SUPPLEMENTARY MATERIAL

Functional analysis of cancer-associated DNA polymerase ϵ variants in Saccharomyces cerevisiae

Stephanie R. Barbari, Daniel P. Kane¹, Elizabeth A. Moore and Polina V. Shcherbakova

Eppley Institute for Research in Cancer and Allied Diseases, Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA

¹*Present address:* Daniel P. Kane, Department of Biological and Environmental Sciences, Le Moyne College, Syracuse, NY 13214

Strain	Relevant chromosomal mutation	Genotype
Haploid strains		
TM30	WT	MATa ade5-1 lys2-Tn5-13 trp1-289 his7-2 leu2-3,112 ura3-4 CAN1::LEU2
TM44	WT	MATα ade5-1 lys2-lnsE _{A14} trp1-289 his7-2 leu2-3,112 ura3-52 can1 Δ ::loxP
DK039a/DK039b	pol2-F139L	MATa ade5-1 lys2-lnsE _{A14} trp1-289 his7-2 leu2-3,112 ura3-X CAN1::LEU2 pol2-F139L
SB042/SB044	pol2-R252H	MATa ade5-1 lys2-Tn5-13 trp1-289 his7-2 leu2-3,112 ura3-4 CAN1::LEU2 pol2-R252H
SB046/SB051	pol2-R252H	MAT $lpha$ ade5-1 lys2-InsE _{A14} trp1-289 his7-2 leu2-3,112 ura3-52 can1 Δ ::loxP pol2-R252H
SI022/SI023	pol2-D290V	MATa ade5-1 lys2-Tn5-13 trp1-289 his7-2 leu2-3,112 ura3-4 CAN1::LEU2 pol2-D290V
SI024/SI026	pol2-D290V	MAΤα ade5-1 lys2-InsE _{A14} trp1-289 his7-2 leu2-3,112 ura3-52 can1Δ::loxP pol2-D290V
DK046/DK047	pol2-P301H	MAΤα ade5-1 lys2-lnsE _{A14} trp1-289 his7-2 leu2-3,112 ura3-X CAN1::LEU2 pol2-P301H
SB112/SB113	pol2-P301H	MATa ade5-1 lys2-InsE _{A14} trp1-289 his7-2 leu2-3,112 ura3-X can1∆∷loxP pol2-P301H
DK048	pol2-F382S	MATα ade5-1 lys2-Tn5-13 trp1-289 his7-2 leu2-3,112 ura3-X can1Δ::loxP pol2-F382S
DK049/DK050	pol2-F382S	MATa ade5-1 lys2-InsE _{A14} trp1-289 his7-2 leu2-3,112 ura3-X CAN1::LEU2 pol2-F382S
SB052/SB053	pol2-V426L	MATa ade5-1 lys2-InsE _{A14} trp1-289 his7-2 leu2-3,112 ura3-52 can1 Δ ::loxP pol2-V426L
SB054/SB055	pol2-V426L	MATa ade5-1 lys2-InsE _{A14} trp1-289 his7-2 leu2-3,112 ura3-52 can1 Δ ::loxP pol2-V426L
SI030/SI031	pol2-L439V	MATa ade5-1 lys2-Tn5-13 trp1-289 his7-2 leu2-3,112 ura3-4 CAN1::LEU2 pol2-L439V
SI032/SI033	pol2-L439V	MATa ade5-1 lys2-InsE _{A14} trp1-289 his7-2 leu2-3,112 ura3-52 can1 Δ ::loxP pol2-L439V
SB063/SB065	pol2-P451R	MATa ade5-1 lys2-Tn5-13 trp1-289 his7-2 leu2-3,112 ura3-4 CAN1::LEU2 pol2-P451R
SB066/SB068	pol2-P451R	MATα ade5-1 lys2-InsE _{A14} trp1-289 his7-2 leu2-3,112 ura3-52 can1 Δ ::loxP pol2-P451R
SB069/SB071	pol2-S474F	MATa ade5-1 lys2-Tn5-13 trp1-289 his7-2 leu2-3,112 ura3-4 CAN1::LEU2 pol2-S474F
SB073/SB074	pol2-S474F	MATα ade5-1 lys2-InsE _{A14} trp1-289 his7-2 leu2-3,112 ura3-52 can1 Δ ::loxP pol2-S474F

Table S1 Genotypes of yeast strains used for construction of *pol2-x* mutants and mutation rate measurements

Strain	Relevant chromosomal mutation	Genotype
DK051a/DK051b	pol2-R778W	MAΤα ade5-1 lys2-InsE _{A14} trp1-289 his7-2 leu2-3,112 ura3-X CAN1::LEU2 pol2-R778W
SB075/SB077	pol2-A979V	MATa ade5-1 lys2-Tn5-13 trp1-289 his7-2 leu2-3,112 ura3-4 CAN1::LEU2 pol2-A979V
SB079/SB081	pol2-A979V	MATα ade5-1 lys2-InsE _{A14} trp1-289 his7-2 leu2-3,112 ura3-52 can1Δ::loxP pol2-A979V
DK055a/DK055b	pol2-D1757N	MATa ade5-1 lys2-InsE _{A14} trp1-289 his7-2 leu2-3,112 ura3-X CAN1::LEU2 pol2-D1757N
SB083/SB084	mlh1∆	MATa ade5-1 lys2-Tn5-13 trp1-289 his7-2 leu2-3,112 ura3-4 CAN1::LEU2 mlh1∆::hphMX4
SB086/SB087	mlh1∆	MAT α ade5-1 lys2-lnsE _{A14} trp1-289 his7-2 leu2-3,112 ura3-52 can1 Δ ::loxP mlh1 Δ ::hphMX4
SB088/SB089/ SB090/SB091	pol2-R252H mlh1 Δ	MATa ade5-1 lys2-Tn5-13 trp1-289 his7-2 leu2-3,112 ura3-4 CAN1::LEU2 pol2-R252H mlh1Δ::hphMX4
SB092/SB093/ SB094	pol2-R252H mlh1 Δ	MATα ade5-1 lys2-InsE _{A14} trp1-289 his7-2 leu2-3,112 ura3-52 can1Δ::loxP pol2-R252H mlh1Δ::hphMX4
SI003/SI004/ SI005/SI006	pol2-R778W mlh1 Δ	MATα ade5-1 lys2-InsE _{A14} trp1-289 his7-2 leu2-3,112 ura3-X CAN1::LEU2 pol2-R778W mlh1Δ::hphMX4
SB095/SB096/ SB097/SB098	pol2-A979V mlh1∆	MATa ade5-1 lys2-Tn5-13 trp1-289 his7-2 leu2-3,112 ura3-4 CAN1::LEU2 pol2-A979V mlh1Δ::hphMX4
SB099/SB100/ SB101/SB102	pol2-A979V mlh1∆	MATα ade5-1 lys2-InsE _{A14} trp1-289 his7-2 leu2-3,112 ura3-52 can1Δ::loxP pol2-A979V mlh1Δ::hphMX4
Diploid strains		
TM63/SB539/ SB540	WT	MATa/MATα ade5-1/ade5-1 lys2-Tn5-13/lys2-InsE _{A14} trp1-289/trp1-289 his7-2/his7-2 leu2- 3,112/leu2-3,112 ura3-4/ura3-52 CAN1::LEU2/can1Δ::loxP
SB555/SB556	pol2-R252H/POL2	MATa/MATα ade5-1/ade5-1 lys2-Tn5-13/lys2-InsE _{A14} trp1-289/trp1-289 his7-2/his7-2 leu2- 3,112/leu2-3,112 ura3-4/ura3-52 CAN1::LEU2/can1Δ::loxP pol2-R252H/POL2
SI531/SI533	pol2-D290V/POL2	MATa/MATα ade5-1/ade5-1 lys2-Tn5-13/lys2-InsE _{A14} trp1-289/trp1-289 his7-2/his7-2 leu2- 3,112/leu2-3,112 ura3-4/ura3-52 CAN1::LEU2/can1Δ::loxP pol2-D290V/POL2

Table S1 Genotypes of yeast strains used for construction of pol2-x mutants and mutation rate measurements (Continued)

Strain	Relevant chromosomal mutation	Genotype
SI527/SI528/ SI529/SI530	pol2-D290V/pol2-D290V	MATa/MATα ade5-1/ade5-1 lys2-Tn5-13/lys2-InsE _{A14} trp1-289/trp1-289 his7-2/his7-2 leu2- 3,112/leu2-3,112 ura3-4/ura3-52 CAN1::LEU2/can1Δ::loxP pol2-D290V/pol2-D290V
SI505/SI507	pol2-P301H/POL2	MATa/MATα ade5-1/ade5-1 lys2-InsE _{A14} /lys2-InsE _{A14} trp1-289/trp1-289 his7-2/his7-2 leu2- 3,112/leu2-3,112 ura3-X/ura3-X CAN1::LEU2/can1Δ::loxP pol2-P301H/POL2
SB557/SB558/ SB559	pol2-P301H/pol2-P301H	MATa/MATα ade5-1/ade5-1 lys2::InsE _{A14} /lys2::InsE _{A14} trp1-289/trp1-289 his7-2/his7-2 leu2- 3,112/leu2-3,112 ura3-X/ura3-X CAN1::LEU2/can1Δ::loxP pol2-P301H/pol2-P301H
SI509/SI511	pol2-F382S/POL2	MATa/MATα ade5-1/ade5-1 lys2-InsE _{A14} /lys2-InsE _{A14} trp1-289/trp1-289 his7-2/his7-2 leu2- 3,112/leu2-3,112 ura3-X/ura3-52 CAN1::LEU2/can1Δ::loxP pol2-F382S/POL2
SI514/SI516	pol2-F382S/pol2-F382S	MATa/MATα ade5-1/ade5-1 lys2-InsE _{A14} /lys2-Tn5-13 trp1-289/trp1-289 his7-2/his7-2 leu2- 3,112/leu2-3,112 ura3-X/ura3-X CAN1::LEU2/can1Δ::loxP pol2-F382S/pol2-F382S
SI522/SI526	pol2-L439V/POL2	MATa/MATα ade5-1/ade5-1 lys2-Tn5-13/lys2-InsE _{A14} trp1-289/trp1-289 his7-2/his7-2 leu2- 3,112/leu2-3,112 ura3-4/ura3-52 CAN1::LEU2/can1Δ::loxP pol2-L439V/POL2
SI518/SI519/ SI520/SI521	pol2-L439V/pol2-L439V	MATa/MATα ade5-1/ade5-1 lys2-Tn5-13/lys2-InsE _{A14} trp1-289/trp1-289 his7-2/his7-2 leu2- 3,112/leu2-3,112 ura3-4/ura3-52 CAN1::LEU2/can1Δ::loxP pol2-L439V/pol2-L439V
SB542/SB545	pol2-P451R/POL2	MATa/MATα ade5-1/ade5-1 lys2-Tn5-13/lys2-InsE _{A14} trp1-289/trp1-289 his7-2/his7-2 leu2- 3,112/leu2-3,112 ura3-4/ura3-52 CAN1::LEU2/can1Δ::loxP pol2-P451R/POL2
SB547/SB548	pol2-P451R/pol2-P451R	MATa/MATα ade5-1/ade5-1 lys2-Tn5-13/lys2-InsE _{A14} trp1-289/trp1-289 his7-2/his7-2 leu2- 3,112/leu2-3,112 ura3-4/ura3-52 CAN1::LEU2/can1Δ::loxP pol2-P451R/pol2-P451R
SB549/SB551	pol2-S474F/POL2	MATa/MATα ade5-1/ade5-1 lys2-Tn5-13/lys2-InsE _{A14} trp1-289/trp1-289 his7-2/his7-2 leu2- 3,112/leu2-3,112 ura3-4/ura3-52 CAN1::LEU2/can1Δ::loxP pol2-S474F/POL2
SB552/SB553	pol2-S474F/pol2-S474F	MATa/MATα ade5-1/ade5-1 lys2-Tn5-13/lys2-InsE _{A14} trp1-289/trp1-289 his7-2/his7-2 leu2- 3,112/leu2-3,112 ura3-4/ura3-52 CAN1::LEU2/can1Δ::loxP pol2-S474F/pol2-S474F
SB560/SB561	mlh1∆::hphMX4/mlh1∆:: hphMX4	MATa/MATα ade5-1/ade5-1 lys2-Tn5-13/lys2-InsE _{A14} trp1-289/trp1-289 his7-2/his7-2 leu2- 3,112/leu2-3,112 ura3-4/ura3-52 CAN1::LEU2/can1Δ::loxP mlh1Δ::hphMX4/mlh1Δ::hphMX4
SB562/SB563	pol2-R252H/POL2 mlh1∆::hphMX4/mlh1∆:: hphMX4	MATa/MATα ade5-1/ade5-1 lys2-Tn5-13/lys2-InsE _{A14} trp1-289/trp1-289 his7-2/his7-2 leu2- 3,112/leu2-3,112 ura3-4/ura3-52 CAN1::LEU2/can1Δ::loxP pol2-R252H/POL2 mlh1Δ::hphMX4/mlh1Δ::hphMX4

 Table S1 Genotypes of yeast strains used for construction of pol2-x mutants and mutation rate measurements (Continued)

Human POLE variant	Yeast Pol2 mimic	Plasmid	Restriction site	Mutation in truncated or full-length POL2 after integration	Construction method ^a
F104L	F139L	YIpDK1	<i>Bam</i> HI	Full-length	1
R231H	R252H	YIpDK1	Bg/II	Truncated	2
D275V	D290V	YIpDK1	<i>Bam</i> HI	Full-length	1
P286H	P301H	YIpDK1	<i>Bam</i> HI	Full-length	1
N336S	N351S	YIpDK1	<i>Bam</i> HI	Full-length	1
F367S	F382S	YIpDK1	<i>Bam</i> HI	Full-length	1
V411L	V426L	YIpDK1	Bg/II	Truncated	2
L424V	L439V	YIpDK1	<i>Bam</i> HI	Full-length	1
P436R	P451R	YIpDK1	Bg/II	Truncated	2
S459F	S474F	YIpDK1	Bg/II	Truncated	2
R762W	R778W	p173	Agel	Full-length	1
A966V	A979V	p173	<i>Bsr</i> GI	Truncated	2
D1752N	D1757N	p174	Agel	Full-length	1

 Table S2 Plasmid, restriction site, and method used to construct pol2 mutants

^aRefers to the two methods described in the Materials and Methods section.

Human	Yeast POL2	Can ^R mutation		His⁺ revers	ion	Lys ⁺ reversion	
POLE variant	allele	Mutation rate (x10 ⁻⁸) ^a	Fold increase	Mutation rate (x10 ⁻⁸) ^a	Fold increase	Mutation rate (x10 ⁻⁸) ^a	Fold increase
WT	POL2	23 (17-32)	1.0	1.3 (0.76-1.9)	1.0	31 (25-49)	1.0
F104L	pol2-F139L	21 (18-23)	0.91	1.2 (0.94-1.5)	0.92	26 (24-34)	0.84
R231H	pol2-R252H	18 (16-21)	0.78	0.78 (0.58-0.95)	0.60	36 (33-46)	1.2
D275V	pol2-D290V	53 (44-55)	2.3	4.9 (4.2-5.9)	3.8	42 (36-44)	1.4
P286H	pol2-P301H	290 (250-440)	13	29 (25-37)	22	51 (40-63)	1.6
N336S	pol2-N351S	21 (19-25)	0.91	1.6 (1.3-2.4)	1.2	32 (30-36)	1.0
F367S	pol2-F382S	380 (300-490)	17	16 (8.7-22)	12	56 (30-140)	1.8
V411L	pol2-V426L	28 (25-32)	1.2	2.4 (2.0-3.3)	1.8	30 (28-35)	0.97
L424V	pol2-L439V	120 (82-140)	5.2	11 (9.6-16)	8.5	32 (27-36)	1.0
P436R	pol2-P451R	120 (98-150)	5.2	12 (11-16)	9.2	40 (36-49)	1.3
S459F	pol2-S474F	680 (560-800)	30	35 (30-47)	27	71 (62-87)	2.3
R762W	pol2-R778W	21 (17-25)	0.91	1.0 (0.59-1.6)	0.77	26 (22-29)	0.84
A969V	pol2-A979V	21 (19-28)	0.91	1.4 (0.87-1.7)	1.1	31 (27-34)	1.0
D1752N	pol2-D1757N	21 (15-32)	0.91	1.0 (0.78-1.4)	0.77	22 (20-27)	0.71

Table S3 Spontaneous mutation rates in haploid yeast strains with *pol2* mutations mimicking human *POLE* variants

^aMutation rates are given as the median of at least 18 independent cultures, with 95% confidence intervals in parentheses. Fold increase is shown relative to the wild-type haploid (WT). Bold text indicates p < 0.05 by Wilcoxon-Mann-Whitney compared to WT. Data from this table were used to generate Figure 2.

Human POLE variant	Exon	No. times reported ^a	No. tumors analyzed ^b	Incidence per 10,000 tumors
D275V	9	1	13,283	0.75
P286H	9	1	13,283	0.75
P286R	9	160	13,159	120
F367S	11	5	7,079	7.1
L424V	13	3	13,424	2.2
P436R	13	6	13,424	4.5
S459F	14	18	11,831	15

Table S4 Summary of published tumor sequencing data used to calculate the frequency of DNA binding cleft variants

^aNumber of times the variant has been reported in sporadic CRC and EC.

^bTotal number of tumors from studies where the corresponding exon was sequenced.

References

Ahn SM, Ansari AA, Kim J, Kim D, Chun SM, Kim TW, *et al.* The somatic *POLE* P286R mutation defines a unique subclass of colorectal cancer featuring hypermutation, representing a potential genomic biomarker for immunotherapy. *Oncotarget* 2016; 7: 68638-68649.

Bellone S, Centritto F, Black J, Schwab C, English D, Cocco E, *et al.* Polymerase ε (POLE) ultra-mutated tumors induce robust tumor-specific CD4+ T cell responses in endometrial cancer patients. *Gynecol Oncol* 2015; 138: 11-17.

Billingsley CC, Cohn DE, Mutch DG, Stephens JA, Suarez AA, and Goodfellow PJ. Polymerase ϵ (*POLE*) mutations in endometrial cancer: clinical outcomes and implications for Lynch syndrome testing. *Cancer* 2015; 121: 386-394.

Cancer Genome Atlas Network. Comprehensive molecular characterization of human colon and rectal cancer. *Nature* 2012; 487: 330-337.

Cancer Genome Atlas Network. Integrated genomic characterization of endometrial carcinoma. *Nature* 2013; 497: 67-73.

Church DN, Briggs SE, Palles C, Domingo E, Kearsey SJ, Grimes JM, *et al.* DNA polymerase ε and δ exonuclease domain mutations in endometrial cancer. *Hum Mol Genet* 2013; 22: 2820-2828.

Church DN, Stelloo E, Nout RA, Valtcheva N, Depreeuw J, ter Haar N, et al. Prognostic significance of *POLE* proofreading mutations in endometrial cancer. *J Natl Cancer Inst* 2015; 107: 402.

Domingo E, Freeman-Mills L, Rayner E, Glaire M, Briggs S, Vermeulen L, *et al.* Somatic *POLE* proofreading domain mutation, immune response, and prognosis in colorectal cancer: a retrospective, pooled biomarker study. *Lancet Gastroenterol Hepatol* 2016; 1: 207-216.

Espinosa I, D'Angelo E, Palacios J, and Prat J. Mixed and ambiguous endometrial carcinomas: A heterogenous group of tumors with different clinicopathologic and molecular genetic features. *Am J Surg Pathol* 2016; 40: 972-981.

Espinosa I, Lee CH, D'Angelo E, Palacios J, and Prat J. Undifferentiated and dedifferentiated endometrial carcinomas with pole exonuclease domain mutations have a favorable prognosis. *Am J Surg Pathol* 2017; 41: 1121-1128.

Giannakis M, Mu XJ, Shukla SA, Qian ZR, Cohen O, Nishihara R, *et al.* Genomic correlates of immunecell infiltrates in colorectal carcinoma. *Cell Rep* 2016; 17: 1206. Grossman RL, Heath AP, Ferretti V, Varmus HE, Lowy DR, Kibbe WA, et al. Toward a shared vision for cancer genomic data. *N Engl J Med* 2016; 375: 1109-1112; <u>https://portal.gdc.cancer.gov/</u> [Last accessed 11/10/17].

Jesinghaus M, Pfarr N, Endris V, Kloor M, Volckmar AL, Brandt R, *et al.* Genotyping of colorectal cancer for cancer precision medicine: Results from the IPH Center for Molecular Pathology. *Genes Chromosomes Cancer* 2016; 55: 505-521.

Kane DP and Shcherbakova PV. A common cancer-associated DNA polymerase ε mutation causes an exceptionally strong mutator phenotype, indicating fidelity defects distinct from loss of proofreading. *Cancer Res* 2014; 74: 1895-1901.

Köbel M, Meng B, Hoang LN, Almadani N, Li X, Soslow RA, *et al.* Molecular analysis of mixed endometrial carcinomas shows clonality in most cases. *Am J Surg Pathol* 2016; 40: 166-180.

Kothari N, Teer JK, Abbott AM, Srikumar T, Zhang Y, Yoder SJ, *et al.* Increased incidence of *FBXW7* and *POLE* proofreading domain mutations in young adult colorectal cancers. *Cancer* 2016; 122: 2828-2835.

Le Gallo M, O'Hara AJ, Rudd ML, Urick ME, Hansen NF, O'Neil NJ, *et al.* Exome sequencing of serous endometrial tumors identifies recurrent somatic mutations in chromatin-remodeling and ubiquitin ligase complex genes. *Nat Genet* 2012; 44: 1310-1315.

McConechy MK, Talhouk A, Leung S, Chiu D, Yang W, Senz J, et al. Endometrial carcinomas with *POLE* exonuclease domain mutations have a favorable prognosis. *Clin Cancer Res* 2016; 22: 2865-2873.

Meng B, Hoang LN, McIntyre JB, Duggan MA, Nelson GS, Lee CH, *et al. POLE* exonuclease domain mutation predicts long progression-free survival in grade 3 endometrioid carcinoma of the endometrium. *Gynecol Oncol* 2014; 134: 15-19.

Nowak JA, Yurgelun MB, Bruce JL, Rojas-Rudilla V, Hall DL, Shivdasani P, *et al.* Detection of mismatch repair deficiency and microsatellite instability in colorectal adenocarcinoma by targeted next-generation sequencing. *J Mol Diagn* 2017; 19: 84-91

Rosa-Rosa JM, Leskelä S, Cristóbal-Lana E, Santón A, López-García MÁ, Muñoz G, et al. Molecular genetic heterogeneity in undifferentiated endometrial carcinomas. *Mod Pathol* 2016; 29: 1390-1398.

Seshagiri S, Stawiski EW, Durinck S, Modrusan Z, Storm EE, Conboy CB, et al. Recurrent R-spondin fusions in colon cancer. Nature 2012; 488: 660-664.

Shinbrot E, Henninger EE, Weinhold N, Covington KR, Schultz N, Chao H, *et al.* Exonuclease mutations in DNA polymerase ε reveal replication strand specific mutation patterns and human origins of replication. *Genome Res* 2014; 24: 1740-1750.

Stadler ZK, Battaglin F, Middha S, Hechtman JF, Tran C, Cercek A, *et al.* Reliable detection of mismatch repair deficiency in colorectal cancers using mutational load in next-generation sequencing panels. *J Clin Oncol* 2016; 34: 2141-2147

Stenzinger A, Pfarr N, Endris V, Penzel R, Jansen L, Wolf T, *et al.* Mutations in POLE and survival of colorectal cancer patients--link to disease stage and treatment. *Cancer Med* 2014; 3: 1527-1538.

Talhouk A, McConechy MK, Leung S, Li-Chang HH, Kwon JS, Melnyk N, *et al.* A clinically applicable molecular-based classification for endometrial cancers. *Br J Cancer* 2015; 113: 299-310.

van de Wetering M, Francies HE, Francis JM, Bounova G, Iorio F, Pronk A, *et al.* Prospective derivation of a living organoid biobank of colorectal cancer patients. *Cell* 2015; 161: 933-945.

Wong A, Kuick CH, Wong WL, Tham JM, Mansor S, Loh E, *et al.* Mutation spectrum of *POLE* and *POLD1* mutations in South East Asian women presenting with grade 3 endometrioid endometrial carcinomas. *Gynecol Oncol* 2016; 141: 113-120.

Yoshida R, Miyashita K, Inoue M, Shimamoto A, Yan Z, Egashira A, *et al.* Concurrent genetic alterations in DNA polymerase proofreading and mismatch repair in human colorectal cancer. *Eur J Hum Genet* 2011; 19: 320-325.

Zehir A, Benayed R, Shah RH, Syed A, Middha S, Kim HR, et al. Mutational landscape of metastatic cancer revealed from prospective clinical sequencing of 10,000 patients. *Nat Med* 2017; 23: 703-713.

Zhao S, Choi M, Overton JD, Bellone S, Roque DM, Cocco E, *et al.* Landscape of somatic singlenucleotide and copy-number mutations in uterine serous carcinoma. *Proc Natl Acad Sci U S A* 2013; 110: 2916-2921.

POLE Variant	D275V	P286H	L424V	P436R	F367S	S459F
P286H	1					
L424V	0.62	0.62				
P436R	0.12	0.12	0.51			
F367S	0.022	0.022	0.13	0.53		
S459F	<0.0001	<0.0001	0.0003	0.0069	0.14	
P286R	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001

 Table S5 P values (Fisher's exact test) for comparison of frequencies of individual POLE variants

Data used for analysis are in Supplementary Table S4. P values indicating statistically significant differences are in bold.

Human		Can ^R mutation		His ⁺ revers	sion	Lys ⁺ reversion	
POLE variant	Yeast POL2 alleles	Mutation rate (x10 ⁻⁸) ^a	Fold increase	Mutation rate (x10 ⁻⁸) ^a	Fold increase	Mutation rate (x10 ⁻⁸) ^a	Fold increase
WT	POL2/POL2	20 (15-24)	1.0	1.1 (0.70-1.7)	1.0	22 (17-26)	1.0
D275V	pol2-D290V/POL2	21 (19-23)	1.0	2.7 (2.0-3.1)	2.5	16 (13-18)	0.73
	pol2-D290V/pol2-D290V	40 (37-43)	2.0	5.3 (4.4-5.9)	4.8	22 (19-28)	1.0
P286H	pol2-P301H/POL2	130 (110-150)	6.5	10 (9.4-13)	9.1	30 ^b (27-38)	0.68 ^b
	pol2-P301H/pol2-P301H	270 (240-280)	14	24 (21-27)	22	49 ^b (40-52)	1.1 ^b
F367S	pol2-F382S/POL2	230 (190-310)	12	24 (17-37)	22	59 ^b (49-76)	1.3 ^b
	pol2-F382S/pol2-F382S	530 (420-710)	27	50 (32-69)	45	66 (37-83)	3.0
L424V	pol2-L439V/POL2	68 (53-82)	3.4	5.1 (4.5-6.4)	4.6	17 (16-22)	0.77
	pol2-L439V/pol2-L439V	120 (100-140)	6.0	13 (11-15)	12	20 (18-22)	0.91
P436R	pol2-P451R/POL2	82 (74-97)	4.1	7.0 (6.5-9.6)	6.4	20 (17-25)	0.91
	pol2-P451R/pol2-P451R	180 (150-200)	9.0	16 (14-19)	15	24 (21-31)	1.1
S459F	pol2-S474F/POL2	500 (370-640)	25	27 (24-37)	25	30 (26-31)	1.4
	pol2-S474F/pol2-S474F	1000 (850-1300)	50	92 (70-120)	84	93 (80-120)	4.2

 Table S6 Spontaneous mutation rates in diploid yeast strains with *pol2* mutations mimicking human *POLE* variants

^aMutation rates are given as the median of at least 18 independent cultures, with 95% confidence intervals in parentheses. Fold increase is shown relative to the wild-type diploid (WT). Bold text indicates p < 0.05 by Wilcoxon-Mann-Whitney compared to WT. Data from this table were used to generate Figure 5. ^bStrain contains two copies of the *lys2-InsE*_{A14} allele (Supplementary Table 1). The fold increase shown is the fold increase in the Lys⁺ reversion rate over wild-type divided by two.

	POL2 allele	<i>MLH1</i> allele	Can ^R mutation		His ⁺ reversion		Lys ⁺ reversion	
Ploidy			Mutation rate (x10 ⁻⁸) ^a	Fold increase	Mutation rate (x10 ⁻⁸) ^a	Fold increase	Mutation rate (x10 ⁻⁸) ^a	Fold increase
n	POL2	MLH1	15 (14-20)	1.0	0.92 (0.64-1.3)	1.0	26 (18-30)	1.0
	pol2-R252H	MLH1	23 (15-31)	1.5	0.90 (0.69-2.1)	0.98	32 (28-34)	1.2
	pol2-R778W	MLH1	15 (13-19)	1.0	0.59 (0.48-0.73)	0.64	14 (14-15)	0.54
	pol2-A979V	MLH1	17 (13-34)	1.1	0.93 (0.65-1.2)	1.0	21 (18-24)	0.81
	POL2	mlh1 Δ	440 (380-490)	29	97 (57-110)	110	130000 (120000-170000)	5000
	pol2-R252H	mlh1 Δ	970 (930-1100)	65	150 (140-160)	160	160000 (140000-260000)	6200
	pol2-R778W	mlh1∆	530 (440-650)	35	100 (91-110)	110	140000 (130000-160000)	5400
	pol2-A979V	mlh1 Δ	410 (390-470)	27	99 (90-110)	110	170000 (140000-190000)	6500
2n	POL2/POL2	MLH1/MLH1	17 (16-23)	1.0	1.2 (0.87-1.6)	1.0	18 (16-22)	1.0
	pol2-R252H/POL2	MLH1/MLH1	18 (15-21)	1.1	1.2 (1.0-1.7)	1.0	20 (17-24)	1.1
	POL2/POL2	mlh1 Δ /mlh1 Δ	450 (410-520)	26	110 (98-140)	92	120000 (100000-130000)	6700
	pol2-R252H/POL2	mlh1 Δ /mlh1 Δ	820 (710-1200)	48	150 (140-170)	130	140000 (120000-160000)	7800

Table S7 Spontaneous mutation rates in yeast strains with *pol2-R252H, -R778W* and *-A979V* mutations in MMR-proficient or MMR-deficient (*mIh1*Δ) background

^aMutation rates are given as the median of at least 18 independent cultures, with 95% confidence intervals in parentheses. Fold increase is shown relative to the wild-type haploid or diploid. Bold text indicates p < 0.05 by Wilcoxon-Mann-Whitney compared to *mlh1* Δ haploids or *mlh1* Δ /*mlh1* Δ diploids. Data from this table were used to generate Figure 6.

Figure S1 Effect of cancer-associated Polɛ variants on the rate of *lys2-InsE*_{A14} reversion in haploid yeast strains. Relative mutation rates are shown compared to wild-type (WT). All experimental details and symbols are as in Figure 2. Asterisks indicate p < 0.05 by Wilcoxon-Mann-Whitney compared to WT. Data are from Supplementary Table S3. ^aData from Kane and Shcherbakova 2014.

Figure S2 Lack of correlation between *in vitro* effects of Pole mutations and their frequency in tumors. [A] Relationship between exonuclease activity defect and variant frequency. [B] Relationship between *in vitro* error rate and variant frequency. Exonuclease activity and *in vitro* error rates were measured in Shinbrot *et al.* 2014 using the N-terminal fragment of human Pole containing the exonuclease and DNA polymerase domains. The variant frequency in tumors was determined as described in Figure 4.

Figure S3 Effect of cancer-associated Pole variants on the rate of *lys2-lnsE*_{A14} reversion in diploid yeast strains. The strains contained one copy of the *lys2-lnsE*_{A14} reporter allele and a nonrevertible mutation at the same position of the *LYS2* gene in the homologous chromosome. All other experimental details and symbols are as in Figure 5. Relative mutation rates are shown compared to wild-type (WT). Asterisks indicate p < 0.05 by Wilcoxon-Mann-Whitney compared to WT. Data are from Supplementary Table S6. ^aData from Kane and Shcherbakova 2014.

Figure S4 Pole variants found in MMR-deficient tumors do not affect the rate of lys2- $lnsE_{A14}$ reversion in MMR-proficient or MMR-deficient background. The reversion rate was measured in haploid [A] or diploid [B] yeast strains containing indicated chromosomal *pol2* mutations. The MMR defect was mimicked by deleting the yeast *MLH1* gene. Mutation rates are given as the median for at least 18 independent cultures, with error bars indicating 95% confidence intervals. Fold increase in mutation rate relative to the strain with wild-type *POL2* and *MLH1* genes is shown above each bar. Data are from Supplementary Table S7.