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CONVOLUTIONAL NEURAL NETWORK DETECTORS 

The full Convolutional Neural Network (CNNFULL) was made up of three convolution 

layers, each consisting of 32 3x3 filters, rectified linear nonlinearities (ReLU) [1], and 

2x2 max pooling. The last pooling layer was fed into a fully connected layer with 256 

units, which was followed by an output of two softmax units. Both the fully connected 

layer and softmax layer utilised dropout [2] during training. This resulted in over 25,000 

weights that were used to learn from the data. The network was trained for 50 epochs, 

with a batch size of 256 using Nesterov’s variant of stochastic gradient descent with a 

fixed learning rate and momentum of 0.01 and 0.9, respectively. Our training data only 

contained annotations for the points in time where bat search-phase calls occurred. To 

artificially increase the training set, we selected additional positive training examples 1.5 

ms either side of each positive annotation. To generate an initial negative training set, 

we sampled random temporal windows that were not labelled as containing search-

phase echolocation calls. We sampled the same number of negatives as positives. 

During training, we performed two rounds of hard negative mining to add more 

challenging negative examples to the training set [3]. This resulted in a combined 

training set of 32,000 temporal windows. A time window was considered a hard 

negative if it did not occur within 7ms of an annotated search-phase bat call and was 

incorrectly predicted as containing a search-phase call with a probability of greater than 

0.5. We found this step to greatly reduce the number of false positive detections as it 

gave the CNN access to temporal windows that it initially incorrectly classified.  
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CNNFAST increased the test time evaluation speed of CNNFULL in two main ways. 

First, it had fewer parameters, with two rather than three convolution layers, each made 

up of 16 3x3 filters (Supplementary Information Figure 1). Again, both convolution layers 

were followed by ReLUs and 2x2 max pooling, and the fully connected layer consisted 

of only 64 units. The second performance improvement exploited the fact that the 

convolutional layers could be run on the entire spectrogram without having to extract out 

individual time windows [4, 5]. To do this, we converted the fully connect units to 

convolution units and applied them across the whole spectrogram. CNNFAST was trained 

in the same fashion as CNNFULL, as only the test time performance needed to be 

efficient.  

Our system was implemented in Python 2.7 [6], heavily utilising vectorized 

instructions from Numpy [7]. Portions of the code that were inefficient in pure Python 

(e.g. non-maximum suppression) were implemented in Cython [8]. To train the CNNs, 

we used the Lasagne library [9] which is a wrapper around Theano [10]. To further 

improve training efficiency, we made use of the Cuda [11] and cuDNN [12] libraries. 

Training the large CNN took on the order of 1.5 hours on a desktop machine with an 

Intel i7 processor, 32Gb of RAM, and a Nvidia GTX 1080 GPU. 

 

INDICATOR BATS PROGRAMME PROTOCOLS 

Citizen scientists within the iBats programme [13] collected 2501 full-spectrum acoustic 

approximately 90 minute recordings along 40km road transects routes driven at 25 km/h 

and starting 30-45 minutes after sunset, twice yearly during July to August (the period of 

peak seasonal activity for most northern European species) spanning a period from 

2005-2015 across 14 countries (UK, Romania, Bulgaria, Hungary, Ukraine, Russia, 
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Mongolia, Japan, Thailand, Ghana, Zambia, New Zealand, Australia, and USA). 

Acoustic data was recorded with a time-expansion (TE) device equipped with a 

wideband capacitance microphone with the frequency range 10-160 kHz and a sample 

rate of 409.6 kHz (Tranquility Transect, Courtplan Design Ltd, UK). The recording 

devices were set to record using a TE factor of 10, sampling time of 320 ms, sensitivity 

set on maximum, giving a continuous sequence of ‘snapshots’, consisting of 320 ms of 

silence (sensor listening) and 3.2s of TE audio played backed 10 times slower than real 

time. The recording device was attached to the front or back passenger window of the 

vehicle with the microphone pointing up and back at a 45 angle. Sony MiniDiscs (Sony-

MZ-NH600 Silver-Hi-MiniDisc Walkman), Zoom H2s, Edirol R-09HR or Roland R-05 

recording devices were used to record audio without compression or using a lossless 

compression, and native files were transformed into a wav format. A GPS track of the 

transect route was recorded using a variety of different GPS options, for example PDAs 

(Mio A201, Mio 350, Mio 360) with a built in Global Positioning System (GPS) taking a 

reading every 5 seconds via a mapping software program (GPSTuner v.4 and v.5), or a 

basic GPS (Garmin Etrex Vista, Garmin Etrex Legend HCx), and the transect tracks 

were recorded as GPX files. The sound recorder and GPS track were set to start 

recording at the same time so that the position of the car when each bat is recorded 

could be determined. Each recorded bat call was subsequently georeferenced using 

this GPS track. Surveys were only carried out during ‘fine’ weather; i.e. when the air 

temperature was greater than 7°C, and no more than very light rain or wind. The 

following metadata were also recorded at the start and end of each transect: 
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temperature (°C); cloud cover (%); rain (dry, drizzle, light); and wind speed (calm, light, 

or breezy).  
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