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A Large sample properties

We consider independent realizations (T1, Z1, L1, U1), . . . , (Tn, Zn, Ln, Un) having the law

of (T, Z, L, U) | D, where D = {L ≤ T ≤ U}. The following regularity conditions are

assumed.

1. T is continuous and tmin ≤ T ≤ tmax with probability one for some tmin ≥ 0 and

tmax <∞.

2. The covariates Z are bounded.

3. W (t) > ε and Ŵ (t) > ε on [tmin, tmax] for some ε > 0.

4. The covariates are linearly independent.

5. The limiting second derivative of PL(β) (defined below) is positive definite.

Under the conditions above and Conjectures 2.1 and 2.2, the following two conditions

hold; these are used in our proofs below.

Condition A.1 (Uniform convergence). max1≤i≤n{W (Ti)/Ŵ (Ti)−1} −→ 0 in probability.

Condition A.2 (IID representation).
√
n
[
{W (t)}−1 − {Ŵ (t)}−1

]
= n−1/2

∑n
i=1 ξn(Di, t)+

op(1) uniformly on t ∈ [tmin, tmax], where Di = (Ti, Li, Ui) is the data for subject i, and

ξn(Di, t) are independent and identically distributed zero mean random variables having

finite variance.

Theorem A.1. Let β̂ be the solution of U(β) = 0 in (8) with Ŵ substituted for W . If

Conjectures 2.1 and 2.2 hold and under the regularity conditions 1-5 above, β̂ is consis-

tent and n1/2(β̂ − β) is asymptotically equivalent to a U-statistic with kernel given below;
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and hence, has an asymptotic normal distribution provided that the kernel’s second order

moment is finite.

A.1 Consistency

To prove consistency we follow the steps of Andersen and Gill (1982) and show:

1. The log-likelihood is concave in β.

2. The log-likelihood converges pointwise to a function that obtains its maximum at β0.

3. Pointwise convergence of concave functions implies uniform convergence (Andersen

and Gill, Theorem II.1).

4. Uniform convergence of concave functions implies convergence of the point of maxi-

mum (Andersen and Gill, Corollary II.2).

Concavity

We first show that the maximum is unique by proving concavity using standard argu-

ments. Let Ŵ be the estimator of W (satisfying 0 < Ŵ (Tj) < 1 for all j), and consider

the centered pseudo-log likelihood that vanishes at β0:

PL(β) = n−1
n∑
i=1

[
(βt − βt0)Zi − log

{
n−1

∑n
j=1 e

βtZj{Ŵ (Tj)}−1I{Tj ≥ Ti}
n−1

∑n
j=1 e

βt
0Zj{Ŵ (Tj)}−1I{Tj ≥ Ti}

}]
.

The derivative of PL with respect to β,

∂PL(β)

∂β
= Ũn(β) = n−1

n∑
i=1

[
Zi −

n∑
j=1

Zj
eβ

tZj{Ŵ (Tj)}−1I{Tj ≥ Ti}∑n
j′=1 e

βtZj′{Ŵ (Tj′)}−1I{Tj′ ≥ Ti}

]
,

is the estimating equation (8) after plugging-in Ŵ for W . Let

pj,i(β) = eβ
tZj{Ŵ (Tj)}−1I{Tj ≥ Ti}

/ n∑
j′=1

eβ
tZj′{Ŵ (Tj′)}−1I{Tj′ ≥ Ti},
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so that Ũn(β) = n−1
∑n

i=1{Zi −
∑n

j=1 Zjpj,i(β)}. Differentiating Ũn(β) with respect to β

gives

∂2PL(β)

∂β2
= −n−1

n∑
i=1

{
n∑
j=1

Zj
⊗2pj,i(β)−

( n∑
j=1

Zjpj,i(β)
)⊗2}

. (A.1)

Thus, the second derivative of PL(β) is represented as a sum of minus of variance matrices

and hance is negative definite (assuming the design matrix is of full rank), and therefore

PL is concave and has a unique maximum.

Pointwise consistency of PL

Let Yi(t) = I{Ti ≥ t} and for k = 0, 1, 2 define

S̃
(k)
n (β, t) = n−1

∑n
j=1 Yj(t){Ŵ (Tj)}−1Zj⊗k exp(βZj),

S
(k)
n (β, t) = n−1

∑n
j=1 Yj(t){W (Tj)}−1Zj⊗k exp(βZj),

s
(k)
n (β, t) = E{S(k)

n (β, t)}.

Here S
(k)
n is a scalar, a vector and a matrix for k = 0, 1 and 2, respectively. Then,

PL(β) = n−1
n∑
i=1

[
(βt − βt0)Zi − log

{
S̃
(0)
n (β, Ti)

S̃
(0)
n (β0, Ti)

}]
.

It is shown below that

PL(β) = n−1
n∑
i=1

[
(βt − βt0)Zi − log

{
s
(0)
n (β, Ti)

s
(0)
n (β0, Ti)

}]
+ op(1), (A.2)

where the leading term is an average of independent and identically distributed random

variables, which are bounded by the regularity conditions. Thus,

PL(β)→ E

[
(βt − βt0)Z − log

{
s(0)(β, T )

s(0)(β0, T )

} ∣∣∣ D] (A.3)

in probability by the law of large numbers.
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To show (A.2), write

log

{
S̃
(0)
n (β, Ti)

S̃
(0)
n (β0, Ti)

}
− log

{
S
(0)
n (β, Ti)

S
(0)
n (β0, Ti)

}
= log

{
S̃
(0)
n (β, Ti)

S
(0)
n (β, Ti)

}
− log

{
S̃
(0)
n (β0, Ti)

S
(0)
n (β0, Ti)

}
.

Now, by Assumption A.1

S̃(0)
n (β, Ti) = n−1

n∑
j=1

Yj(Ti){W (Tj)}−1 exp(βZj)W (Tj)/Ŵ (Tj) = S(0)
n (β, Ti){1 + op(1)}

and similarly S̃
(0)
n (β0, Ti) = S

(0)
n (β0, Ti){1 + op(1)}. It follows that

log

{
S̃
(0)
n (β, Ti)

S̃
(0)
n (β0, Ti)

}
− log

{
S
(0)
n (β, Ti)

S
(0)
n (β0, Ti)

}
= op(1). (A.4)

Lemma A.1. Assume that T is continuous and Z is bounded, then S
(k)
n (β, t) → s(k)(β, t)

(k = 0, 1, 2) in probability uniformly in t ∈ [0, τ ] for any constant τ .

This follows from Theorem 16(a) of Ferguson (1996) using convergence in probability

rather than almost sure convergence, and replacing continuity with continuity with proba-

bility 1. Thus, S
(0)
n (β, Ti) = s

(0)
n (β, Ti){1 + op(1)}, and

log

{
S
(0)
n (β, Ti)

S
(0)
n (β0, Ti)

}
− log

{
s
(0)
n (β, Ti)

s
(0)
n (β0, Ti)

}
= op(1). (A.5)

Equations (A.4) and (A.5) together establish (A.2), as we assume that T < tmax < ∞

for some tmax.

Convergence of concave functions

As PL is a sequence of concave functions, so is its limit, the right hand side of Equation

(A.3) (by Theorem II.1 of Andersen and Gill 1982). It remains to show that its maximum

is indeed β0. Simple differentiation (similar to the proof of concavity of PL) shows that

this is indeed the case. Here the standard assumption that the limiting second derivative

is positive definite is required (see Andersen and Gill, 1982). Consistency is established by

Corollary II.2 of Andersen and Gill 1982.
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A.2 Asymptotic distribution

Define the column vectors

Ũn(β) =
n∑
i=1

{
Zi −

S̃
(1)
n (β, Ti)

S̃
(0)
n (β, Ti)

}

Un(β) =
n∑
i=1

{
Zi −

S
(1)
n (β, Ti)

S
(0)
n (β, Ti)

}
.

Using a first order Taylor expansion we have

Ũn(β)− Ũn(β0) = ϕ̃(β)(β − β0),

where ϕ̃(β) = ∇Ũn(β) and β is on the line segment between β and β0. By definition, our

estimator satisfies Ũn(β̂) = 0, and by plugging β̂ for β we have

n1/2(β̂ − β0) = −{n−1ϕ̃(β)}−1n−1/2Ũn(β0).

So there are two tasks. The first is to show that n−1ϕ̃(β) converges in probability to a fix

matrix. The second is to show that n−1/2Ũn(β0) converges to a Gaussian vector.

Convergence of n−1ϕ̃(β)

ϕ̃(β) = ∇Ũn(β) =
n∑
i=1

S̃(2)(β, Ti)S̃
(0)(β, Ti)− S̃(1)(β, Ti)S̃

(1)(β, Ti)
T

{S̃(0)(β, Ti)}2

By Assumption A.1, we have that n−1∇Ũn(β) = n−1∇Un(β) + op(1), and by Lemma A.1

n−1∇Un(β) = n−1
n∑
i=1

s(2)(β, Ti)s
(0)(β, Ti)− s(1)(β, Ti)s(1)(β, Ti)T

{s(0)(β, Ti)}2
+ op(1).

It follows, using arguments similar to those establishing Lemma A.1, that

n−1
n∑
i=1

s(2)(β, Ti)s
(0)(β, Ti)− s(1)(β, Ti)s(1)(β, Ti)T

{s(0)(β, Ti)}2
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converges in probability uniformly in a neighborhood of β0. Consistency of β̂ and continuity

(in β) of the above sequence establish the convergence of n−1ϕ̃(β).

Asymptotic of n−1/2Ũn(β0)

We have

n−1/2Ũn(β0) = n−1/2Un(β0) + n−1/2{Ũn(β0)− Un(β0)} (A.6)

The first term gives the contribution of the weighted estimating equation and the second

shows the variability due to estimation of the weight function. Focusing on the first term,

Un(β0) =
n∑
i=1

{
Zi −

S
(1)
n (β0, Ti)

s(0)(β0, Ti)

}
−

n∑
i=1

S
(1)
n (β0, Ti)

S
(0)
n (β0, Ti)s(0)(β0, Ti)

{
s(0)(β0, Ti)− S(0)

n (β0, Ti)
}
.

(A.7)

The first expression of (A.7) can be represented as a sum of

n−1
n∑
i=1

n∑
j 6=i

{
Zi −

Yj(Ti){W (Tj)}−1Zj exp(β0Zj)

s(0)(β0, Ti)

}
(A.8)

and

n−1
n∑
i=1

{
Zi −

{W (Ti)}−1Zi exp(β0Zi)

s(0)(β0, Ti)

}
.

The first of the two expressions resembles a U-statistic whose kernel has zero expectation

by the iid assumption and (7) (since we have E(Z|T = t,D) = s(1)(β0, t)/s
(0)(β0, t)). The

second expression converges to its expectation by the low of large numbers.

For the second term of (A.7), we have by Lemma A.1 S
(k)
n (β0, t)→ s(k)(β0, t) in proba-

bility, uniformly in t, so the second term is asymptotically equivalent to

n−1
n∑
i=1

n∑
j=1

s(1)(β0, Ti)

{s(0)(β0, Ti)}2
{
s(0)(β0, Ti)− Yj(Ti){W (Tj)}−1 exp(β0Zj)

}
.

This again can be represented as a sum of a U-type statistic

n−1
n∑
i=1

∑
j 6=i

s(1)(β0, Ti)

{s(0)(β0, Ti)}2
{
s(0)(β0, Ti)− Yj(Ti){W (Tj)}−1 exp(β0Zj)

}
(A.9)
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and an average

n−1
n∑
i=1

s(1)(β0, Ti)

{s(0)(β0, Ti)}2
{
s(0)(β0, Ti)− {W (Ti)}−1 exp(β0Zi)

}
.

Turning now to the second term of (A.6), n−1/2{Ũn(β0) − Un(β0)}, we express it in a

similar way as

Ũn(β0)− Un(β0) =
n∑
i=1

S̃
(1)
n (β0, Ti)− S(1)

n (β0, Ti)

S
(0)
n (β0, Ti)

+
n∑
i=1

S̃
(1)
n (β0, Ti)

S̃
(0)
n (β0, Ti)S

(0)
n (β0, Ti)

{S(0)
n (β0, Ti)− S̃(0)

n (β0, Ti)}.(A.10)

Next,

S̃(k)
n (β0, Ti)− S(k)

n (β0, Ti) = n−1
n∑
j=1

Yj(Ti)Zj
⊗k exp(β0Zj)[{W (Tj)}−1 − {Ŵ (Tj)}−1],

which by Assumption A.2 is asymptotically equivalent to

n−2
n∑
`=1

n∑
j=1

Yj(Ti)Zj
⊗k exp(β0Zj){ξn(D`, Tj) +Rn(Tj)},

where Rn(Tj) = op(1). Using this and Lemma A.1, we can express the first term of (A.10)

as

n−2
n∑
i=1

n∑
`=1

n∑
j=1

Yj(Ti)Zj exp(β0Zj){ξn(D`, Tj) +Rn(Tj)}
s(0)(β0, Ti) + op(1)

, (A.11)

and, since the ratio S̃/S equals op(1), the second term can be expressed as

n−2
n∑
i=1

n∑
`=1

n∑
j=1

s(1)(β0, Ti) + op(1)

{s(0)(β0, Ti) + op(1)}{s(0)(β0, Ti) + op(1)}
Yj(Ti) exp(β0Zj){ξn(D`, Tj)+Rn(Tj)}.

(A.12)

Combining the terms in (A.8), (A.9), (A.11), (A.12) we have

n−1/2Ũn(β0) = n1/2

(
n

3

)−1 ∑
i<`<j

(η1i`j + η2i`j + η3i`j + η4i`j) + op(1),
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where

η1i`j =

{
Zi −

Yj(Ti){W (Tj)}−1Zj exp(β0Zj)

s(0)(β0, Ti)

}

η2i`j =
s(1)(β0, Ti)

{s(0)(β0, Ti)}2
{
s(0)(β0, Ti)− Yj(Ti){W (Tj)}−1 exp(β0Zj)

}

η3i`j =
Yj(Ti)Zj exp(β0Zj)ξn(D`, Tj)

s(0)(β0, Ti)

η4i`j =
s(1)(β0, Ti)

{s(0)(β0, Ti)}{s(0)(β0, Ti)}
Yj(Ti) exp(β0Zj)ξn(D`, Tj).

Thus, n−1/2Ũn(β0) is asymptotically equivalent to a U-statistic with kernel η1 + η2 +

η3 +η4, and hence has an asymptotic normal distribution provided that the kernel’s second

order moment is finite.
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B Simulation - Left Truncated Data

Estimation approach

Delayed Entry Inverse Weighting

n Parameter Bias MSE Bias MSE

100 β1 -0.015 0.091 -0.012 0.087

β2 -0.043 0.101 -0.038 0.100

200 β1 -0.011 0.042 -0.009 0.041

β2 -0.022 0.039 -0.019 0.039

400 β1 -0.011 0.019 -0.010 0.018

β2 -0.003 0.019 -0.002 0.019

Table 1: Bias and MSE of β̂ for the model h(t | z1, z2; β) = exp(t−2z1−3z2), z1 ∼ Ber(0.5),

z2 ∼ U{1, 2, 3, 4}, and L ∼ Exp(1/4).

C Distribution of Weights
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Figure 1: Box-plots of the weights for the different genotype groups.
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