
Supplementary Notes 

 

Designing a minimal hairpin protospacer 

In a previous study8, we supplied small pools of double-stranded protospacers as two 

complementary oligos. However, because the protospacer pools we are delivering here are much 

more diverse, we were concerned that the complementary oligos would segregate into different 

cells during the electroporation. To mitigate this, we found that we could use hairpin oligo 

protospacers comprised of 23 bases of duplexed DNA at the core of the protospacer16,17 with 7 

uncomplemented bases at the 5’ end of the bottom strand (which includes the PAM) and 5 

uncomplemented bases of the 5’ top strand forming a looped linker. We arrived at this minimal 

hairpin format by systematically testing the requirement for each of the components of the 

protospacer. 

For instance, a protospacer adjacent motif (PAM) on one end of the protospacer both 

increases the efficiency of acquisition and determines the orientation of spacer insertion8,13-15. 

We found that this requirement for a PAM did not apply to both strands of the protospacer: the 

‘AAG’ on the top strand was dispensable for the PAM effect, whereas the ‘TTC’ on the bottom 

strand was required (Extended Data Fig. 2a). Because the crystal structure of Cas1-Cas2 in 

complex with a protospacer was solved with ~23 bases of duplexed DNA at the core of the 

protospacer and forked, non-complementary ends on both sides16,17, we designed an oligo hairpin 

that mimicked this design (Extended Data Fig. 2b), joining the non-complementary ends on one 

side with a looped linker. This initial hairpin oligo protospacer was acquired efficiently, but was 

cost-prohibitive to synthesize for many experiments because of its length. We therefore sought to 

minimize the length by removing nucleotides from the linker loop, which we found we could do 

without compromising acquisition, then eliminating entirely the 5’ forked end (Extended Data 

Fig. 2b). This gave us a 58-base hairpin protospacer that, once optimized for concentration, was 

acquired efficiently into the array upon electroporation (Extended Data Fig. 2c). Similar to the 

protospacer supplied as two complementary oligos, the vast majority of minimal hairpin 

protospacer was acquired in a single “forward” orientation with fewer than 0.3% of forward 

acquired spacers starting at a base other than the intended initial G. 

 

Potential for electroporation “bottleneck” 

We also looked at whether the electroporation itself may introduce a bottleneck by 

quantifying the number of colony forming units (CFUs) present in one milliliter of starting 

culture (the volume of cells that goes into a single electroporation), before electroporation, after 

pre-electroporation washes, immediately post-electroporation (with either an oligo protospacer or 

water alone), and after one hour of post-electroporation recovery. We found that, while there is 

lower viability when electroporating an oligo as compared to water alone, greater than 50 million 

CFUs survive the electroporation, so no significant bottleneck exists for oligo library sizes in the 

hundreds (Extended Data Fig. 3).       

 

Internal integrity of the arrays over time 

To additionally assess whether internal deletions, recombinations, or mutations are 

common within the array after significant rounds of division, we Sanger sequenced entire arrays 

from the bacteria. The native array in the BL21 strain contains 12 pre-existing spacers. After 

electroporation and seven days of growth, we sequenced 66 complete arrays: 54 unexpanded 

arrays, 11 singly expanded arrays, and one double expanded array. We found no internal deletions, 



recombinations, or mutations in any of these 66 arrays. This is not unexpected, as considerable 

spacer stability has been found in the trailing end of the array in wild bacteria19 and archaea20,21, 

despite the fact that these ancestral, trailing-end spacers are unlikely to confer immunity to 

common contemporary viruses. 

 

Systematic testing of protospacer sequence parameters 

To test the effect of GC%, we designed an additional 75 protospacer oligos spanning a 

range of GC content in the pixel-color encoding bases – fifteen protospacers each at 0, 25, 50, 

75, and 100% GC. We electroporated these oligos as a single pool, then quantified the 

acquisition frequency of each individual oligo (Extended Data Fig. 4b). We found that 

protospacers with higher GC content were acquired at significantly higher frequencies than those 

with lower GC content. When the same oligos were electroporated in sub-pools within sets of a 

given GC percentage (Extended Data Fig. 4b), the same overall trend emerged – higher GC 

content, particularly over 50% – resulted in higher overall acquisition frequencies of the entire 

set.  

The single pool showed very large differences between the high and low ends of the 

spectrum, with 0%, and 25% essentially not acquired and 50% acquired less frequently than 

either 75% or 100%. However, when the same sequences were sub-pooled within groups before 

electroporation, the differences were less substantial. Sequences with 0% GC were still almost 

never acquired, but, when sub-pooled, we found no significant difference between 50, 75, and 

100% GC. We proceeded to electroporate a subset of 15 of these oligos individually – three per 

GC group. In this case, we found no difference between any of the oligos in the 25, 50, 75, or 

100% group – while the 0% GC oligos were rarely acquired (Extended Data Fig. 4c). 

Moreover, within each image, oligos with a higher GC percentage were acquired at a higher 

frequency. Because the GC percentage and the stability of the hairpin structure are related, there 

was also a slight trend toward acquisition of sequences with higher hairpin stability (Extended 

Data Fig. 4d).          

 We next took a similar approach with mononucleotide repeats and internal PAM 

sequences. For each parameter, we designed 108 protospacer oligos spread over four conditions 

(3, 4, 6, and 8 mononucleotide repeats; 0, 1, 3, and 5 internal PAMs). When each of these sets 

was electroporated as a single pool, we found no difference between the oligo acquisition 

frequencies as a function of the condition (Extended Data Fig. 4e,f). However, when sub-

pooled by condition, we found a reduction in acquisition frequency at the high end (6 or 8 

mononucleotide repeats; 5 internal PAMs) for each. From these experiments, we conclude that, it 

is most beneficial to limit the range of GC% and keep the percentage at 50% or higher, while 

limiting high numbers of mononucleotide repeats and internal PAMs, if possible.  

 

Supplementary Discussion 

 

Reconstructing frame order over time to recall the GIF 

To extract order information from spacers acquired by a population of bacteria over time, 

we began by comparing the relative order of spacer sequences within individual pixets by 

analyzing all single arrays that contained two spacers from the same pixet. Each spacer can be 

described in terms of the number of times it is found ahead of, or behind, any other spacer within 

individual arrays, relative to the leader. We additionally compared each spacer with respect to 



the number of times it is found ahead of, or behind, newly acquired spacers from the plasmid and 

genome in individual arrays.  

We know that the spacers will occupy physical arrangements that depend on the order 

that they were electroporated, with earlier spacers found further from the leader than later 

spacers, from which we can define a list of “ordering rules” that must apply to spacers in the 

actual order they were electroporated. Spacers from earlier frames will also be found more 

frequently in positions further from the leader than newly acquired genome- or plasmid-derived 

spacers, which accumulate over the course of the experiment (and spacers from later frames in 

the opposite position relative to genome- and plasmid-derived spacers). This information can 

also be used to generate an “ordering rule.” Therefore, we can analyze all possible order 

permutations of the spacers of a given pixet to see if the relative order among the spacers in 

individual arrays (across a population of arrays) in any of the permutations can satisfy all 

possible “ordering rules” that must be true for the actual order of spacers electroporated 

(Extended Data Fig. 6a). If a spacer permutation satisfies each of the rules, we can 

unambiguously assign the spacers to that order – or, in this case, image frame. 

However, given the large number of spacers in this complete set, the vast majority of 

spacers (in fact, all but one) were unable to be unambiguously assigned to frame based solely on 

within-pixet comparisons (due to the rarity of single arrays that contained multiple spacers from 

the same pixet). Therefore, we expanded the analysis to comparisons between pixets. In this 

case, spacers could be analyzed for physical arrangement within individual arrays relative to 

other spacers that had already been assigned to a frame. This allows the arrays from many more 

individual cells to be considered in the ordering analysis. Like the within-pixet “ordering rules,” 

a larger set of “ordering rules” can be defined when comparing against already assigned spacers 

(Extended Data Fig. 6b). We moved through pixets beginning with those that were able to 

satisfy most within-pixet “ordering rules” so that the spacers we could most confidently assign 

would populate the reference group first. Again, all possible permutations of a set of five pixet 

spacers were tested against each of the between pixet rules. In this case, the permutation that 

satisfied the most rules was applied, and each spacer was assigned to a frame. 

The entire analysis pipeline can be summarized in the following steps: 

1. Create a list of all newly acquired spacers 

2. For each set of five spacers with an identical pixet, analyze the relative order of the 

spacers in any instance where two of them are found in a single array 

3. For each of spacer in that pixet-group, analyze the relative order of the spacers in 

any array where that spacer is found along with a newly acquired spacer from the 

genome or plasmid 

4. Based on steps 2+3, assign spacers to frame if order is unambiguous based on all 

the relative orderings from many unique arrays (see Extended Data Fig. 6a) 

5. For pixet-groups that cannot be assigned based on steps 2-4, additionally analyze 

the relative order of spacers in any instances of an array that contains the spacer and 

another newly acquired spacer that has already been assigned to a frame 

6. Based on steps 2-4 and 5, assign spacers to frame as the most parsimonious 

ordering based on all the analyzed relative orderings from many unique arrays (see 

Extended Data Fig. 6b).  

 

 

 



Error Sources and Error Correction:  

We employed the encoding of images as a means to test our molecular recording system 

with real data. Though we did some optimization of encoding schemes for the image, showing 

that a flexible code is preferable to a rigidly defined code, it was not our intention to build the 

definitive encoding scheme for images using CRISPR spacers, but rather to have real data to 

probe and test the limits of the system. For that reason, we kept the encoding relatively concrete 

for illustrative purposes. However, if the only purpose of this system were to encode images, one 

would likely employ some form of error-correction and compression in the code. How those two 

goals could be achieved in this system is worth some discussion.  

 Errors in our recordings can be grossly attributed to three categories: one, synthesis, 

sequencing, or mutation (the called spacer differs from the supplied protospacer by one or more 

internal nucleotide changes); two, acquisition (no spacer is called from the sequences supplied or 

the called spacer is from the pool of supplied protospacers, but either offset from the intended 

initial nucleotide or acquired in the reversed direction); three, analysis (the called spacer is a 

partial or complete match to an e coli genome but not the reference genome used and, thus, 

should have been removed prior to analysis) (Extended Data Fig. 7).  While the missing data is 

irrecoverable short of deeper sequencing, the other sources of error should be avoidable with 

error-correcting code. The major choice here is how many nucleotides one is willing to use to 

implement error-correction. More nucleotides will yield a better correcting code, but the addition 

of those nucleotides means that the entire image must be distributed over more total 

protospacers. Because more reads are required to accurately reconstruct images encoded across 

more spacers, having more protospacers increases the probability of errors of acquisition 

(missing data), so a balance must be achieved.  

 It is possible to introduce error-correction without adding any nucleotides. For instance, 

taking the flexible triplet code for 21 colors used the handF and the GIF, each of the three triplets 

that code for a color could be assigned to a different cluster (A, B, and X) (Extended Data Fig. 

8e)31. Rather than selecting triplets to optimize GC%, triplets could be chosen to implement an 

alternating cluster code (A, B, A, B, etc.) with swappable cluster X used to avoid internal PAMs 

and mononucleotide repeats (Extended Data Fig. 8f-i). Although this scheme has no net 

nucleotide cost, it does reduce the overall flexibility of the sequence design. Moreover, it is not 

the most robust error-correction, as only a subset of single base mutations would lead to pattern 

disruption.  

 An example of a more robust error-correction scheme that does require additional 

nucleotides is a checksum. A subset of the nucleotides of a given spacer could be devoted to 

checking an aspect of the rest of the spacer – if the check is not passed, the spacer should be 

disregarded. For instance, one could devote two bases to represent the sum of all cytosines in the 

image encoding section of the spacer, two bases for the sum of all thymines, and two bases for 

the sum of all adenines (guanines can be inferred from the other three, and two bases, counting 

up to sixteen, would be sufficient to cover 21 bases of image space assuming that GC% is still 

being optimized for) (Extended Data Fig. 8j-l). Thus, with six bases devoted to the checksum, 

the vast majority of errors would be identified. In the case of the second image, this would 

increase the total number of protospacers from 100 to 123. Variants of this checksum scheme, 

such as counting the AC% could be implemented using fewer nucleotides, although fewer errors 

would be caught.  

 Since robust error-correction increases the total nucleotide space required to encode the 

same image, one would likely employ some form of compression to counter this expansion. In 



terms of lossless compression, run-length encoding is one option. The code would specify a pixel 

value and then the number of adjacent pixels that are of the same value, rather than uniquely 

specifying each pixel value. Since adjacent pixels in our images are often the same value, this 

would achieve compression. However, the fact that each individual protospacer only encodes a 

small number of pixels reduces the effectiveness of run-length encoding within a protospacer. 

The greatest benefit would be run-length encoding spread across protospacers. Unfortunately, 

this strategy would be highly sensitive to missing data, which could potentially disrupt large 

sections of the image upon recall.  

 A more apt option for lossless compression would be the use of a dictionary algorithm 

(e.g. LZW32/Huffman33/Deflation) in which the most common pixel values are encoded using the 

fewest bits (nucleotides) which forces rare values to be encoded using more bits. An 

accompanying dictionary (also supplied via protospacers) would provide the lookup table to 

reconstruct the pixel values. The weak spot here would be loss of the dictionary, but this could 

be easily circumvented by providing redundancy in the form of multiple orthogonal dictionary 

protospacers. If some loss of fidelity is acceptable, a lossy compression method could be applied, 

such as transform coding. In a sense, we could have employed this compression on the 

experiments presented here. Since we arrived at our encoded images by scaling down a larger 

image through bilinear interpolation, we could apply the reverse scaling to our resulting data 

images to more closely recover a larger (in bytes) image. However, this does not suit our purpose 

here since a portion of the error as compared to the original image would come from the lossy 

compression, and not directly from our experimental manipulations.    

 

Obstacles to fully single-cell recording 

To reconstruct the ordering of information over time in the GIF, we leveraged both 

population and single-cell information. Order determination began as a single-cell, pair-wise 

comparison of the order of two newly acquired spacers within a single array. We then leveraged 

many of these pair-wise comparisons across a population of bacteria to reconstruct the entire 

ordering of all 520 spacers. Given the acquisition efficiencies in this system, no individual cell 

would be capable of encoding all the information as we supplied it in pooled oligo protospacers. 

The obstacles preventing wholly single-cell reconstruction currently include the delivery of 

protospacers (electroporation efficiencies, which are not 100%) and acquisition efficiencies once 

the oligos are delivered. If one were to overcome each of these existing limitations, the next 

challenge would be the limitation of single genomic arrays – both because multiple acquisition 

events per electroporation may overwhelm a single array, and because arrays would expand to a 

length that could be unstable and might present significant challenges to sequencing. This 

problem can be practically surmounted by following the example of native systems, where single 

cells routinely have multiple active arrays functioning in parallel.   

 

Information storage in DNA versus silicon 

In vitro DNA is a viable alternative to information storage in silicon when a premium is 

placed on information density (at 103 times the density of flash memory) or total information 

lifetime (projected to be 100-2,000,000 years, depending on storage conditions, compared with 

~10 years for flash memory)25. In vivo information storage in DNA is less dense than in vitro 

storage due to the physical volume of the cell as well as the presence of any non-information-

encoding elements of the genome. However, like the in vitro DNA, in vivo DNA is ideal for 

extending the information lifetime. In vivo DNA also has the advantage that it can be repaired by 



native machinery in the functioning cell, as opposed to in vitro DNA, although it is still subject 

to a slow increase in mutations over time and potential negative selection if the information 

carries a cost to the cell. In terms of replicating the information stored in DNA, in vivo DNA is 

cheaper to replicate than in vitro DNA (around 10-100 times less cost per copy) while also being 

less error prone (>100 times fewer errors per base) (see calculations below). However, the 

replication of in vivo DNA is around 20-30 times slower. That said, if the sole purpose is to 

encode information that is already in hand into DNA for long-term storage, the challenge of 

delivering data into cells might make in vivo information storage less attractive than in vitro. The 

best use case for the in vivo information recordings is one that is not yet feasible with current 

technology – a scenario in which cells gather and record biological information that is unknown 

to us before being captured by the cells. However, new approaches to biological recordings26-28 

and information encoding in nucleotides29 are emerging rapidly, any of which could change 

feasibility of information storage in living cells. 

 

Calculations of in vitro versus in vivo DNA storage parameters: 

 To calculate cost per copy of information for in vitro DNA, we started with the list price 

of KAPA HiFi master mix per 25µl reaction ($1.26). We assumed that the primer cost in a 25µl 

reaction is negligible. Thirty cycles of PCR under perfect conditions will generate 230 copies of 

the input information. This is clearly an overestimate because it assumes that the PCR is 

perfectly efficient (which it is likely not) and remains in the exponential phase of amplification 

throughout all 30 cycles (which it likely does not). Nonetheless, that works out to ~1.2 x 10-7 

cents per copy. To compare like-with-like, if we were to design an amplification scheme for the 

protospacers carrying the GIF that we encoded into cells, these copies would cost ~8.3 x 10-12 

cents per bit copied. However, up to a limit, this cost per bit copied would decrease if the 

information in the starting material were increased. According to manufacturer provided 

materials, the error rate is estimated at 2.8 x 10-7 per base. Although themocycling times will 

vary by amplicon length, 30 minutes is the estimate that we used.   

 For in vivo DNA, we used the list price of pre-made liquid Luria Broth at 500ml, at 5.5 

cents per ml, although assembly from components in larger volumes would clearly be much less 

expensive. We assumed thirty cycles of replication to, again, generate 230 copies of the input 

information. Similar to the PCR, this may slightly overestimate the true number of copies if cells 

exit the exponential growth phase prior to reaching 230 rounds of replication. In this case, that 

calculates to 5.1 x 10-9 cents per copy. Taking the GIF as an example, this would work out to 

~2.5 x 10-13 cents per bit copied. However, at least up to some theoretical limit vastly beyond 

what we have encoded here (based on the capacity of a genome), the cost per copy is not 

dependent on the size of information copied, so this information would drop as more information 

is stored. We arrived at 2.7 x 10-9 errors per base based on an estimate of 8.9 x 10-11 errors per 

base per generation34. With a doubling time of 20 minutes, this process could take minimally 10 

hours. Both the in vitro and in vivo calculations disregard the complexity of the starting material 

(number of individual strands or distribution among cells), which may significantly affect these 

estimates.  

The physical size of information stored in cells is greater than a similar amount of 

information stored in vitro as a function of the volume of the cell. Again using the GIF as an 

example, the ~3 kilobytes of information can be recalled using 106 reads, so could be stored in 

~106 cells, which would require 1µl of saturated culture (109 cell/ml), or ~2x104 bits per cubic 

millimeter. This is considerably less dense than previous in vitro information encoding 



(~5.5x1015 bits per cubic millimeter)1. However, as with the cost per bit copied, because the size 

limit is set by the volume of the cell, the bits per cubic millimeter would increase as the amount 

of information stored in a given genome is increased (storage density of an e coli genome itself is 

~1016 bits per cubic centimeter25).    

 

Calculations of Information Content 

Images were reconstructed based on two parameters contained in the nucleotide 

sequences of the spacers: pixel values and the physical arrangement of those pixel values 

specified by the pixets. For the purposes of these calculations, we will take a conservative 

approach and consider the pixet information to be part of the decoding apparatus rather than 

stored data, thereby considering only the pixel values as information. For the handR image, there 

were 56x56 (3,136) pixels, each with 4 possible values for log2(4)(3,136)=6,272 bits (784 bytes) 

in pixel values. The handF image, with 30x30 (900) pixels, each with 21 possible values 

contained log2(21)(900)=~3,953.1 bits (~494.1 bytes) in pixel values. Finally, the GIF recording 

encoded 36x26 pixels over 5 frames for a total of 4,680 pixels. Each pixel had 21 possible 

values, for log2(21)(4,680)=~20,556 bits (~2.6 kilobytes). As in the exclusion of the pixet from 

the information content, this calculation of the information encoded in the GIF is a conservative 

estimation excluding the information about frame order contained in the relative arrangement of 

the spacer in the array. 
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