
Supplementary Material

The approach advocated by the FACE applied to an investigation of
urinary tract infections and low birthweight

Suppose we are interested in the potential causal relationship between urinary tract infections (UTIs)
in the 2nd and 3rd trimesters of pregnancy and the subsequent low birthweight (LBW) of newborn
babies, and that existing epidemiological evidence is suggestive of a clinically meaningful causal
e↵ect but not definitively so. Thus, a large prospective cohort study is designed, with laboratory
assessment of the exposure in the second and third trimester of pregnancy.

In this appendix, we will outline how some of the key concepts from the FACE might be applied
to the analysis of this cohort study and the interpretation of the results. We are not aiming to
cover all possible concerns here; of course in any given real example there will always be specific
additional features and complexities to be considered. Rather, we aim to highlight the thinking
and the assumptions as they relate to a particular simple example, and above all to outline how
the linking of the target causal estimand and the data can be achieved via these assumptions in
a few simple mathematical steps. We recommend that those wanting to read about more realistic
examples, with numerous additional complexities, turn to the many substantive papers cited in the
main manuscript, e.g. [10–13, 43].

As with any epidemiological investigation, we would start (at the point of designing the study,
more than when starting the analysis) with establishing what exactly is the question of interest.
This involves asking:

A. What is the population of interest? All pregnant women living in the particular region/country
to be studied? Perhaps non-singleton births should be excluded? And so on.

B. What exactly is the exposure of interest? Are all subtypes of UTIs to be included? What
about those experiencing more than one UTI during pregnancy? What about the timing of
acquiring the UTI(s)? etc.

C. How will the outcome be classified in pre-term births? etc.

D. Do we simply want to quantify the magnitude of the e↵ect of maternal UTIs on the prevalence
of LBW in the population of interest? Or are we interested in particular subgroups, e.g. par-
ticular racial groups, or mothers with gestational diabetes? Are we interested in investigating
possible synergistic e↵ects of other infections? And so on.

Let us assume for simplicity that the population of interest is all full-term singleton live-born
babies from a particular region in a particular period, and that the exposure is simplified to ever
having experienced a UTI in the second and/or third trimester of pregnancy versus never in these
two trimesters of pregnancy. Let X be the binary exposure (maternal UTI, ever, coded 1, or never,
coded 0), Y the binary outcome (LBW newborn, yes or no) and C = C1, . . . , Cp a set of potential
confounders, e.g. maternal age, comorbidities (such as diabetes), other maternal infections and
socio-economic factors.

The following features would characterise a FACE approach to this example:

1. Estimand: Express the question (or questions) of interest mathematically, i.e. as an estimand
(or as estimands).



Potential Outcomes
Since causal questions involve not just features of the data at hand, but also a notion of
how things would have been had something been di↵erent, then expressing causal questions
mathematically requires an extension to the traditional statistical language of expectations,
variances, probabilities, odds, etc. The extension most commonly used in the FACE is that of
potential outcomes.

For each infant in the population of interest, let Y (0) denote the outcome that would have been
observed for that infant had the mother, possibly counter to fact, not been exposed during
pregnancy, and let Y (1) denote the outcome that would have been observed had the mother
been exposed.

Possible Estimands
A population-level causal e↵ect is then expressed as a contrast between the distributions of
Y (0) and Y (1). For example, a marginal causal risk di↵erence is:

E {Y (1)� Y (0)}

where expectations are taken over the population of interest. This estimand is interpreted as
the di↵erence in prevelance of LBW if, hypothetically, all pregnant women would be exposed,
versus if no pregnant woman were exposed.

If we were interested in e↵ect modification by maternal age, then we could compare the
following conditional risk di↵erence:

E {Y (1)� Y (0)|A = a}

for di↵erent values of a, where A is the age of the mother.

Suppose a di↵erent type of maternal infection, MIB, together with UTI, were believed to
have a possible synergistic e↵ect on LBW, then we would redefine our potential outcomes to
include MIB too. Y (0, 0), Y (1, 0), Y (0, 1) and Y (1, 1) could be used to denote, respectively,
the potential value that Y would take were both infections to be absent, only UTI present,
only MIB present, or both exposures present. A synergistic e↵ect of the two exposures would
be present if:

E {Y (1, 1)� Y (0, 1)} > E {Y (1, 0)� Y (0, 0)}

i.e. if the e↵ect of UTI is more pronounced when combined with MIB.

The estimand can also be chosen so as to reflect an interest in the excess prevalence of LBW
that is attributed to UTIs, i.e.

E {Y � Y (0)} . (1)

The possibilities are endless, but the resulting considerations are broadly similar, and so, for
simplicity, in what follows, we assume that it is this final estimand that is of interest, i.e. the
di↵erence between the actual prevalence of LBW and the hypothetical prevalence of LBW that
would be seen if UTIs could be prevented for all pregnant woman in the relevant population
of interest.

Specificity
As we discuss in the main manuscript, for this estimand to be well-understood, the potential



outcome involved in it should ideally be close to being well-specified. This is not too problem-
atic with an exposure such as infection. The hypothetical world in which no pregnant woman
is infected could be one in which a hypothetical preventative treatment exists, with no (good
or bad) side-e↵ects, and is given to all pregnant women. It may also be useful to add that
this hypothetical treatment be free for all pregnant women, so that in the hypothetical world
in which all pregnant women are vaccinated, there are no knock-on e↵ects on, say, their diet,
due to having re-allocated resources towards acquiring the treatment.

For our chosen estimand, su�ciently well-specified Y (0) would su�ce. However, had we cho-
sen an alternative estimand, we would also need to consider the meaning of Y (1), and this
could perhaps be a little trickier in this setting, since there could be many di↵erent reasons for
acquiring a UTI present in the observed data. For simplicity, suppose there are two reasons:
(1) high glucose level (e.g. due to poorly-controlled or undiagnosed diabetes), (2) incomplete
voiding of the bladder. It may be plausible (from subject-matter knowledge) that the e↵ect of
maternal UTI on infant birthweight is the same regardless of the reason for its contraction, in
which case the intervention (contract UTI by some means) would be su�ciently well-specified.
However, if this were not the case, for example, if the UTIs acquired due to reason (1) were
more severe than those acquired due to reason (2), then (for reasons that will become appar-
ent below) the hypothetical intervention that we should imagine as giving rise to Y (1) is a
compound intervention (see [41]) in which the infection is contracted for reason (1) with prob-
ability ⇡ and for reason (2) with probability 1� ⇡, where ⇡ is the proportion in the observed
data who actually contracted the infection due to reason (1). To be as specific as possible,
it would be good to try to infer ⇡ from the data. If this is not possible, then the ambiguity
should be made explicit.

2. Assumptions: Depending on the analytic approach to be taken, di↵erent assumptions may
be invoked. For example, instrumental variable analyses rely on a di↵erent set of assumptions
than analyses based on confounder adjustment. Suppose, for example, that we will proceed
by confounder adjustment, then the assumptions under which the causal estimand (1) above
can be identified (i.e. re-written as functions of the distribution of the observed data) are:

(a) The consistency assumption, which for this example states that:

Y = Y (0) if X = 0.

In words, this says that for infants whose mothers were in reality not exposed, their
outcome in reality is equal to what it would have been in the hypothetical world in which
no mother was exposed. For this assumption to hold, the observed data need to be
relevant for the hypothetical intervention we have in mind that gives rise to Y (0). Or, in
other words, the hypothetical intervention we have in mind should be non-invasive in the
sense described in the main manuscript: the hypothetical intervention, when applied to
prevent UTIs, should not change the outcome for pregnant women who would in reality
not have been exposed, from the outcome that was in fact observed. Recall the caveats
above that the hypothetical treatment should have no (good or bad) side e↵ects and
should be free. These caveats help to make the consistency assumption more plausible;
they precisely concern the non-invasiveness of the hypothetical intervention.



(b) The conditional exchangeability assumption, which for this example states that:

Y (0) ?? X|C.

This states that, having adjusted for the observed set of potential confounders C, the
exposure and the potential outcome Y (0) should be independent. In this example, Y (0)
denotes whether or not an infant would have been LBW had his/her mother, possibly
counter to fact, not been exposed. It can therefore be viewed as a relevant summary of
all the other determinants of LBW (observed or unobserved) apart from UTIs. If the
exposure were to be associated with these other determinants, even after conditioning
on all the measured confounders, this would mean that there is residual confounding,
i.e. even after allowing for all the measured confounders, if UTIs are, say, more common
amongst those with a higher risk of LBW even in the absence of UTIs, then adjusting
for the measured confounders will not lead us to a causally-interpretable estimate of (1).

Causal diagrams are often advocated as a tool to help us decide how plausible the con-
ditional exchangeability assumption is, based on existing knowledge (or plausible conjec-
tures) regarding the causal structure of X, Y and C. The more complex the situation
(e.g. when variables contained in C are not simply common causes of X and Y ) the more
useful the causal diagrams are.

(c) The positivity assumption. For the case of our estimand, the relevant version is that, if
all confounders C are discrete:

For all c such that P {C = c} > 0,

P (X = 0 |C = c) > 0.

In words, this says that, for a su�ciently large sample size, there should be unexposed
mothers observed at every observed value of the confounders. For continuous confounders,
a similar condition can be expressed using densities.

3. Identification: Under the assumptions above, we can re-write our casual estimand of interest
(1) in terms of aspects of the joint distribution of the observed data. It is useful to follow these
mathematical steps, to appreciate why we need the assumptions above. First we re-write our
estimand using iterated expectations as:

E {Y � Y (0)} = E (Y )� E [E {Y (0)|C}] .
Then, under the conditional exchangeability assumption, Y (0) is independent of X given C,
which gives us the licence to insert X = 0 on the right-hand side of the conditioning line in
the second term, which means that our estimand is re-written as:

E (Y )� E [E {Y (0)|X = 0,C}] .
Then, under the consistency assumption, we can replace Y (0) by Y on the left-hand side of
the conditioning line in the same term, giving us:6

E {Y � Y (0)} = E (Y )� E {E (Y |X = 0,C)} .
6Note that consistency, as we stated it, is stronger than what is required to achieve this step. It would be

su�cient to have consistency in conditional expectation given C, i.e. that E {Y (0)|X = 0,C} = E (Y |X = 0,C).
This relaxation would be important for the mixture intervention discussed for Y (1) above, since consistency would be
violated for such an intervention, but the weaker E {Y (1)|X = 1,C} = E (Y |X = 1,C) would be satisfies provided
the interventions contributing to the mixture were all non-invasive.



This is important, since—using our first two assumptions—we have been able to write our
estimand of interest, which involves data that we don’t have, i.e. data from a hypothetical
world in which there are no UTIs for pregnant women, in terms of aspects of the distribution
of the data that we do have.

If all confounders were discrete, our estimand (1) could be estimated from a su�ciently large
dataset on X, Y and C as long as the positivity assumption also holds. Positivity would ensure
that E (Y |X = 0,C = c) could be non-parametrically estimated, for every observed value c of
the confounders, as the observed prevalence of LBW among infants with unexposed mothers
with level c of the confounders. In practice, parametric (or semiparametric) estimation is more
typically done, although this can be made very flexible using machine learning [33].

4. Statistical estimation and inference: There are many estimation options, some traditional
and some novel proposed by the FACE—this is where propensity scores, inverse probabil-
ity weighting, doubly-robust methods, and doubly-robust methods that incorporate machine
learning algorithms come in—but the simplest option is to estimate E (Y |X = 0,C) directly
from a parametric regression model fitted to the observed data. In this example, we could
regress Y on C among the uninfected mothers, e.g. using a logistic regression model (including
interactions/non-linearities as the data suggest, being liberal in as much as the sample size
allows, since prediction of the potential outcome is the goal here, rather than interpretability
of the model coe�cients). We would then use the estimated coe�cients from this model to
predict the probability of Y = 1, under hypothetically no infection, based on C, for each
individual in the dataset (uninfected and infected). The average of these predictions would be
our estimate of E {E (Y |X = 0,C)}. Subtracting this from the empirical mean of Y would
give us our estimate of our causal estimand of interest, the prevalence of LBW attributable
to UTIs in this population. We would also obtain the SE, CI etc. using either analytic or
empirical (e.g. bootstrap) methods.

5. Interpretation, misinterpretation and sensitivity analysis: The e↵ect estimates (and
associated measures of statistical uncertainty) are interpreted, but, in particular, plausible
violations of the assumptions are discussed explicitly in order to investigate possible misin-
terpretations. More formally, the sensitivity of the inference to possible violations of the
assumptions can be assessed.

The FACE is of course concerned with a far larger set of problems than is represented by this very
simple example, but the principles above carry through to settings with repeated exposures, time-
dependent confounding, instrumental variables, e↵ect modification, interaction, mediation, time-to-
event outcomes, semiparametric estimation based on propensity scores etc.

A comparison with the ‘traditional’ approach

Traditionally, epidemiologists would certainly devote attention to establishing what is the question
of interest. They would not usually, however, formally convert this into an estimand of interest that
can be expressed mathematically as we did in feature 1. above. In some settings, things may be
obvious enough for skipping 1. not to matter. However, skipping 1. can lead to serious mistakes
in the later listed features. For example, the concepts of e↵ect modification and interaction may
not be distinguished, estimands such as the e↵ect of the exposure in the exposed may not be easy



to articulate, and di↵erences between possible direct e↵ects (e.g. controlled vs. natural) may be
overlooked. More seriously, without a clear mathematical estimand, there is the risk of calling the
result of certain calculations, e.g. product of coe�cients in mediation analysis, two-stage least squares
in IV estimation, an indirect e↵ect or a causal e↵ect, respectively, even when such an interpretation
is not allowed. Since feature 1. would traditionally be skipped, feature 3. (a mathematical link,
via assumptions, between the estimand and the data) could not be attempted, and therefore a
formal statement of assumptions (feature 2.) is not usually made. Traditionally, the assumption
in 2(b)—no unmeasured confounding—would be stated, albeit more vaguely, but the consistency
and positivity assumptions are usually overlooked. Without a clear idea of the assumptions made,
sensitivity analyses (feature 5.) cannot reliably be carried out.


