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Gene Selection 26 

We selected 106 genes from previous whole exome sequencing studies of diffuse large 27 

B-cell lymphomas (DLBCL) and a large number of studies that analyzed the mutations 28 

of individual or small sets of genes in these lymphomas (Supplemental Table S2).1-32  In 29 

total, 3951 different genes were initially reviewed mainly from whole exome 30 

sequencing studies.13, 16, 24, 32 Genes were selected according to the following criteria: 31 

Recurrent mutated genes in more than 10% of DLBCL in any of the studies, mutated 32 
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genes in which a somatic mutation was confirmed in at least 2 cases or annotated in 1 

COSMIC as somatic, and genes located on frequently altered regions in DLBCL. Three 2 

additional criteria were: functional evidence of the pathogenic role of the mutated gene 3 

in DLBCL, genes involved in pathways relevant for DLBCL, and drug target genes (45 4 

genes were selected because they had been considered as drug targets in clinical trials 5 

according to the public database (http://www.cancer.gov/clinicaltrials). Some additional 6 

genes were added because they were reported in other lymphomas or could complement 7 

some of the pathways of interest (BLM, BRCA2, CCNH, FBXW7, HIST1H2BD, IDH1, 8 

ID3, MEF2C, MKI67, MPL, POU2F2, TCF3, SEMA5A, and WHSC1). We excluded 9 

several genes initially selected according to previous criteria for different reasons such 10 

as difficulties for primer design (e.g P2RY8) or because they were known to be late 11 

replication genes, or  because of their large size (PCLO, LRP1B, MUC16 and UNC5D) 12 

and the fact that they have been reported to accumulate large numbers of passenger 13 

mutations.33  14 

 15 

Target next generation sequencing 16 

Two-hundred twenty-five nanograms of genomic DNA extracted from frozen tumor 17 

tissues were used to generate NGS libraries. Five 10 µm-thick sections per sample were 18 

used to extract DNA using the QIAamp DNA Mini Kit according to the manufacturer's 19 

instructions (Qiagen). In the initial series, libraries were generated using HaloPlex 20 

technology (Agilent technologies, Santa Clara, CA; following the manufacturer’s 21 

protocol). The customed HaloPlex kit included all exons and their flanking regions 22 

(Supplemental Table S2). Libraries were sequenced in a MiSeq instrument (Illumina, 23 

San Diego, CA) in a paired-end run of 150 bp. The average sequencing coverage across 24 

regions was 600x and a coverage >20x was obtained in >98.7% of the target regions. 25 

 26 

Libraries of the validation cohort were generated using Access-Array technology 27 

(Fluidigm) and Nextera XT procedure (Illumina). Briefly, primers to amplify TP53 28 

(exons 4-10), MYD88 (exons 2-8), NOTCH2 (exon 34), CCND3 (exon 5), SGK1 (all 29 

exons), STAT3 (exons 20-21), STAT6 (exons 11-17), PIM1 (exons 1-14), FBXW7 (all 30 

exons) and TMEM30A (exons 1-7) regions were designed with the D3-Assay Design 31 

web-based tool (Fluidigm) (Supplemental Table S14). Libraries were generated using 32 
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50 ng of total DNA in the Access-Array system with a BioMark thermal cycler 1 

(Fluidigm) and sequenced in a MiSeq instrument with a paired-end run of 210 bp. 2 

Specific primers to sequence NOTCH1 (exon 34), SOCS1 (all exons) and FOXO1 (all 3 

exons) were designed using the Primer3 program (Supplemental Table S14). Long-PCR 4 

amplifications were performed using the KAPA HiFi DNA Polymerase HotStart 5 

ReadyMix (Kapa Biosystems) and normalized with the SequalPrep Normalization Plate 6 

kit (Invitrogen). Libraries were generated with the Nextera XT DNA Library 7 

Preparation Kit (Illumina) and sequenced with a 2x150 bp MiSeq run. The median 8 

sequencing coverage across region was 555x (range 131-933) and a coverage >20x was 9 

obtained in >98.7% of the target regions.  10 

 11 

Variant calling algorithms and verification assessment 12 

Two different bioinformatics pipelines were used for the alignment and variant calling, 13 

HD Genome One Research Edition software (DREAMgenics; 14 

http://www.dreamgenics.com/) and Agilent SureCall tool 15 

(http://www.genomics.agilent.com). FASTQ files generated by MiSeq control software 16 

were processed using the above mentioned algorithms and both were compared.  17 

 18 

Genome One Research Edition software 19 

A new algorithm was developed in cooperation with DREAMgenics.Inc to perform the 20 

alignment, calling and annotation of the variants obtained with Haloplex Libraries. The 21 

allelic frequency cut-off for considering mutations was 5%. All variants were confirmed 22 

by visual inspection. Low coverage calls (total read depth < 10, or mutated allele count 23 

<5 calls) and 17 low quality calls were excluded. We excluded for further analysis all 24 

synonymous and intron variants and known polymorphisms included in dbSNP 25 

database (dbSNP138), ESP6500 (http://evs.gs.washington.edu/EVS) with more than 1% 26 

frequency in European population or in our own database of polymorphisms in Spanish 27 

population.34 28 

 29 

Agilent SureCall  30 

We used SureCall tool (ver1.1) with all default settings to analyze sequencing results 31 

and to call the variants. All variants were confirmed by visual inspections. All 32 
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synonymous variants, intron variants and known polymorphisms included in dbSNP 1 

database (http://www.ncbi.nlm.nih.gov/SNP/) or in our own database of polymorphisms 2 

in Spanish population were excluded.34 
3 

 4 

Variant calls of both algorithms were integrated and, finally, 1331calls were selected in 5 

the 150 cases (Supplemental Figure S2 and Supplemental Table S3). To determine the 6 

accuracy of the sequencing method and analytical algorithms, we selected 152 (11%) 7 

variants from these 1331 called variants, and we verified them using Sanger sequencing. 8 

One hundred fifty-one (99%) of these variants were confirmed, indicating the accuracy 9 

of the analysis. 10 

 11 

For the validation series, the complete bioinformatic analysis, alignment and variant 12 

calling were performed with the MiSeq Reporter Software (MSR, version 2.4.60). All 13 

variants detected by any of these two algorithms were combined and annotated using 14 

ANNOVAR35 as well as custom scripts. Like in the initial series analysis, we excluded 15 

all synonymous and intron variants and known polymorphisms included in dbSNP 16 

database (dbSNP138), ESP6500 (http://evs.gs.washington.edu/EVS/) with more than 17 

1% frequency in European population or in our own database of polymorphisms in 18 

Spanish population.34  19 

 20 

Sanger sequencing. Verification of NGS results and mutational analysis of 21 

CDKN2A and 3’UTR region of NOTCH1 22 

Sanger sequencing was used to verify the results of the NGS described above and to 23 

analyze Exon 1alfa, 1beta and 2 of CDKN2A and 3’UTR region of NOTCH1.34 PCR 24 

primers were designed using Primer 3 (http://frodo.wi.mit.edu/primer3) and purchased 25 

from Sigma-Aldrich (St. Louis, MO). Amplification by PCR was performed using 26 

AmpliTaq Gold DNA Polymerase (Life technologies, Grand Island, NY) or QIAGEN 27 

Multiplex PCR Kit (Qiagen, Madrid, Spain) with 50ng of DNA and 200µM dNTP mix 28 

(Life technologies) following the manufacturer’s recommendations. All PCR products 29 

were run in a capillary electrophoresis gel (QIAxcel Advanced System, Qiagen) with 30 

the QIAxcel DNA screening kit (Qiagen). The multiband PCR products were purified 31 

using NucleoSpin Gel and PCR Clean-up (Macherey-Nagel, Bethlehem, PA). 32 
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Regarding Sanger sequencing, PCR products were cleaned using ExoSAP-IT 1 

(Affymetrix, Santa Clara, CA) and sequenced using ABI Prism BigDye terminator v3.1 2 

(Life technologies) with 5 pmol of each primer. Sequencing reactions were run on an 3 

ABI-3730 automated sequencer (Life Technologies). All sequences were examined with 4 

the Mutation Surveyor DNA Variant Analysis Software (SoftGenetics, State College, 5 

PA). Sequences of the used primers are listed in Supplemental Table S14. 6 

 7 

Selection of potential driver mutations and verification in germline DNA 8 

Potential driver mutations were selected according to the following criteria 9 

(Supplementary Fig S2): 1) We initially selected 216 “relevant” mutations by manual 10 

curation based on previous reports and COSMIC, including somatic and functional 11 

mutations and mutations clustering in known functional domains 1, 3, 5, 7, 11, 12, 15, 17, 19, 22, 
12 

25,27,29-31,36-54 . 2) All truncating mutations (n= 274), except two found in known 13 

oncogenes (MYD88, M1I and CD79A, Q222*), were also considered as potential driver 14 

events. 3) The potential drivers of the remaining missense and in-frame mutations were 15 

selected based on the functional prediction established by the OncodriveCLUST, 16 

Mutation Assessor (MA) and SIFT algorithm.55-57 MA and SIFT algorithms were 17 

selected after comparing several methods including these two and CHASM58, 18 

CONDEL59, FATHMM60, Mutation Tester61, and Polyphen2 (PPH2)62. To select the 19 

most appropriate algorithm we initially explored the performance of each of these 20 

algorithms when distinguishing the variants found in our study that were known 21 

polymorphisms or known somatic recurrent mutations described in COSMIC. In this 22 

particular data set, the scores that better predicted the expected characteristics of the 23 

variant were MA and SIFT, followed by CHASM. We did not observe any benefit in 24 

combining these scores. We selected MA because it showed a narrower score range for 25 

polymorphisms and larger differences between recurrent and non-recurrent COSMIC 26 

entries as compared to SIFT. For those cases in which the MA score could not be 27 

retrieved, we used a SIFT score. Using these two algorithms, 271 out of the 841 28 

missense or in-frame mutations were selected as driver mutations.   29 

 30 

To test the accuracy of our "functional prediction" algorithm for missense mutations, we 31 

selected 92 variants in 32 patients who had germline DNA available. We observed that 32 
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90% of the mutations classified as functional were somatic (28/31) while 89% of the 1 

germline mutations were classified as non-functional (24/27) (Supplemental Methods 2 

and Supplemental Table S15). The 34 somatic variants predicted as non-functional by 3 

the algorithm were not considered drivers. Taking these three criteria together we 4 

selected 761 potential driver mutations (58% of the total) for the clinicopathological 5 

analysis (Supplemental Figure S2 and Supplemental Table S4). 6 

 7 

Copy Number and Structural Alteration Analysis 8 

Samples were analyzed using CytoScan HD Array (Affymetrix) according to the 9 

manufacturer's instructions. Scanned data from CytoScan HD were processed by 10 

Chromosome Analysis Suite (Affymetrix) for subsequent analyses. The analytical 11 

programs of “Nexus CN 7.5 Discovery edition” (Biodiscovery, Hawthorne, CA), SNP-12 

FASST2 (Biodiscovery) and ASCAT (http://heim.ifi.uio.no/bioinf/Projects/ASCAT/) 13 

were used to analyze genomic alterations. Minimal common regions (MCRs) of gains 14 

and losses were picked up using an R custom script. The most frequently altered regions 15 

(>=20%) were extracted and selected by visual inspection of two different observers 16 

(K.K. and I.S.). A total number of 34 MCRs were selected. Then ABC and GCB type 17 

DLBCL cases were analyzed separately and MCRs specific for each molecular subtype 18 

were identified.  19 

 20 

Genomic alterations satisfying the following criteria were regarded as “deep losses” or 21 

“high gains”: (1) An amplitude of an alteration was more than 1 or less than -1 in log2 22 

ratio. (2) Deeper and shorter gains or losses were identified in longer and shallower 23 

alterations (gain in gain or loss in loss). “Homozygous loss” and “amplification” were 24 

defined as “deep loss” and “high gain” regions less than 5Mb, respectively. 6q14.1 and 25 

10q23.31 regions, in which TMEM30A and PTEN were located respectively, were 26 

further added to the alteration list because they showed recurrent homozygous losses. 27 

Additionally, 17 regions previously reported were included.3, 63-70 In total, 62 28 

chromosomal regions were selected for further analysis including clinical correlation. 29 

Loss of heterozygosity (LOH) without genomic alteration (CNN-LOH) was considered 30 

when the size of the altered region was >5Mb. Cases were regarded to have 31 



8 

 

chromothripsis when at least seven switches between two or more copy number states 1 

were detected on an individual chromosome in which LOH was retained.71 
2 

The copy number alterations of CDKN2A were investigated in the validations series 3 

using TaqMan® Genotyping Master Mix and TaqMan® Copy Number Assay 4 

Hs02738179_cn for CDKN2A. DNA was analyzed using duplicates in a 5 

StepOnePlus™ Real-Time PCR System (Thermo Fisher Scientific). Relative 6 

quantification of the gene locus was analyzed with the 2-∆∆Ct method using TaqMan® 7 

Copy Number Reference Assay RNaseP as the endogenous control and JVM-2 cell line 8 

(wild type for CDKN2A) as mathematical calibrator. We included the cell line MAVER-9 

1 as a control of homozygous deletion. 10 

 11 

Interphase fluorescence in situ hybridization (FISH) analysis was carried out on FFPE 12 

sections to detect MYC, BCL2 and BCL6 breaks using specific probes supplied by 13 

Abbott Molecular (Des Plaines, IL, USA) following the manufacturer’s specifications. 14 

The FISH probe used for the BCL6 FISH analysis was the LSI BCL6 (ABR) Break 15 

Apart Rearrangement Probe, (Abbot Molecular Des Plaines, USA) that identifies both 16 

breakpoints located in the major and alternative breakpoint region. 17 

 18 

Cell of origin determination  19 

The molecular cell of origin (COO) of the tumors was established using the Gene Chip 20 

Human Genome U133 Plus 2.0 arrays (Affymetrix, Santa Clara, CA) and/or the 21 

Lymph2Cx assay (Nanostring technologies, Seattle, WA).72 To determine the COO in 22 

the training series, total RNA was extracted from frozen tissues using RNeasy Kit 23 

(Qiagen) following the manufacturer's instructions. For the validation series, total RNA 24 

was obtained from formalin-fixed paraffin-embedded material (FFPE-M). Five 10 µm-25 

thick sections per sample were used to extract RNA using the RNeasy FFPE Kit 26 

according to the manufacturer's instructions (Qiagen). RNA integrity from frozen 27 

specimens was examined with the Agilent 2100 Bioanalyzer (Agilent Technologies) 28 

and only high-quality RNA samples were hybridized to Affymetrix Human Genome 29 

Array U219 array plates according to Affymetrix standard protocols. Summarized 30 

expression values were computed using the robust multichip average approach 31 
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implemented in the Expression Console Software (Affymetrix Inc.). COO was 1 

determined as previously reported.73 For RNA extracted from FFPE tissues we used a 2 

digital multiplexed gene expression analysis  with the nCounter/Nanostring technology 3 

following the established protocol.72 Samples were classified as GCB, ABC and 4 

Unclassified (UC) subtypes using the algorithm previously described.72 5 

 6 

Gene expression analysis 7 

To verify the biological relevance of NOTCH pathway activation in DLBCL, we 8 

compared the gene expression profiles of 12 cases with NOTCH pathway mutations (5 9 

NOTCH2, 4 SGK1, 2 NOTCH1, 1 FBWX7) and 27 with wild-type genes of this pathway 10 

using Affymetrix® Human Genome U219. A gene set enrichment analysis (GSEA) was 11 

performed comparing SGK1 mutated and unmutated cases. We tested the KEGG 12 

NOTCH signaling pathway, two lists of genes upregulated by NOTCH signaling and 13 

two other gene-sets downregulated by NOTCH.74, 75 In addition, HES1 mRNA 14 

expression was analyzed in 14 cases with NOTCH pathway mutations and 13 with wild-15 

type genes of this pathway by qRT-PCR using a designed human Taqman® Gene 16 

expression Assay for HES1 (Hs00172878_m1; Applied Biosystems, Foster City, CA). 17 

Gene expression was quantified by the comparative cycle threshold (Ct) method (∆∆Ct) 18 

using GUS as endogenous control. All real-time PCR reactions for the individual 19 

samples were performed in triplicate. Results were expressed as relative gene 20 

expression (versus GUS gene expression) using arbitrary units.  21 
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Supplemental Figure 1. PFS and OS in training and validation series.
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Supplemental Figure 2: Pipeline followed to filter potential driver mutations in 150 DLBCL samples 
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Supplemental Figure 3. Genetic alterations characterized in 150 DLBCL patients.
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Supplemental Figure 4. Alterations of four genes in the common deleted 6q14-q23 region.
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Supplemental Figure 5. Chromothripsis-like patterns detected in DLBCL cases.
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Supplemental Figure 6. GSEAs of SGK1 and NOTCH pathway mutated cases vs not mutated.
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