Integrating genomic alterations in diffuse large Bcell lymphoma identifies new
relevant pathways and potential therapeutic targets

Supplemental Material

Supplemental Methods

. Gene Selection

. Target next generation sequencing

. Variant Calling Algorithms

. NGS Verification. Mutation analysis @DKN2A and 3'UTR region oNOTCH1
. Selection of potential driver mutations

. Copy number variant and structural alterations\agl

. Cell of origin determination

0o N o 0o~ WDN P

. Gene expression analysis

Supplemental Tables

e Table S1. A) Clinical characteristics of the patsem the study vs patients not
included B) COO of the 150 patients included inithial series.

» Table S2. Genes sequenced using target NGS and ooz&mage by gene and
amplicon.

» Table S3. All called mutations in the 150 DLBCLtbé initial series.

» Table S4. Potential driver mutations identifiedhie 150 DLBCL of the initial series.

» Table S5. Distribution of frequent mutations in C&@groups.

» Table S6. Gene sets /pathways.

e Table S7. Copy number and copy number neutral lbesterozygosity alterations in

119 DLBCL cases of the initial series.

» Table S8. Distribution of frequent CNV alteratian<COO subgroups.

e Table S9. Prognostic impact of COO, R-IPI and othéral characteristics on CR,

PFS and OS.

» Table S10. Baseline clinical and biological feasuoé the patients according to the
mutational status of the pathways.

e Table S11.Frequency of mutations of selected genes in th@lirand validation



© 00 N o u b W N R

W W W N N N N N N NN NN R P R PR R R R R
N P O O 00 N O U B W N P O O W N OO0 L B W N —» O

cohorts.

» Table S12Baseline clinical features of the patients accaydonmutational status of
the NOTCH pathway, TP53/CDKN2A, and JAK/STAT patlyia the validation series.

» Table S13Insilico drug prescription of DLBCL patients.

» Table S14. Primers used f8angersequencing, Access Array Fluidigm and Nextera

XT approaches.

Supplemental Figure legends

* Figure S1. PFS and OS in the initial and validatienes.

* Figure S2. Pipeline followed to filter potentialivier mutations in 150 DLBCL
samples. *SIFT was only used for mutations in whaldefinitive score was not
provided by Mutation Assessor (MA).

* Figure S3. Genetic alterations characterized inBEBCL patients.

* Figure S4. Alterations oTMEM30A, PRDM1, SGK1, TNFAIP3 in the common
deleted 6q14-g23 region.

* Figure S5. Chromothripsis-like patterns detectedliBCL cases. (a) Amplifications
of miR17-92-13931.3 in 3 cases of DLBCL with a chromothripg®| pattern on
chromosome 13. (b) Amplifications &fEL and BCL11A genes in one DLBCL case
with a chromothripsis-like pattern in chromosome 2.

« Figure S6. Gene set enrichment analysis (GSEA) eomgp SGK1 and NOTCH

pathway mutatesls unmutated cases.

Supplemental Methods

Gene Selection

We selected 106 genes from previous whole exomaeseing studies of diffuse large
B-cell lymphomas (DLBCL) and a large number of séisdihat analyzed the mutations
of individual or small sets of genes in these lymphas (Supplemental Table SZ¥ In
total, 3951 different genes were initially reviewedainly from whole exome
sequencing studigs: ¥ 2* *Genes were selected according to the followinteia:

Recurrent mutated genes in more than 10% of DLBChry of the studies, mutated
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genes in which a somatic mutation was confirmedtiteast 2 cases or annotated in
COSMIC as somatic, and genes located on frequatidyed regions in DLBCL. Three
additional criteria were: functional evidence oé fhathogenic role of the mutated gene
in DLBCL, genes involved in pathways relevant fdtBCL, and drug target genes (45
genes were selected because they had been codsadedrug targets in clinical trials
according to the public database (http://www.camgmarclinicaltrials). Some additional
genes were added because they were reported inlptifghomas or could complement
some of the pathways of intereBi_M, BRCA2, CCNH, FBXW?7, HIST1H2BD, IDH1,
ID3, MEF2C, MKI67, MPL, POU2F2, TCF3, SEMA5SA, and WHSC1). We excluded
several genes initially selected according to mrevicriteria for different reasons such
as difficulties for primer design (el®2RY8) or because they were known to be late
replication genes, or because of their large @GO, LRP1B, MUC16 and UNC5D)
and the fact that they have been reported to aceweniarge numbers of passenger

mutations®

Target next generation sequencing

Two-hundred twenty-five nanograms of genomic DNArasted from frozen tumor
tissues were used to generate NGS libraries. Fiyeritthick sections per sample were
used to extract DNA using the QlAamp DNA Mini Kit@rding to the manufacturer's
instructions (Qiagen). In the initial series, libes were generated using HaloPlex
technology (Agilent technologies, Santa Clara, G8ljowing the manufacturer’s
protocol). The customed HaloPlex kit included atbes and their flanking regions
(Supplemental Table S2). Libraries were sequenceal MiSeq instrument (lllumina,
San Diego, CA) in a paired-end run of 150 bp. TWeerage sequencing coverage across

regions was 600x and a coverage >20x was obtame€l8.7% of the target regions.

Libraries of the validation cohort were generatesing Access-Array technology
(Fluidigm) and Nextera XT procedure (lllumina). &fty, primers to amplifyTP53
(exons 4-10)MYD88 (exons 2-8)NOTCH2 (exon 34),CCND3 (exon 5),SGK1 (all
exons),STAT3 (exons 20-21)STAT6 (exons 11-17)PIM1 (exons 1-14)FBXW7 (all
exons) andTMEM30A (exons 1-7) regions were designed with the D3-Ad3agign

web-based tool (Fluidigm) (Supplemental Table S14raries were generated using
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50 ng of total DNA in the Access-Array system wihBioMark thermal cycler
(Fluidigm) and sequenced in a MiSeq instrument vaitipaired-end run of 210 bp.
Specific primers to sequen®OTCH1 (exon 34) SOCSL (all exons)and FOXOL1 (all
exons) were designed using the Primer3 programp(8opental Table S14). Long-PCR
amplifications were performed using the KAPA HiFINB Polymerase HotStart
ReadyMix (Kapa Biosystems) and normalized with SmgjualPrep Normalization Plate
kit (Invitrogen). Libraries were generated with thdextera XT DNA Library
Preparation Kit (lllumina) and sequenced with a &xbp MiSeq run. The median
sequencing coverage across region was 555x (rarigé33 and a coverage >20x was
obtained in >98.7% of the target regions.

Variant calling algorithms and verification assessrant
Two different bioinformatics pipelines were used tioe alignment and variant calling,
HD Genome One Research Edition software (DREAMgenic

http://www.dreamgenics.com/ and Agilent SureCall tool

(http://www.genomics.agilent.cOmFASTQ files generated by MiSeq control software

were processed using the above mentioned algoridmeh$oth were compared.

Genome One Research Edition software

A new algorithm was developed in cooperation wilREAMgenics.Inc to perform the
alignment, calling and annotation of the variantsaoted with Haloplex LibrariesThe
allelic frequency cut-off for considering mutationas 5%. All variants were confirmed
by visual inspection. Low coverage calls (totaldrei@pth < 10, or mutated allele count
<5 calls) and 17 low quality calls were excludede ¥kcluded for further analysis all
synonymous and intron variants and known polymanpisi included in dbSNP
database (dbSNP138), ESP6500 (http://evs.gs.wdehiedu/EVS) with more than 1%
frequency in European population or in our own bas& of polymorphisms in Spanish

population®*

Agilent SureCall
We used SureCall tool (verl.1l) with all defaulttisgfs to analyze sequencing results

and to call the variants. All variants were confmby visual inspections. All
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synonymous variants, intron variants and known malgphisms included in dbSNP
database_(http://www.ncbi.nlm.nih.gov/SNBf in our own database of polymorphisms

in Spanish population were exclud¥d.

Variant calls of both algorithms were integrated,dmhlly, 1331calls were selected in
the 150 cases (Supplemental Figure S2 and Supplehlatile S3). To determine the
accuracy of the sequencing method and analyticgrithms, we selected 152 (11%)
variants from these 1331 called variants, and wifie@ them using Sanger sequencing.
One hundred fifty-one (99%) of these variants weefirmed, indicating the accuracy
of the analysis.

For the validation series, the complete bioinfoimainalysis, alignment and variant
calling were performed with the MiSeq Reporter %afie (MSR, version 2.4.60). All
variants detected by any of these two algorithmseve®mbined and annotated using
ANNOVAR?® as well as custom scripts. Like in the initialissranalysis, we excluded
all synonymous and intron variants and known polgghsms included in dbSNP
database (dbSNP138), ESP6500 (http://evs.gs.wdsehiegu/EVSY with more than
1% frequency in European population or in our owtabase of polymorphisms in

Spanish populatior.

Sanger sequencing. Verification of NGS results andnmutational analysis of
CDKNZ2A and 3'UTR region of NOTCH1

Sanger sequencing was used to verify the resultteoNGS described above and to
analyze Exon lalfa, 1beta and 2@DKN2A and 3'UTR region oNOTCH1.3* PCR
primers were designed using Primer 3 (http://fradlonit.edu/primer3) and purchased
from Sigma-Aldrich (St. Louis, MO). AmplificationyoPCR was performed using
AmpliTaq Gold DNA Polymerase (Life technologies,a@d Island, NY) or QIAGEN
Multiplex PCR Kit (Qiagen, Madrid, Spain) with 500§ DNA and 200uM dNTP mix
(Life technologies) following the manufacturerscoenmendations. All PCR products
were run in a capillary electrophoresis gel (QlAx8evanced System, Qiagen) with
the QIAxcel DNA screening kit (Qiagen). The multildaPCR products were purified
using NucleoSpin Gel and PCR Clean-up (MachereyeNad@ethlehem, PA).
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Regarding Sanger sequencing, PCR products werenedeausing EX0SAP-IT
(Affymetrix, Santa Clara, CA) and sequenced usimi Rrism BigDye terminator v3.1
(Life technologies) with 5 pmol of each primer. Seqcing reactions were run on an
ABI-3730 automated sequencer (Life Technologie#l)s@équences were examined with
the Mutation Surveyor DNA Variant Analysis Softwai®oftGenetics, State College,
PA). Sequences of the used primers are listed ppl8mental Table S14.

Selection of potential driver mutations and verifi@tion in germline DNA

Potential driver mutations were selected accordiiog the following criteria
(Supplementary Fig S2): 1) We initially selected 2televant” mutations by manual
curation based on previous reports and COSMICudich somatic and functional

mutations and mutations clustering in known funwiodomaing- ® > 7 . 12.15. 17,19, 22,

25,21,29:31,36-54 * 2y All truncating mutations (n= 274), except two fouimd known
oncogenesNYD88, M1l andCD79A, Q222*), were also considered as potential driver
events. 3) The potential drivers of the remainingsense and in-frame mutations were
selected based on the functional prediction estaddl by the OncodriveCLUST,
Mutation Assessor (MA) and SIFT algorithtt’” MA and SIFT algorithms were
selected after comparing several methods includingse two and CHASRA
CONDEL*’, FATHMM®, Mutation Testét, and Polyphen2 (PPH2) To select the
most appropriate algorithm we initially explored tperformance of each of these
algorithms when distinguishing the variants foumd aur study that were known
polymorphisms or known somatic recurrent mutatidascribed in COSMIC. In this
particular data set, the scores that better predlitte expected characteristics of the
variant were MA and SIFT, followed by CHASM. We didt observe any benefit in
combining these scores. We selected MA becausmwed a narrower score range for
polymorphisms and larger differences between reatirand non-recurrent COSMIC
entries as compared to SIFT. For those cases ichwiie MA score could not be
retrieved, we used a SIFT score. Using these tworigdhms, 271 out of the 841

missense or in-frame mutations were selected aerdmnutations.

To test the accuracy of our "functional predictiahgorithm for missense mutations, we

selected 92 variants in 32 patients who had gernidiN@ available. We observed that
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90% of the mutations classified as functional wesenatic (28/31) while 89% of the
germline mutations were classified as non-functid@d4/27) (Supplemental Methods
and Supplemental Table S15). The 34 somatic varipradicted as non-functional by
the algorithm were not considered drivers. Takihgse three criteria together we
selected 761 potential driver mutations (58% of tibial) for the clinicopathological

analysis (Supplemental Figure S2 and SupplementaeTS4).

Copy Number and Structural Alteration Analysis

Samples were analyzed using CytoScan HD Array (A#irix) according to the
manufacturer's instructions. Scanned data from @goSHD were processed by
Chromosome Analysis Suite (Affymetrix) for subseguenalyses. The analytical
programs of “Nexus CN 7.5 Discovery edition” (Bisdovery, Hawthorne, CA), SNP-
FASST2 (Biodiscovery) and ASCAT (http://heim.ifiouno/bioinf/Projects/ASCAT/)
were used to analyze genomic alterations. Mininsmhmon regions (MCRs) of gains
and losses were picked up using an R custom s€hptmost frequently altered regions
(>=20%) were extracted and selected by visual ctsmpe of two different observers
(K.K. and 1.S.). A total number of 34 MCRs wereeséd. Then ABC and GCB type
DLBCL cases were analyzed separately and MCRs fapémi each molecular subtype

were identified.

Genomic alterations satisfying the following critewere regarded as “deep losses” or
“high gains™ (1) An amplitude of an alteration wa®re than 1 or less than -1 in log2
ratio. (2) Deeper and shorter gains or losses wdaetified in longer and shallower
alterations (gain in gain or loss in loss). “Homgays loss” and “amplification” were
defined as “deep loss” and “high gain” regions lges 5Mb, respectively. 6g14.1 and
10923.31 regions, in whichtMEM30A and PTEN were located respectively, were
further added to the alteration list because theywed recurrent homozygous losses.
Additionally, 17 regions previously reported weracluded® ®7° In total, 62
chromosomal regions were selected for further a@malycluding clinical correlation.
Loss of heterozygosity (LOH) without genomic altema (CNN-LOH) was considered

when the size of the altered region was >5Mb. Casese regarded to have
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chromothripsis when at least seven switches betweeror more copy number states
were detected on an individual chromosome in whidl was retained:

The copy number alterations @DKN2A were investigated in the validations series
using TagMafi Genotyping Master Mix and TagM3nCopy Number Assay
Hs02738179_cn for CDKN2A. DNA was analyzed using duplicates in a
StepOnePlus™ Real-Time PCR Systeffhermo Fisher Scientific). Relative
quantification of the gene locus was analyzed wligh 2**“* method using TagM&h
Copy Number Reference Assay RNassRhe endogenous control and JVM-2 cell line
(wild type for CDKN2A) as mathematical calibrator. We included the log#l MAVER-

1 as a control of homozygous deletion.

Interphase fluorescende situ hybridization (FISH) analysis was carried out dfPE
sections to detedYC, BCL2 and BCL6 breaks using specific probes supplied by
Abbott Molecular (Des Plaines, IL, USA) followingd manufacturer’s specifications.
The FISH probe used for the BCL6 FISH analysis wes LSIBCL6 (ABR) Break
Apart Rearrangement Probe, (Abbot Molecular DesnP$a USA)that identifies both
breakpoints located in the major and alternativeakpoint region.

Cell of origin determination

The molecular cell of origin (COO) of the tumorssaestablished using the Gene Chip
Human Genome U133 Plus 2.0 arrays (Affymetrix, &a@lara, CA) and/or the
Lymph2Cx assay (Nanostring technologies, Seattla).\¥ To determine the COO in
the training series, total RNA was extracted fromzén tissues using RNeasy Kit
(Qiagen) following the manufacturer's instructioRer the validation series, total RNA
was obtained from formalin-fixed paraffin-embeddedterial (FFPE-M). Five 10m-
thick sections per sample were used to extract Ridfkg the RNeasy FFPE Kit
according to the manufacturer's instructions (QixgdrRNA integrity from frozen
specimens was examined with the Agilent 2100 Bibaea (Agilent Technologies)
and only high-quality RNA samples were hybridizedAffymetrix Human Genome
Array U219 array plates according to Affymetrix reflard protocols. Summarized

expression values were computed using the robustiampl average approach



1 implemented in the Expression Console Software yfAétrix Inc.). COO was

2 determined as previously reportéd=or RNA extracted from FFPE tissues we used a
3 digital multiplexed gene expression analysis wite nCounter/Nanostring technology
4  following the established protocHl. Samples were classified as GCB, ABC and
5 Unclassified (UC) subtypes using the algorithm presly described?

6

7  Gene expression analysis

8 To verify the biological relevance of NOTCH pathwagtivation in DLBCL, we

9 compared the gene expression profiles of 12 cagasNOTCH pathway mutations (5
10 NOTCH2, 4 SGK1, 2NOTCH1, 1 FBWX7) and 27 with wild-type genes of this pathway
11  using Affymetrix® Human Genome U219. A gene setadmment analysis (GSEA) was
12 performed comparingSGK1 mutated and unmutated cases. We tested the KEGG
13  NOTCH signaling pathway, two lists of genes uprated by NOTCH signaling and
14 two other gene-sets downregulated by NOTCEH?® In addition, HESL mRNA

15 expression was analyzed in 14 cases with NOTCHnagtimutations and 13 with wild-
16 type genes of this pathway by qRT-PCR using a desighuman Tagman® Gene
17  expression Assay fddESL (Hs00172878 m1; Applied Biosystems, Foster Cit¥).C
18 Gene expression was quantified by the comparatigke ¢hreshold (Ct) method(Ct)

19 using GUS as endogenous control. All real-time P@Rctions for the individual
20 samples were performed in triplicate. Results werpressed as relative gene
21  expression (versuSUS gene expression) using arbitrary units.
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Supplemental Figure 1. PFS and OS in training and validation series.
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Supplemental Figure 2: Pipeline followed to filter potential driver mutations in 150 DLBCL samples
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Supplemental Figure 3. Genetic alterations characterized in 150 DLBCL patients.
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Supplemental Figure 4. Alterations of four genes in the common deleted 6q14-q23 region.
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Supplemental Figure 5. Chromothripsis-like patterns detected in DLBCL cases.
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Supplemental Figure 6. GSEAs of SGK1 and NOTCH pathway mutated cases vs not mutated.
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