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Band specific connectivity 

As mentioned in the main text, the functional connectivity pattern in each harmonic peak is 

very similar to the functional connectivity in the fundamental peak, hence we focus on 

connectivity only in the alpha band in the present study. Figure A1 shows the functional 

connectivity profile in three different bands, each approximately centred on one of the peaks, 

for the same model parameters used in Figs. 5 and 7. For the bands marked in Fig. A1a, the 

corresponding AEC profiles are shown in Figs. A1b-A1d.  

 

 
Fig. A1 Functional connectivity profiles in different frequency bands. Connectivity profiles are 

shown for model parameters used in Figs. 5 and 7. (a) Frequency spectrum of excitatory activity 

averaged over brain regions (blue). The red lines mark the frequency bands used for analysis. (b-d) 

Functional connectivity profiles computed using AEC for each of the bands marked in panel (a).  

 

  



Defining ISP convergence 

By definition, plasticity ceases when !"#$ %
!%

 is zero. Hence, the convergence or success of ISP 

would normally be quantified by comparing the target activity rate to the instantaneous 

excitatory activity: 

𝜌 = 𝐸 𝑡  

 

However, in this study we will be operating the model within an oscillatory regime. As a 

result,  !"#$ %
!%

 will vary over the period of an oscillation, such that on electrophysiological 

timescales, the system oscillates between being above and below the target activity level. 

Instead of assuming the system has converged when !"#$ %
!%

 is zero, we consider the system to 

have converged if 𝑑𝑐,- is zero integrated over a period spanning several oscillations, which 

implies there is no sustained change in 𝑐,- over time. Integrating both sides of Eq. (4) yields 

𝜏,/0𝑑𝑐,- = 	 𝐼 𝑡 𝐸 𝑡 𝑑𝑡 − 𝜌 𝐼 𝑡 𝑑𝑡	, A1  

and setting 𝑑𝑐,- = 0	provides the requirement for convergence as 

𝜌 = 	
𝐼 𝑡 𝐸 𝑡 	𝑑𝑡
𝐼 𝑡 𝑑𝑡

	 . A2  

Note that Eq. (A2) corresponds to a weighted average of excitatory activity. A further 

subtlety to consider is what happens when the system is operating at a point where it 

produces sustained nonlinear oscillations. Since inhibitory activity in the model is driven by 

local excitatory activity, 𝐼 𝑡  is largest when 𝐸 𝑡  is also large. The weighted average in (A2) 

therefore weights times with high excitatory activity more strongly, and an unweighted 

average of excitatory activity over this same time would be smaller than the expression in 

(A2). In these cases, the system will thus converge to a state where that the average 

excitatory activity is smaller than 𝜌. 

  



Robustness to noise 

To demonstrate the robustness of dynamics and functional connectivity to noise, Figure A2 

shows simulations using the same delay/coupling parameters as used in Fig. 5, but with 

different levels of noise. Note that we included the ISP stage of the simulation as well, to 

verify that ISP is also robust to the choice of noise signal. For these simulations, the noise 

signals were sampled from Gaussian distributions with zero mean and standard deviations of 

0, 0.05, 0.1, and 0.2, which correspond to no noise, and to 5, 10, and 20 times the original 

amount of noise. The results are qualitatively very similar even with a 10-fold increase in 

noise, although larger differences begin to emerge after this point. The phase-based 

connectivity metrics are more sensitive to noise than AEC, but Fig. A2 shows that the 

magnitude of the phase connectivity metrics is still highly robust to a moderate increase in 

noise. This provides confirmation that our results primarily reflect the nonlinear dynamics of 

the model, rather than the noise process.     

 
Fig. A2 Functional connectivity metrics for different noise levels. Functional connectivity in each 

metric is shown in the model for the parameters marked by the red dot in Figs. 4, 6, and 7, with 

varying levels of noise. The noise levels are (a) no noise (b) standard deviation 0.05 (c) standard 

deviation 0.1, and (d) standard deviation 0.2. 

 

  



Synchrony with orthogonalisation 

As synchrony and metastability are affected by spatial leakage, it is necessary to include an 

orthogonalisation step when comparing them to the model. The synchrony and metastability 

matrices shown in Figure A3 are from the same simulations shown in Fig. 6c and 6d, except 

that the parcel activity timecourses were orthogonalised prior to estimating the phase 

timecourses. Experimental estimates of synchrony and metastability should be compared to 

Fig. A3 rather than Fig 6. Orthogonalisation reduces synchrony and metastability in most 

parts of the parameter space we examined. As expected, the effect is most pronounced in the 

high synchrony regime, because strong phase synchronization results in large zero-lag 

correlations that the orthogonalisation process is designed to remove. Thus, the clearly visible 

high synchrony region in upper right part of Fig. 6c is entirely absent from Fig. A3a. For the 

parameters in the optimal regime marked by the red dot, the synchrony was 0.5292 without 

orthogonalisation and 0.2075 with orthogonalisation. The metastability was 0.2306 without 

orthogonalisation and 0.1052 with orthogonalisation. In comparison, for our experimental 

data set, the group-average alpha band synchrony was 0.1079 and the metastability was 

0.0563. Note that there are sources of noise present in the experimental data that are not 

present in the model, which would likely result in a reduction in synchrony. 

 
Fig. A3 Synchrony and metastability with orthogonalisation. (a) Alpha band synchrony (averaged 

over time) (b) metastability (standard deviation of synchrony), in the model with ISP and with 

orthogonalisation. The red dot corresponds to the parameters shown in Figs. 5 and 7. 

  



Synchrony for high and low ISP targets 

Synchrony and metastability for the simulations in Fig. 8 are shown in Fig. A4.  

 
Fig. A4 Synchrony and metastability. Alpha band synchrony (averaged over time) and metastability 

(standard deviation of synchrony), in the model for (a,b) low and (c,d) high ISP targets. The open 

circles correspond to the representative optimal delay and coupling values shown in Fig. 4 and used in 

Figs. 5 and 7. 

ISP convergence in brain simulations 

To investigate the convergence of ISP, we examine the standard deviation of 𝑐,-, after 

providing enough time for the system to converge if possible. Figure A5a shows the standard 

deviation of 𝑐,- computed over the final 500 seconds of the simulation (discarding the first 

1000 seconds), averaged over brain regions. We consider three regimes – a highly 

synchronous regime with low delay and strong coupling, a metastable regime that gives rise 

to realistic functional connectivity, and a low synchrony regime with weak coupling and long 

delays. The mean activity and plasticity timecourses for example parameters in each regime 

are shown in Figs. A5c-A5h. 

 



We first examine the discrepancy in activity that gives rise to ongoing plasticity. Fig. A5b 

shows the mean I-weighted E activity (Eq. A1) in each brain region, sorted by value. For the 

low synchrony and metastable parameter regimes, all brain regions have activity close to the 

target value. However, for the high synchrony parameters, although a small number of brain 

regions can reach the target level of activity, some exhibit higher levels of activity, while 

others exhibit lower levels of activity. The corresponding activity time series are shown in 

Figs. A5c-A5e. The high synchrony regime has sustained differences in mean activity across 

the network, whereas the metastable and low synchrony regimes have variable levels of 

activity that are balanced across the network. Importantly, the asymmetry in activity in the 

high synchrony regime is robust to moderate changes in 𝑐,-. Figs. A5f-A5h show the 

corresponding plasticity time courses for the three parameter regimes. In the high synchrony 

regime, there are large ongoing changes in synaptic strength. For example, inhibition in some 

brain regions decreases over a long period of time (e.g. the bottom-most trace, which has an 

ongoing decrease in inhibition from 500s onwards), which indicates that although inhibition 

in that brain region is decreasing, the amount of activity is not increasing. 

 

Our interpretation of these results is that the high synchrony regime exhibits dynamics that 

are strongly dependent on the long-range connectivity and the network, resulting in the 

asymmetries in activity being robust to moderate changes in synaptic strength in parts of the 

network. In contrast, for the weakly coupled network it is possible to optimize the mean level 

of activity in each brain region independently, due to the weaker effect of the rest of the 

network. This enables each region to independently achieve a local balance between 

excitation and inhibition. The metastable regime shown in Fig. A5g lies somewhere in 

between. On short timescales (on the order of 0.5-2 seconds), there are asymmetries in 

activity, but these are not stable and continuously change. The network can be considered to 

transiently visit different asymmetric oscillatory states. However, on long timescales that 

average over these states, the metastable regime can achieve the target level of activity in all 

brain regions, as shown in Fig. A5b. We note that because convergence in the metastable 

case requires averaging over transient states, it is especially important to ensure that the 

plasticity timescale 𝜏,/0 is slow enough that the synaptic strengths are approximately constant 

for the duration of each transient state, which is considerably longer than the oscillatory 

period of the units (~0.1 seconds).  



 
Fig. A5 ISP convergence for different delay-coupling parameter values. (a) Variability in 𝒄𝒊𝒆 for 

the final 500 seconds of the plasticity simulation runs. (b) Difference between ISP target and actual I-

weighted excitatory activity in each brain region, for the three parameter combinations shown in Fig 

9. Brain regions have been sorted by difference in activity. (c-e) Excitatory activity in each brain 

region for the three parameter regimes marked in (a). (f-h) Time series showing changes in 𝒄𝒊𝒆 due to 

ISP for the same 3 regimes. 



 
Fig. A6 ISP convergence for different ISP target activity levels. Variability in 𝒄𝒊𝒆 for the final 

500 seconds of the plasticity simulation runs, for (a) Low-activity ISP target 𝝆 = 𝟎. 𝟏 (b) 

Moderate-activity ISP target 𝝆 = 𝟎. 𝟏𝟓. The red dot indicates the optimal parameters shown in 

Figs. 5 and 7 (c) High-activity ISP target 𝝆 = 𝟎. 𝟑. The red dot indicates the parameters shown in 

panels (d)-(f). (d) Timecourse of 𝒄𝒊𝒆 in initial simulation with variable 𝝉𝒊𝒔𝒑 (e) Short simulation 

showing periodic change in synaptic strength. (f) Corresponding excitatory activity at the same 

times as panel (e).   

 

Next, we investigated the convergence properties of ISP when changing the target activity 

level 𝜌. Figs. A6a-A6c show the variability in 𝑐,- over the final 500 seconds of the 

simulations, for the low, medium, and high activity targets. For the low target activity 𝜌 =

0.1, ISP can achieve the target firing rate regardless of the long-range delay and coupling. 

For the high activity, ISP target 𝜌 = 0.3, variability in 𝑐,- is small for the parameter regime 

that best matches experimental data. However, ISP no longer converges in the weakly 

interacting regime, with long delays and low couplings. Fig. A6d shows the timecourse of 𝑐,- 

for the parameters marked by the red dot in Fig. A6c. There are large ongoing oscillations in 

synaptic strength. The amplitude of these oscillations does not change when the plasticity rate 

is decreased (at 500s and 1000s), which indicates that it is not the result of coupling between 

neural activity and plasticity. Figs. A6e and A6f show a detailed segment of the fluctuation in  

𝑐,- and the corresponding excitatory activity. For these parameters, high inhibition is 



associated with low activity, low inhibition with high activity, and there is a bistable regime 

where both the low activity and high activity dynamics are possible with the same level of 

inhibition. Initially, the mean activity is below the ISP target in all populations, which causes 

inhibition to decrease. However, a bifurcation is encountered at which point the amplitude of 

the oscillations in the network suddenly increases, and the mean activity becomes much 

higher than the ISP target. In response, inhibition begins to increase again. However, the high 

amplitude oscillation does not lose stability immediately and when the network transitions 

back to a low activity state, the mean activity is well below the ISP target. Plasticity thus 

moves the system periodically over the bistable regime, reversing direction whenever one of 

the activity patterns becomes unstable, because the ISP target lies between the high and low 

activity regimes.  

 

In summary, we have identified two distinct cases where ISP fails to converge – a case where 

strong global interactions prevent all of the units from achieving the same level of mean 

activity, and a case where a periodic oscillation in synaptic strength occurs if the ISP target 

lies between bistable high and low activity states. For the parameters that we tested in this 

study, convergence was not a problem in the parameter regimes that give rise to realistic 

functional connectivity, but there are clearly restrictions on the level of synchronization and 

on the ISP target if the synaptic strengths are to converge. 

 

It is a possibility that the periodic changes in synaptic strength are only a local minimum 

solution, and that a different initialization for the synaptic strengths could result in 

convergence of ISP. Due to the computationally intensive nature of the ISP simulations, a 

practical approach for testing this would be to use an offline optimization mechanism to first 

check for the existence of a stable solution for plasticity with the desired activity level, as this 

is a necessary requirement for ISP convergence. Even this approach is challenging – the 

parameter space is high-dimensional with as many synaptic strengths to optimize as brain 

regions, and we have observed that in the optimal parameter regime, the synaptic strengths 

are strongly correlated but not precisely correlated with long-range excitation (Fig 7b), which 

means that the problem cannot be reduced to a two-parameter optimization of the line shown 

in in Fig 7b. The cost function would also be extremely expensive compared to those used 

for similar previous work (Deco et al., 2014) because the transient states in the optimal 

parameter regime require that simulations be run for a sufficiently long time to enable 

averaging over the states, and delays need to be included. Assessing the stability of a 



plasticity solution, if one is found, is also challenging because whether plasticity causes 

perturbations in synaptic strength to grow or decay depends on the highly nonlinear fast 

dynamics in the model. Regardless, offline optimization algorithms will also need to account 

for the possibility that there may be no stable solutions. In contrast, the online learning rule 

we have investigated in this study is simpler to investigate and more biologically relevant, 

with the trade-off that we do not exhaustively explore the space of synaptic strengths.  

 


