjacent rings are neglected, different transverse orders would possess their SSH 

Hamiltonians independently and thus formulate the topological states similar to the 

topological state from the fundamental TM11 mode, which result in several sublattice 

polarized supermodes with eigenenergies corresponding to their respective onsite 

resonances (zero energies) of these higher order transverse modes. If this was the case, the 

quality factors of these topological states would not be depress by the presence of losses 

on each second ring because of the dominant intra-dimer polarization, potentially leading 

to multi-peak lasing spectrum inherited from the Hermitian counterpart (Fig. 3a of the main 

text). On the contrary, the observation of single-mode lasing attests the existence of the 
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substantial cross couplings which ensures the mode selection amongst all the topological 

states by the least mode hybridization of the TM11 topological state over the others. 

Finally, we note that the free spectral range between the longitudinal modes is ~25 

nm. This large spectral separation facilitates the longitudinal mode selectivity via the gain 

curve of the semiconductor laser itself. In our case, the lasing modes have the azimuthal 

quantum number m = 54. 

 

Supplementary Note 4: Onsite perturbation by PMMA deposition on the third ring 

from the right. In our experiments, the onsite perturbation is deliberately introduced by 

the deposition of a thick polymer layer on top of the third ring from the right. The 

consequent frequency shift of the single-ring resonance is estimated to be 212 GHz 

(corresponding to 2 nm wavelength shift), which is at the same level of the coupling 

strength at 200 nm – 300 nm separations. As we show in Fig. 4 in the manuscript, a 

moderate perturbation strength equivalent to the coupling strength only slightly modifies 

the field profile around the perturbed site, and the single-lasing behavior still survives. 

 In principle, this onsite perturbation effectively adds an energy offset on the 

corresponding diagonal entry of the SSH Hamiltonian, and breaks the charge-conjugation 

symmetry which allows the topological state to drift away from the zero energy. Indeed, if 

the perturbation strength is much larger, the topological state will be strongly altered and 

even disappear from the lasing spectrum due to the mode competition with a trivial defect 

state induced by the onsite perturbation. We plot in Supplementary Figure 5 and 

Supplementary Figure 6 the field profiles of the perturbed topological state and the induced 

trivial defect state with offset energy equivalent to coupling strength and 7 times the 

coupling strength, respectively. While the single-mode selection of the topological state 

stays valid under weak onsite perturbation, the increasing perturbation amplitude localizes 

the trivial defect state on the perturbed gain site and further hybridizes the topological state 

with the lossy sublattice, eventually leading to an even larger lasing threshold of the 

topological state compared to that of the trivial defect state. Therefore, a large onsite 

perturbation can possibly destroy the topological state and induce strong lasing behavior 

from the trivial defect state. However, we emphasize such breakdown of mode selection of 

the topological state requires significant onsite resonance disorder corresponding to more 
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than 10 nm shift of the onsite resonance wavelength. Therefore, we claim the topological 

lasing state can still survive moderate diagonal perturbations. 

 
Supplementary Figure 5. Normalized mode profiles of the topological state and the defect state under 
perturbation equivalent to the coupling strength. a Field profile of the perturbed topological state. b Field 
profile of the induced trivial defect state. Both eigenstates are self-normalized such that the norm of the mode 
amplitude is identity. The weak onsite energy offset maintains the single-mode selection of the topological 
state due to the dominant field distribution on the gain sites, while the trivial state is well-suppressed because 
of a wide diffusion through the whole lattice. The yellow marks indicate the lossy ring sites.  
 

 
Supplementary Figure 6. Normalized mode profiles of the topological state and the defect state under 
perturbation equivalent to 7 times the coupling strength. a Field profile of the perturbed topological state. 
b Field profile of the induced trivial defect state. Due to an enhanced localization on the perturbed gain site, 
the trivial defect state possesses significantly reduced lasing threshold, while the topological state is spoiled 
by the hybridization with the lossy sublattices (labelled in yellow marks). Thereby, a lasing mode switching 
might be expected with significant diagonal perturbations. 
 
 Finally, we note that, in our structure without deliberately introduced onsite energy 

perturbation, the left and right halves of the microlaser array are in fact symmetric with 

respect to the central defect site. What matters is that they are both topologically distinct - 

it then depends on the definition of the unit cell to decide which one is termed trivial and 

which one is termed nontrivial9-11. Therefore, the robustness is independent of whether the 
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perturbed site is on right or left half of the array. Without loss of generosity, we introduced 

the onsite perturbation on the right side of the structure. 
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