OMTN, Volume 11

Supplemental Information

miR-1266 Contributes to Pancreatic Cancer

Progression and Chemoresistance by the STAT3

and NF-**KB** Signaling Pathways

Xin Zhang, Dong Ren, Xianqiu Wu, Xi Lin, Liping Ye, Chuyong Lin, Shu Wu, Jinrong Zhu, Xinsheng Peng, and Libing Song

Supporting Information

Figure S1. miR-1266 is upregulated in pancreatic cancer and correlated with poor prognosis. (a) miR-1266 expression levels was markedly elevated in pancreatic cancer tissues compared with normal pancreatic tissues as assessed by analyzing the TCGA pancreatic cancer miRNA sequencing dataset (Normal, n = 4; Pancreatic cancer, n = 178). *P* < 0.001. (b) miR-1266 expression levels was elevated in pancreatic cancer tissues compared with normal pancreatic tissues as assessed by analyzing the pancreatic cancer miRNA expression profiling from E-GEOD-32678 dataset (Normal, n = 7; Pancreatic cancer, n = 25). *P* < 0.05. (c and d) Kaplan–Meier analysis of overall and progression-free survival curves of patients with pancreatic cancer with high miR-1266 expression versus low miR-1266 expression in the TCGA pancreatic cancer dataset. The best cutoff point was chosen by using X-tile software with log-rank test.

Figure S2. The correlation of chemotherapeutic response with overall and

progression-free survival in pancreactic cancer patients. (a and b) Kaplan–Meier analysis of overall (a) and progression-free (b) survival curves of patients with pancreatic cancer with PD/SD versus CR/PR. P < 0.001, (c and d) Kaplan–Meier analysis of overall (c) and progression-free (d) survival curves of patients with pancreatic cancer with PD/SD versus CR/PR in the TCGA dataset. P < 0.001.

Figure S3. miR-1266 promotes chemoresistance in pancreatic cancer cells in vitro. (a)

Real-time PCR analysis of miR-1266 expression in pancreatic cancer cells transduced with miR-1266 or transfected with anta-1266 compared to controls. Transcript levels were normalized by *U*6 expression. Error bars represent the mean \pm s.d. of three independent experiments. **P* < 0.05. (b) Inhibition of miR-1266 increased the apoptotic ratio in the absence of GEM. Error bars represent the mean \pm s.d. of three independent experiments. **P*

1

< 0.05. (c) Annexin V-FITC/PI staining of the indicated cells treated with gemcitabine (10 μ M) for 36 h. Error bars represent the mean ±S.D. of three independent experiments. **P* < 0.05. (d) The JC-1 staining showed that silencing miR-1266 decreased the mitochondrial potential in a dose-dependent manner in pancreatic cancer cells. Error bars represent the mean ±S.D. of three independent experiments. **P* < 0.05. (e and f) Analysis of the activities of caspase-9 (e) and caspase-3 (f) were detected by the cleaved forms of these two proteins. Error bars represent the mean ±S.D. of three independent experiments. **P* < 0.05. (g) Western blotting analysis of Bcl-2, Bcl-xL, Mcl-1 and Survivin in the indicated cells. (h) The effect of miR-1266 on proliferation of pancreatic cancer cells was assessed by MTT assay.

Figure S4. Inhibition of miR-1266 sensitizes pancreatic cancer cells to gemcitabine in

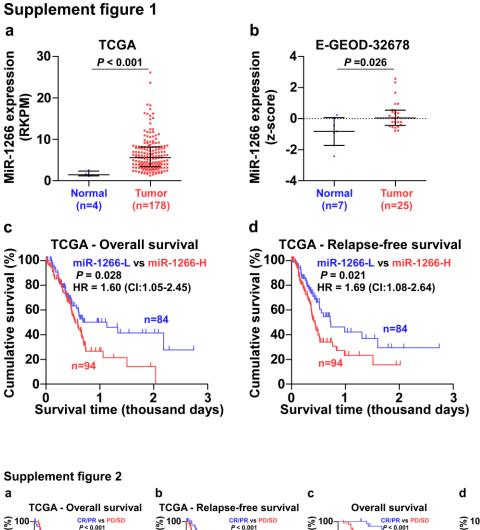
vivo. (a) Xenograft model in nude mice. Representative images of tumor-bearing mice on day 10 and day 45 in AsPC-1 cells. Mice were euthanized, and tumors from each experimental group were excised. (b) After 10 days of inoculating AsPC-1 cells, mice were intraperitoneal injected with 50 μ g/g gemcitabine (GEM) two times each week for 4 weeks. Tumor volumes in the low-dose anta-1266, high-dose anta-1266 and scramble groups were measured from the fifth day at five days interval. Data presented are the mean \pm s.d. (c) Tumor weights of each group. (d) The overall survival of mice in the indicated group. (e) After 10 days of inoculating PANC-1 cells, mice were intraperitoneal injected with 50 μ g/g gemcitabine (GEM) two times each week for 4 weeks. Tumor volumes in the high-dose anta-1266 and control groups were measured from the fifth day at five days interval. Data presented are the mean \pm s.d. (f) Tumor weights of each group. (g) The Caspase-3 activity in the tumor tissues formed by the low-dose anta-1266, high-dose anta-1266 and scramble groups in AsPC-1 cells respectively. (h) After 10 days of inoculating BxPC-3 cells, mice were intraperitoneal injected with 50 μ g/g groups in AsPC-1 and PANC-1 cells respectively. (h) After 10 days of inoculating BxPC-3 cells, mice were intraperitoneal injected with 50 μ g/g gemcitabine (GEM) two times each

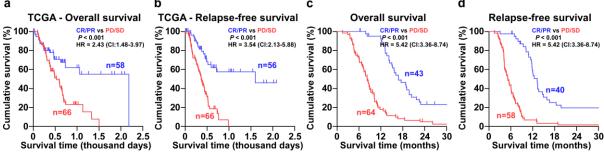
2

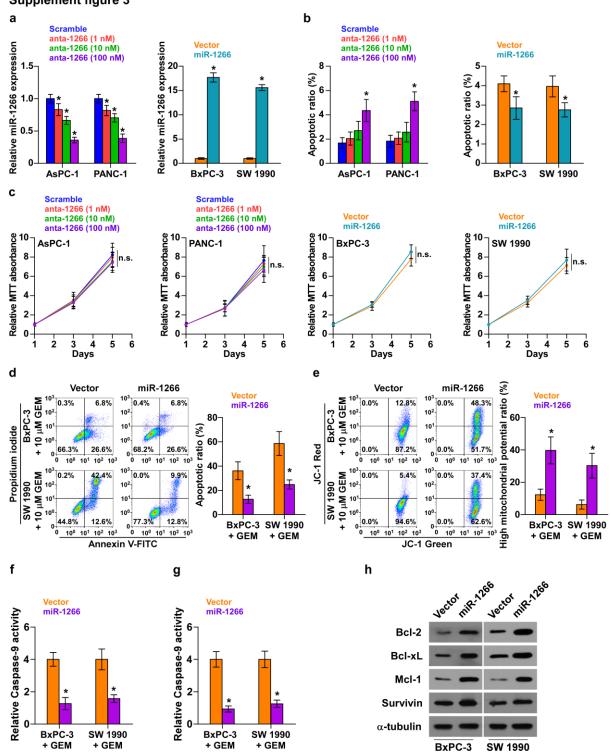
measured from the fifth day at five days interval. Data presented are the mean \pm s.d. (i) Tumor weights of each group. (j) Western blotting of SOCS3, PTPN11, ITCH and TNIP1 expression in scramble and anta-1266 (H.D.) tumor groups. α -Tubulin served as the loading control.

Figure S5. The inhibitors of STAT3 signaling Stattic and S3I-201 and the inhibitors of NF- κ B signaling LY2409881 and JSH-23 repress STAT3 and NF- κ B activity in a dose-dependent manner in pancreatic cancer cells. (a-d) STAT3 inhibitors Stattic and S3I-201, or NF- κ B inhibitors LY2409881 and JSH-23 showed potent inhibition of the STAT3 and NF- κ B reporter activities in pancreatic cancer cells. Error bars represent the mean \pm s.d. of three independent experiments. **P* < 0.05.

Figure S6. Wild-type sequence and mutant sequences of 3'UTRs in SOCS3, PTPN11,

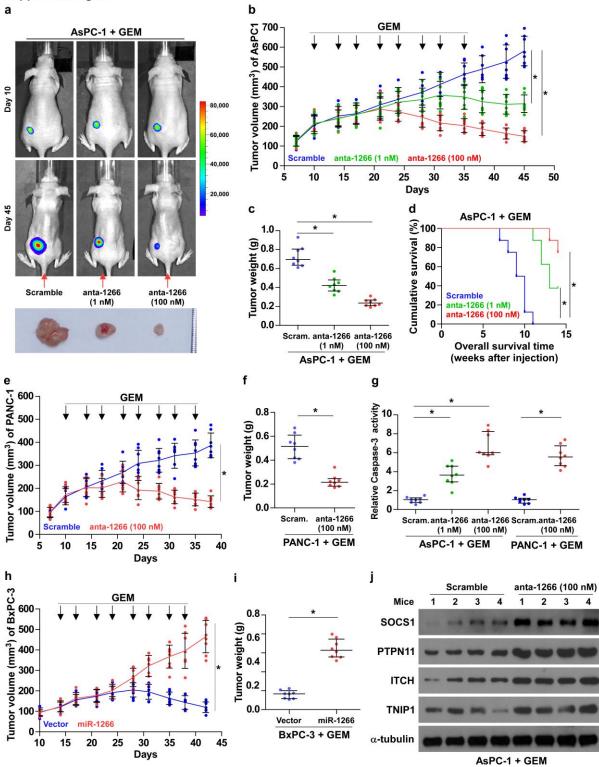

ITCH and TNIP1. (a) Predicted miR-1266 targeting sequence and mutant sequences in 3'

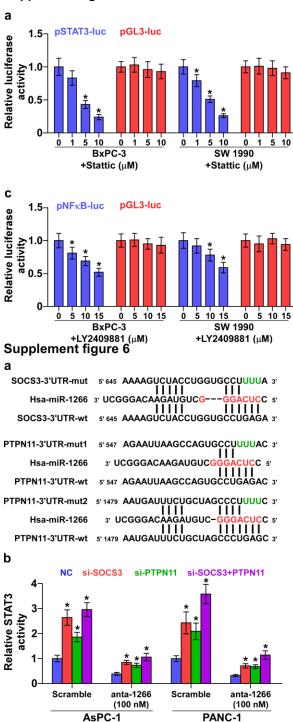

UTRs of SOCS3, PTPN11, ITCH and TNIP1. (**b** and c) Individual silencing of these targets rescued the STAT3 (E) and NF- κ B (F) activity repression in miR-1266-silencing cells.

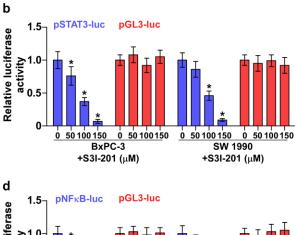

Figure S7. Recurrent gains and hypomethylation contribute to miR-1266

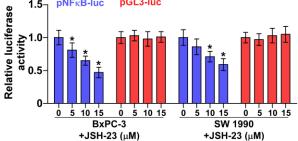
overexpression in pancreatic cancer tissues. (a) The percentage of deletion, diploid and gain in the pancreatic cancer samples from TCGA. (b) The average expression level of miR-1266 in pancreatic cancer patients with gains was higher than those without gains in the pancreatic cancer dataset TCGA. Each bar represents the median values \pm quartile values. (c) The percentage of deletion, diploid and gain in our pancreatic cancer samples, ANT and benign pancreatic lesions. (d) The average expression level of miR-1266 in pancreatic cancer tissues with gains was higher than those without gains. Each bar represents the median values \pm quartile values \pm quartile values. (c) The percentage of deletion, diploid and gain in our pancreatic cancer samples, ANT and benign pancreatic lesions. (d) The average expression level of miR-1266 in pancreatic cancer tissues with gains was higher than those without gains. Each bar represents the median values \pm quartile values. (e) Methylation level of miR-1266 promoter in the pancreatic cancer

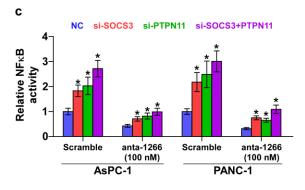
dataset from TCGA. (**f**) Methylation level of miR-1266 promoter using cg06706204 in our pancreatic cancer tissues, ANT and benign pancreatic lesions. Methylation ratio: methylation percentage in each tissue. (**g**) Real-time PCR analysis of miR-1266 expression levels in pancreatic cancer tissues with different methylation ratio. Transcript levels were normalized to U6 expression.

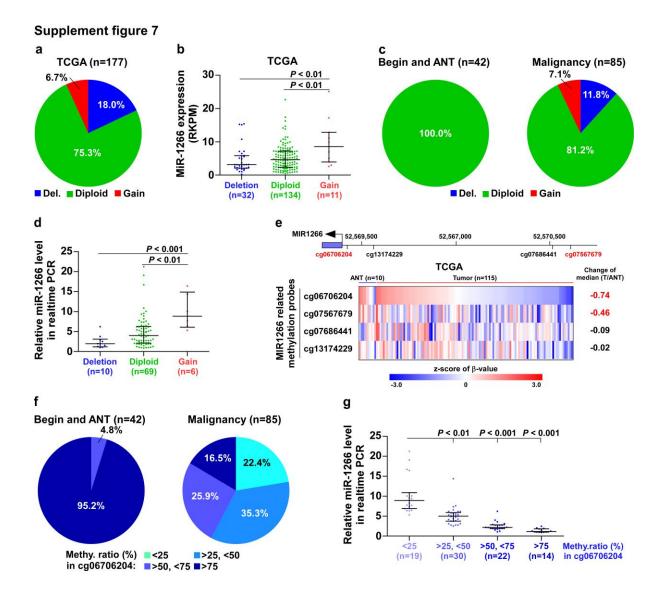





Supplement figure 3


Supplement figure 4


Supplement figure 5



ITCH-3'UTR-mut	5' 1498 UCUAUCAUAGCUGAACCCUUUUG 3'
Hsa-miR-1266	3' UCGGGACAAGAUGUCGGGACUCC 5'
ITCH-3'UTR-wt	5' 1498 UCUAUCAUAGCUGAACCCUGAGG 3'
TNIP1-3'UTR-mut	5' 623 CCUGAAGCUGCCAGGCCCUUUUG 3'
Hsa-miR-1266	
TNIP1-3'UTR-wt	5' 623 CCUGAAGCUGCCAGGCCCUGAGG 3'

