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Here we provide details and computational/mathematical arguments for the methods 1

we use to produce the results in the main text, together with examples. This study has 2

shared method/ideas of those in articles [1], [2] and [7], which we mention accordingly. 3

All the data used for the article can be provided upon request from the authors. 4

S.M.1 DNA barcoding experiments and contig sequences 5

S.M.1.1 DNA preparation 6

Complete bacterial DNA (chromosomal and plasmid) was prepared by growing bacteria 7

over night in Mueller-Hinton medium at 37 ◦C with shaking. DNA was extracted using 8

the Qiagen Genomic-tip 100 according to the manufacturer’s instructions. DNA was 9

eluted in 5 ml elution buffer from the columns and precipitated by addition of 0.7 ml of 10

isopropanol at room temperature and subsequently spooled from solution, dried and 11

re-dissolved in 0.1x TE-buffer pH 7.0. 12

Plasmid DNA was separated from chromosomal DNA using the Qiagen Plasmid Midi 13

kit according to the manufacturer’s instructions. DNA was eluted from the columns 14

with 5 ml of elution buffer and precipitated by addition of 0.7 ml of isopropanol at room 15

temperature and subsequently centrifuged at 4500 rcf for 30 minutes followed by a wash 16

with 70 % ethanol, dried and re-dissolved in 0.1x TE-buffer pH 7.0. 17

S.M.1.2 Contig sequences 18

Plasmid sequences and the chromosomal sequence of the Klebsiella pneumoniae 19

containing pUUH239.2 have previously been determined and completely assembled 20

using a combination of PacBio and Illumina sequencing (see [1, 8, 9]). The Illumina data 21

was re-used here to build contigs by de novo assembly for mapping-experiments against 22

barcode data. Contigs were assembled using the CLC Genomic workbench platform 23

version 9. Default assembly parameters were used to give a standard contig set without 24

any additional joining of contigs. Upon assembly of the contigs onto the experimental 25

DNA barcodes [1] it was noted that the pUUH239.2 plasmid isolated for the barcode 26
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experiments contained a spontaneous inversion between two inverted copies of 27

IS26-elements and one contig spanning this region therefore gave a very poor match. 28

This contig was therefore split into two single contigs at the inversion point and these 29

were used in subsequent analyses. 30

S.M.1.3 Contig sequence alignment 31

Real contigs were obtained by Illumina sequencing of a sample containing chromosomal 32

DNA from Klebsiella pneumonia and DNA from the plasmid pUUH239.2 (220 kbps 33

long), see S.M.1.2 for details. The full contig data set contained 220 contigs, with an 34

average length of 24.5 kbps (for a histogram of contig sizes, see S7 Fig). The sequence 35

similarity between the contig sequences, pUUH plasmid and chromosomal DNA was 36

investigated by aligning all Illumina contigs to the full reference sequences using 37

MUMmer [10] (see figures S15 Fig and S16 Fig for placement results). 38

We found that the single lowest percent identity for an ungapped pUUH contig was 39

98.24 % for the contig P4 (fourth largest plasmid contig, see below for how we label 40

contigs). The low score is caused by a single base pair insertion in the reference 41

sequence compared to the contig, and if we allow a 1 base pair gap, the similarity 42

increases to 99.96 %. Apart from this, all pUUH contigs had a sequence similarity 43

> 99.8 % at their ”true” positions, see S17 Fig. 44

We conclude that 203 of the contigs belong to the chromosomal DNA and 16 contigs 45

belong to the plasmid. Based on the sequence alignment, each contig is assigned a ”true” 46

position, and the contigs are subsequently labeled as PX, CX or UX (with 47

X = 1, . . . Xmax determining the order of contig lengths), so that P1 is the longest 48

contig originating from the pUUH plasmid, C1 is the longest chromosomal contig, and 49

UX contigs are unassigned contigs which fit neither on the plasmid nor on chromosomal 50

DNA sequences (we have one such case in our data set). Based on the separation of the 51

contigs into chromosomal and plasmid, we find that the average length of chromosomal 52

contigs is 25.4 kbps, and the average of plasmid contigs is 13.5 kbps. 53

S.M.1.4 Optical DNA mapping experiments 54

In the DNA barcoding experiments, DNA was stained with YOYO-1 and netropsin, 55

ratios 1:5 (YOYO-1) and 30:1 (netropsin) with respect to DNA, in Tris-Borate-EDTA 56

buffer (for details see [1]). Photonicking was reduced by addition of 2% v/v 57

Beta-mercaptoethanol to the solution before the start of the experiment. Nanochannels 58

with dimensions of 100x150nm2 and a length of 500 µm were used in order to stretch 59

the DNA. Information about fabrication methods can be found in [11]. DNA was moved 60

through microchannels from loading wells to inlets of nanochannels by using 61

pressure-driven flow created from nitrogen gas. Plasmids were inserted into 62

nanochannels in their circular form and subsequently linearized using light 63

irradiation [1]. 200 frames with 100ms exposure time of each linearized plasmid 64

molecule were obtained using an EMCCD camera (Photometrics Evolve 0.1592 um) in 65

combination with an inverted fluorescence microscope (Zeiss AxioObserver.Z1) with 66

100x oil immersion objective (NA = 1.46). Additional to plasmid DNA, lambda-DNA 67

(48502bp, New England Biolabs) was included as an internal size reference in each 68

measurement. In total 8 lambda molecules were imaged for the pEC005A and pEC005B 69

plasmids, 20 lambda molecules for pUUH239.2, and 6 lambda molecules for p4 2 1.1 70

plasmid. The size references from these measurements were 500 bp/pixel for p4 2 1.1, 71

592.3 bp/pixel for pUUH239.2 and 538.18 bp/pixel for the pEC005A and pEC005B 72

plasmids. 73

The DNA concentration of the plasmid samples were measured using a NanoDrop. 74

Lambda-DNA was diluted to desired concentration from a 500 ng/µl stock. 75
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S.M.2 Generating and comparing DNA barcodes 76

The output from DNA barcode experiments (see Sec. S.M.1.4) is a fluorescence 77

intensity kymograph along individual DNA molecules of four previously sequenced 78

plasmids, pEC005A (13 kymographs), pEC005B (14 kymographs), p4 2 1.1 (35 79

kymographs) and pUUH (14 kymographs). In this section we show how the individual 80

molecules are processed to make experimental barcodes (by time averaging and then 81

computing the consensus tree), how to generate theoretical contig barcodes, and how to 82

compare barcodes using match scores and p-values. 83

S.M.2.1 Aligning and time averaging of the kymographs using the 84

SSDAlign algorithm 85

In the first step, kymographs are aligned using an alignment method. Previous articles 86

used a method called WPAlign [12]. In this study we are using a sum-square based 87

alignment method (refered to as SSDAlign), which is computationally faster (our 88

implementation is about 4 times faster). The SSDAlign algorithm proceeds as follows: 89

• As a first step of the method, we generate a filtered kymograph by filtering all the 90

rows of the kymograph with a Gaussian filter with 1.88 pixel width (this choice 91

depends on the point spread function width and the camera lens) to convert 92

kymograph rows into barcodes with similar correlation properties to theoretical 93

barcodes [28]. 94

• We use k-means clustering [29] of the filtered kymograph rows to separate the row 95

pixels into background and molecule pixels. 96

• We then compute the sum square differences between the first filtered row and all 97

the other rows, with an allowed displacement of a few pixels (equal roughly to a 98

number of uncertain pixels at the edges of the kymograph, see S.M.2.5 for more 99

explanation on this). For each row, we find the displacement which gives the 100

minimal sum square difference. This gives us a number of pixels by which we have 101

to shift each row to align it to the first row. In this way, we get an aligned 102

kymograph, which corrects for the global positional displacement, see S14 Fig for 103

an example of such an aligned kymograph. 104

• Finally, we estimate the left and right edges of the molecule by taking the average 105

of first molecule pixels on the left and last on the right in the aligned kymograph. 106

Using these we cut out a barcode from the time-average of the aligned kymograph, 107

thus producing an intensity profile along a single molecule. 108

Note that, in contrast to WPAlign [12], the SSDAlign algorithm does not perform 109

any local stretching operations to the kymograph. 110

S.M.2.2 Experimental consensus barcodes 111

We get a consensus barcode by averaging several individual barcodes using an 112

adaptation of previous method [1]. As an input to this method, we have the intensity 113

profiles which were calculated for each aligned kymograph by time-averaging. The 114

individual barcodes are then compared against each other, the best pairs are averaged 115

and the procedure is repeated until we get a barcode cluster (consensus tree). This tree 116

is then “cut” based on a threshold for the best Pearson correlation coefficients. This 117

threshold is here taken as 0 (so that we include all the barcodes in the consensus). The 118

difference from the previous method is that we average background-mean rescaled 119

barcodes (i.e. barcodes normalized by substracting the mean and dividing by 120
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background-mean), which allows us to keep more information from the barcode (thus 121

making the clustering process more accurate). The output of this method is then 122

experimental consensus barcodes 123

B = {Bx, x = 1, xmax}

with lengths xmax = 128 pixels (pEC005A, mean 127.8, standard deviation 6.7), 124

xmax = 250 pixels (pEC005B, mean 249.1, standard deviation 15.1), xmax = 302 pixels 125

(p4 2 1.1, mean 301.3, standard deviation 9.2) and xmax = 373 pixels (pUUH, mean 126

372.4, standard deviation 28.1), see S13 Fig. Since we also know the length of the DNA 127

sequences, we here use the lengths of consensus barcodes to find the real pixel/bp ratios, 128

which are correspondingly 592, 549 and 551 bp/pixels. 129

S.M.2.3 Competitive binding method 130

We here improve the parameters used in the model introduced in [2] to produce 131

theoretical barcodes using a DNA sequence as input. The transfer matrix method 132

described in [2] is one of 5 possible biophysical formulations of 1-D lattice models [3]. 133

The goal of the competitive binding method is to compute the probabilities, p1(i) and 134

p2(i), which gives us the probability that a base-pair i is occupied by one of the 135

monomers of the first ligand type (netropsin) or second ligand type (YOYO-1), 136

respectively. 137

In the statistical physics method in [2], transfer matrices are constructed in a way so 138

that each matrix element (m,m′) corresponds to the statistical weights assigned to the 139

combination of states where state m follows the state m′ for a given base-pair i. In case 140

of netropsin and YOYO-1 competitive binding, this simple model gives us a position 141

dependent transfer matrix which are described as 142

T (i) =





Free 1 0 0 0 1 0 0 0 1
Bound netropsin, 4th 1 0 0 0 1 0 0 0 1
Bound netropsin, 3rd 0 1 0 0 0 0 0 0 0
Bound netropsin, 2nd 0 0 1 0 0 0 0 0 0
Bound netropsin, 1st 0 0 0 c1K1(i) 0 0 0 0 0
Bound YOYO-1, 4th 1 0 0 0 1 0 0 0 1
Bound YOYO-1, 3rd 0 0 0 0 0 1 0 0 0
Bound YOYO-1, 2nd 0 0 0 0 0 0 1 0 0
Bound YOYO-1, 1st 0 0 0 0 0 0 0 c2K2(i) 0

(S.M.1)
Here, K1(i) is the netropsin binding constant for a site beginning at base-pair i, and c1 143

is the concentration of netropsin. Similarly, K2(i) and c2 are the binding constants and 144

the concentration for YOYO-1. 145

Based on the transfer matrices above, as in [2], the total partition function Z is 146

Z = v(1)T · T(1) · T(2) · · ·T(N) · v(N + 1) (S.M.2)

where v(1) and v(N + 1) are the vectors describing the boundary conditions (states at 147

the two ends of the DNA). 148

Let us now derive the explicit expressions for p1(i) and p2(i) using a slightly 149

different approach compared [2]. Following [4], if for a given base-pair i the parameter X 150

enters the statistical weight of a given state uniquely, then the probability of this state 151

is equal to the corresponding derivative of the partition function, multiplied by X and 152

divided by the partition function, i.e. 153

probability of states associated to X =
X

Z

∂Z

∂X
(S.M.3)
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In particular, in the transfer matrix approach, for a given base-pair i, we have a transfer 154

matrix T(i) elements associated to all the possible parameters X, and no other matrices 155

depend on X. There are 4 different states associated to the base-pair i bound by a 156

ligand s (by its first, second, third or fourth monomer), corresponding to 4 off-diagonal 157

entries in the matrix T (i). Therefore the probablity of any of these is going to be the 158

sum of the corresponding probabilities. The derivative of T(i) with respect to X can be 159

described by a projection operator Os, which projects only to the states that are 160

possible for site i. Here O1 = diag(0, 1, 1, 1, 1, 0, 0, 0, 0) for the states associated to 161

netropsin and O2 = diag(0, 0, 0, 0, 0, 1, 1, 1, 1) for the states associated to YOYO-1. In 162

this way we write 163

4∑
i=1

Xi
∂T (i)

∂Xi
= Os · T (i) (S.M.4)

Now, for a given base-pair i, the number of allowed states (configurations) for a ligand 164

of type s is 165

Zs(i) =

4∑
i=1

Xi
∂Z

∂Xi
= v(1)T ·T(1) ·T(2) · · ·T(i− 1) ·Os ·T(i) · · ·T(N)v(N + 1) (S.M.5)

Finally, from S.M.3 and S.M.5, the probabilities that a given base-pair i has either 166

YOYO-1 or netropsin attached to it are described as 167

p1(i) = pnetropsin(i) =
Z1(i)

Z
, p2(i) = pYOYO(i) =

Z2(i)

Z
(S.M.6)

Note that p1 and p2 depend on position along the DNA (through binding constants 168

K1(i) and K2(i), and concentrations c1 and c2). The results above are identical to the 169

expressions given in [2], The equation for the binding probabilities S.M.6 is then written 170

recursively for a computationally efficient competitive binding method [2], which scales 171

with N , the total number of base-pairs. 172

The improvement we here make to the method above is two-fold. Our two 173

amendments are described in detail below. 174

First, in [2] it was implicitly assumed that the two ligand types were in excess of the 175

DNA. For the general case this may not be so, and one should replace the total 176

concentrations, c1 and c2, in the transfer matrices above by the free concentration 177

(concentration of non-DNA-bound ligands) [4]. To that end we first estimate the free 178

concentrations of YOYO-1 and Netropsin, cfree
1 and cfree

2 , using 179

cfree
s = cs − cbound

s = cs − θ̄s(cfree
1 , cfree

2 ) · cDNA (S.M.7)

Here θ̄s is the expected number of bound ligands on a single DNA molecule divided by 180

the number of basepairs of that molecule (note that 0 ≤ θ̄s ≤ [1/λ], where λ = 4 is the 181

number of basepairs covered by a ligand for the case YOYO-1 and netropsin). Also, 182

cDNA is the concentration of DNA basepairs. Using the expressions from [4] for the 183

expected number of bound ligands, we have 184

θ̄s =
Qs
Z

(S.M.8)

where 185

Qs =

N∑
i

v(1)T · T(1) · T(2) · · ·T(i− 1) · Ps · T(i) · · ·T(N)v(N + 1) (S.M.9)
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with projector operators P1 = diag(0, 0, 0, 0, 1, 0, 0, 0, 0) and 186

P2 = diag(0, 0, 0, 0, 0, 0, 0, 0, 1). This gives a system of two equations with two 187

unknowns. Since these are non-linear, we solve the system numerically, by minimizing 188

χ2 = min
cfrees

(
2∑
i=1

(ctotal
i − cfree

i − cbound
i )2

)
(S.M.10)

and make sure that the minimum occurs close to χ2 = 0. To the purpose of estimating 189

θ̄s, we use λ-phage DNA (48502 bp) as input sequence, simply because the exact 190

sequence content of all the DNA in the sample is not known. The concentration of DNA 191

basepairs is experimentally estimated using a procedure described in Sec. S.M.1.4. Once 192

the the free ligand concentrations are obtained using the steps above, these are used as 193

the input to the transfer-matrix method. In S1 Fig we compare total and free 194

concentrations for realistic input concentrations (typical netropsin, YOYO-1 and DNA 195

concentrations are 6 µM , 0.04 µMand 0.2 µM , respectively). 196

Our second amendment to the theory barcode method from [2] is to use more 197

accurate binding constants. To that end, we use the 5-mer intensity values of netropsin 198

extracted from [26] to estimate all 256 possible combinations of 4-mer binding constants 199

K2 (see suppl.txt file). In some detail, relative fluorescence values were first extracted 200

from [26] supplementary information plots by measuring (in pixels) the height of each 201

percentage fluorescence bar and comparing it to the total height of the plot. All 512 202

5-mers reported by the paper were extracted. Only 512 5-mers should be required to 203

know all 1024 possible combinations. Netropsin binds to double-stranded DNA, so the 204

binding constant of one k-mer is the same as its reverse complement. Unfortunately the 205

sequences in the paper are selected to cover all straightforward complementary 206

permutations, not the reverse complement, so all 5-mers can not be found. Instead, all 207

possible 4-mers are calculated as an average of the 5-mers that contain them. Note that 208

also that in study [26], there are only single binding sites, so there is no competition (no 209

transfer matrices are required) and there is only one ligand (netropsin). Therefore, 210

netropsin binding constants are computed as [26] 211

KNNNN =
P (NNNN)

cfree − P (NNNN) · cfree
(S.M.11)

Here P is the binding probability determined from [26], and NNNN is any of the 212

tetramers. This provides us with new Netropsin binding constants for the competitive 213

binding method, see S3 Fig. 214

We finally need an estimation of the YOYO-1 binding constant, K2. To that end, we 215

assume that YOYO-1 binds non-specifically to the DNA and formulate a minimization 216

procedure for finding the optimal YOYO-1 binding constant K2, using pEC005A and 217

pEC005B barcodes as a training set, see S2 Fig. We find which that the optimal YOYO 218

binding constant is K2 ≈ 26 (µM)−1. This value for the YOYO-1 binding constant and 219

the netropsin binding constants listed the S1 File are used throughout this study. 220

We estimate that the improvement in correlation coefficient, when using the new 221

binding constants (compared to the old binding constant from [2]), is around 0.06-0.07 222

when matching experimental consensus barcodes to the theoretical barcodes for pUUH 223

and pEC005B. 224

S.M.2.4 Theoretical contig barcode generation 225

As an input to the theoretical contig barcode generation method, we use a DNA 226

sequence of length kmax basepairs (bps) together with optical mapping related 227

parameters provided in Sec. S.M.2.3. As an output, we get a probability vector 228

p = {p(k), k = 0, kmax − 1}, (S.M.12)
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which gives us the probabilities that a YOYO-1 ligand is bound to a particular basepair 229

along the DNA. Given this probability vector, p, a theoretical barcode is computed as a 230

convolution of p with a Gaussian kernel φ with a width of σ bps: 231

φ =

{
e−

k2

2σ2 ,

{
|k| ≤ bkmax

2 c, kmax odd

−kmax

2 < k ≤ kmax

2 , kmax even

}
(S.M.13)

here σ is 300 nm [2], but since convolution is done at the base-pair level, we use the 232

nm/bp convertion to get the Gaussian kernel width σ in base-pairs. Conversion factors 233

from nm to bps for previously unsequenced DNA can be obtained using the 234

lambda-phage reference, or using the theoretical sequences, if they are known, see S.M.1. 235

For pUUH, the conversion is 0.2690 nm/bp, and therefore σ = 1115.2 bps. For 236

pEC005B, the conversion is 0.2954 nm/bp, and σ = 1015.6 bps. 237

The convolution is now written according to 238

Ĩ(k) = (p ∗ φ)(k) =

kmax−1∑
i=0

p(i) · φ(i− k), 0 ≤ k ≤ kmax − 1 (S.M.14)

Finally, using the camera’s resolution (here, 159.2 bps/pixel), we find the conversion 239

rates from bp to pixel, see S.M.1.4. We then interpolate to the pixel resolution to mimic 240

the effects due to the system’s optical point spread function, thus producing a pixelated 241

theoretical contig barcode Ix, where x = 1, xmax labels different pixels. 242

S.M.2.5 Bit-weights for theoretical contig barcodes 243

In steps 1 and 2 in our contig scaffolding method (see the Methods section in the main 244

text) we match a contig barcode to an experimental barcode. Due to the convolution 245

with the PSF with width σ, certain care is required when performing such a matching. 246

To understand why, assume we have a full DNA sequence of the form 247

XXXY Y Y Y Y Y XXX, where the Y s denotes a contig sequence, and the Xs denotes 248

the remaining part of the DNA sequence. Due to the convolution nature of both 249

experiments and theory, the X and Y regions will intermix in the experimental DNA 250

barcode. However, using only the contig sequence, we can make no prediction of this 251

intermixing (which occurs over distances of a few σs.). Thus, in effect, a few kbps at the 252

ends of the theoretical contig barcode will not match the experimental consensus 253

barcode. As in previous studies we take care of this effects by using a bit-weight 254

function [1], 255

WĨ(k) =

{
1, 3σ ≤ k ≤ kmax − 1− 3σ

0, otherwise
(S.M.15)

The size of the bit-weight window depends on the width, σ, of the point-spread function 256

of the experimental system. We here choose the window size to be 3σ. Finally, the 257

bit-weight function WĨ(k) is interpolated to pixel resolution in the same way as the 258

theoretical barcode, thus producing a pixelated bit-weight function Wx, x = 1, xmax. 259

S.M.2.6 Comparing experimental consensus and contig barcodes using a 260

match score 261

As a match score between two barcodes, U and V , we use a standard statistical measure 262

of linear dependence, the Pearson’s product-moment correlation coefficient, C, defined 263

by: 264

C(U, V ) =
1

xmax − 1

xmax∑
x=1

(Ux − U)(Vx − V )

σUσV
(S.M.16)
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with U =
∑
x Ux/xmax, V =

∑
x Vx/xmax and the corresponding standard deviations 265

for U and V are σU , σV . In practice, the computation of the Pearson correlation 266

coefficients is numerically evaluated by using fast Fourier transform. Since the mean 267

values are subtracted and the standard deviations are used for normalization in Eq. 268

(S.M.16), the Pearson correlation coefficient only measures “features” and is not 269

sensitive to amplitude nor overall level differences between two barcodes. 270

Furthermore, the consensus barcode is always assumed to be intact, therefore no 271

special care is needed for the ”overlapping” bit-weight functions in the current study, 272

and for that reason from here on we do not mention the use of bit-weights anymore, as 273

the effect of a bit-weights on only one of the barcodes is easily understood. 274

S.M.2.7 Generating random barcodes 275

In this section we go through the steps of estimating the autocorrelation function for 276

barcodes, and our method for computing random barcodes based on the estimated 277

autocorrelation. The present method is similar in spirit to the approach introduced 278

in [7]. 279

Consider a database containing a set of M probability vectors pm(k), m = 1, . . . ,M 280

at base-pair resolution. The length (in bps) of barcode m is kmax,m (the pixels are 281

labeled by k = 0, . . . , kmax,m − 1). As in [1] these M barcodes are here theory barcodes 282

obtained using all the DNA sequences in the RefSeq plasmid database longer than 1000 283

base-pairs [1]. From the probability vectors we get the theoretical barcodes Ĩm(k) by 284

convolving with the point spread function (still in base-pair resolution) (see Sec. 285

S.M.2.4). The associated Fourier transforms are 286

Îm(ωl,m) = p̂m(ωl,m) · φ̂(ωl,m) (S.M.17)

with angular frequencies 287

ωl,m =
2πl

lmax,m
, l = 0 . . . lmax,m − 1. (S.M.18)

with lmax,m = kmax,m, i.e., there are equally many Fourier modes as there are basepairs. 288

The autocovariance function for barcode m is defined as 289

Ãm(k) = E

kmax,m−1∑
k′=0

(Ĩm(k′)−µm)(Ĩ∗m(k−k′)−µ∗m) = E

kmax,m−1∑
k′=0

Ĩm(k′)Ĩ∗m(k − k′)︸ ︷︷ ︸
r̃m(k)

−µ2
m

(S.M.19)
where E(. . .) denotes expectation values, and µm is the mean value of barcode m. In 290

Fourier-space we get 291

r̂m(ωl,m) = |φ̂(ωl,m)|2 · |p̂m(ωl,m)|2 (S.M.20)

where we used the convolution theorem. Equipped with a “database” of autocorrelation 292

functions r̃m(k) we proceed by introducing the database-averages defined by 293

r̃(k) =
1

M

M∑
m=1

r̃m(k) (S.M.21)

Ideally, we would now want to insert Eq. (S.M.20) into Eq. (S.M.21) and perform the 294

database-average over m [7]. However, before this can be achieved, the Fourier 295

amplitudes need be interpolated (note that the frequencies ωl,m are different between 296

barcodes, in general). 297
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Our interpolation scheme proceed as follows: all Fourier amplitudes |p̂m(ωl,m)| are 298

interpolated to the same length Lmax, and then re-normalised so that the corresponding 299

vectors in the real space would have the same mean and standard deviation as before 300

interpolation. To achieve this, we note that in Fourier space we have the relation for the 301

first mode, 302

|p̂m(ω0,m)| =
∑
k

pm(k) (S.M.22)

and the Parseval’s theorem, 303

1

lmax,m

∑
l

|p̂m(ωl)|2 =
∑
k

p2
m(k) (S.M.23)

We want the same relations to hold for the interpolated amplitudes |p̂interp
m (ωl)| as well. 304

Making sure that Eq. (S.M.22) is satisfied is straight-forward as we can just rescale the 305

amplitude for the first frequency. For the second relation, we introduce L = Lmax

lmax,m
, and 306

define a re-normalization factor 307

Cm =

√
|
L2 ·

∑
l |p̂m(ωl,m)|2 − |p̂interp

m (ω0)|2∑
l |p̂

interp
m (ωl)|2 − |p̂interp

m (ω0)|2
|. (S.M.24)

Using this factor, we then rescale 308

p̂interp
m (ωl) = p̂interp

m (ωl) · Cm, l = 1 . . . Lmax − 1 (S.M.25)

The sequences p̂interp
m (ωl) so obtained satisfy Eqs. (S.M.22) and (S.M.23). 309

With the interpolation scheme above in place, we can now insert Eq. (S.M.20) into 310

Eq. (S.M.21) and perform the database-average over m in order to get a “universal” 311

averaged database autocorrelation function. In Fourier-space the estimated 312

database-averaged Fourier amplitudes are defined by 313

p̂est(ωl) =

√√√√ 1

M

M∑
m=1

|p̂interp
m (ωl)|2. (S.M.26)

and the autocorrelation function reads 314

r̂(ωl) =
1

M

M∑
m=1

|φ̂(ωl)|2|p̂interp
m (ωl)|2 = |φ(ωl)|2|p̂est(ωl)|2 (S.M.27)

for an arbitrary choice of the angular frequencies ωl = 2πl
Lmax

, l = 0 . . . Lmax − 1. 315

We are now in a position to compute random barcodes. As in [7], we use phase 316

randomization to that purpose. First, we interpolate the database-averaged Fourier 317

amplitudes to a new length kmax, so that it corresponds to the length of a barcode in 318

base-pairs. 319

As a next step, we draw bkmax/2c uniformly distributed random numbers, α, and 320

symmetrically multiply the amplitude of p̂est(ωl) by a set of random phases 321

(1 eiα1 . . . eiαbkmax/2c eiαbkmax/2c−1 . . . eiα1) , here eiαbkmax/2c−1 = 1 if bkmax/2c = kmax/2. 322

In this way we get a Fourier-transformed random binding probability vector 323

p̂rand(ωl) = p̂est(ωl)e
iαl (S.M.28)

A corresponding random barcode is generated by the operation 324

Îrandom(ωl) = p̂rand(ωl) · φ̂(ωl), 0 ≤ l ≤ kmax − 1 (S.M.29)
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which is then transformed into the real space by taking the inverse Fourier transform. 325

Finally, by pixelating the basepair resolution barcode, we get a random barcode Irandom
x , 326

used below. 327

Note that the procedure above guarantees that the covariance estimate, see Eq. 328

(S.M.27), for random barcodes remains the same as for the original database-average 329

covariance (since |Î(ωl)|2 = |Irandom(ωl)|2). In this sense, the present method generates 330

“realistic looking” random barcodes. 331

S.M.2.8 Distributions of match scores for random barcodes 332

For this study, we have chosen the Pearson correlation coefficients (see Sec. S.M.2.6) as 333

a match scores between two barcodes. For two normally distributed random data sets 334

U = (U1, . . . , Uν) and V = (V1, . . . , Vν) with independent elements, the probability 335

density function of such match scores has been derived in [13] and [14]. For DNA 336

barcodes, however, due to, for instance, the blurring effect from the point spread 337

function, intensity values at different pixels are not independent quantities. Following 338

the same line of thought as in [2] we deal with this effect by simply replacing the 339

parameters in the distribution for the Pearson correlation coefficient (ν and λ, see below) 340

by effective ones (νeff and λeff) which are determined by fitting. The justification for 341

this is that for short range correlations we can divide pixels into independent entities [2]. 342

With the above approach for dealing with correlation in mind, we denote the Beta 343

function by B(w, z), i.e. B(w, z) =
∫ 1

0
xw−1(1− x)z−1dx. Then the probability density 344

function (PDF) for C in this case is (see [13] and [14]) 345

fν(C) =
(1− C2)

ν−4
2

B( 1
2 ,

ν
2 − 1)

,−1 ≤ C ≤ 1 (S.M.30)

which belongs to a class of the first kind of generalized beta distributions [15]. 346

In our case, we slide contig barcodes across an experimental barcode and seek the 347

largest correlation coefficient. Hence, rather than the PDF for C we are interested in 348

the PDF for the largest C in a set. To that end, suppose now that we have computed a 349

series of λ correlation coefficients, {C1, . . . , Cλ}. Then, the cumulative distribution 350

function for the maximum of these, 351

Ĉ = max{C1, . . . , Cλ} (S.M.31)

is given by [16] 352

ρν,λ(Ĉ) =

(∫ Ĉ

−1

fν(x)dx

)λ
(S.M.32)

Here the integral
∫ Ĉ
−1
pν(x)dx can be computed by making a substitution 353

x2 = t, 2xdx = dt. This then leads to the following expression for the cumulative 354

distribution function, which depends on two parameters, ν and λ: 355

ρν,λ(Ĉ) =

(
1

2

(
1 + (−1)sgn(C)IC2(

1

2
,
ν

2
− 1)

))λ
(S.M.33)

Here sgn(q) =

{
1, q ≥ 0

0, q < 0
, and Ix(a, b) is the regularised incomplete beta function, 356

Ix(a, b) =

∫ x
0
ta−1(1− t)b−1dt

B(a, b)
(S.M.34)
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The probability density function for Ĉ can be computed from the cumulative 357

distribution function by taking the derivative, i.e. 358

φν,λ(Ĉ) =
dρν,λ(Ĉ)

dĈ
(S.M.35)

Further we consider only the cases where Ĉ > 0. Then 359

φν,λ(Ĉ) = λ

(
1

2

(
1 + IC2(

1

2
,
ν

2
− 1)

))λ−1
(1− Ĉ2)

ν−4
2

B( 1
2 ,

ν
2 − 1)

(S.M.36)

In previous studies [2] and [7], it was assumed that for large ν, the PDF for the match 360

scores is well approximated by a Gaussian function (as guaranteed by the central limit 361

theorem). However, for smaller ν this is no longer the case. Therefore in this paper the 362

PDF for Ĉ as given in Eq. (S.M.36) is used instead. 363

S.M.2.9 Maximum likelihood estimation in distribution fit 364

Our procedure for estimating the effective parameters νeff and λeff (see Sec. S.M.2.8) is 365

described in this section. For compactness of notation, we set ν = νeff and λ = λeff 366

below. 367

In brief, first R random barcodes (labeled by r = 1, . . . R) of a predetermined length 368

are generated, using the method described in Sec. S.M.2.7. We here use R = 1000. 369

Each of the R random barcodes is then compared to the experimental barcode, using 370

the Pearson correlation coefficient, for every possible position on the experimental 371

barcode, and the maximum coefficient, Ĉr, is stored. These maximum correlation 372

coefficients are used to create a histogram. This histogram is fitted to the functional 373

form provided in Sec. S.M.2.8, see Eq. (S.M.36), in order to determine ν and λ. 374

Our fitting procedure uses the maximum likelihood method, which is described in 375

detail below for our particular form of fitting function. The probability density function 376

for a random variable Ĉ, conditioned on parameters ν and λ, is denoted by 377

φ(Ĉ|ν, λ) := φν,λ(Ĉ). The joint density function, also called the likelihood function, 378

L(ν, λ| Ĉ) of R independent identically distributed observations is 379

φ(Ĉ1, . . . , ĈR| ν, λ) =

R∏
r=1

φ(Ĉr| ν, λ) = L(ν, λ| Ĉ) (S.M.37)

To determine the parameters of the extreme value distribution, we work with

log(L(ν, λ| Ĉ)) =

R∑
r=1

log φν,λ(Ĉr| ν, λ) = (S.M.38)

R log(λ) + (λ− 1)

R∑
r=1

log(

(
1

2

(
1 + IĈ2

r
(
1

2
,
ν

2
− 1)

))
)+ (S.M.39)

ν − 4

2

R∑
r=1

log((1− Ĉ2
r )−R log(B(

1

2
,
ν

2
− 1)) (S.M.40)

where we used Eq. (S.M.36). The necessary conditions for maximising log(L(ν, λ| Ĉ)) 380

are 381{
∂L(ν,λ| Ĉ)

∂λ = 0,
∂L(ν,λ| Ĉ)

∂ν = 0.
(S.M.41)
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We have 382

∂L(ν, λ| Ĉ)

∂λ
=
R

λ
+

R∑
i=1

log

(
1

2

(
1 + IĈ2

r
(
1

2
,
ν

2
− 1)

))
= 0. (S.M.42)

From this equation we get 383

λ =
1

log(2)− 1
R

∑R
r=1 log

(
1 + IĈ2

r
( 1

2 ,
ν
2 − 1)

) (S.M.43)

Similarly, we can derive the equation for ν, to get 384

∂L(ν, λ| Ĉ)

∂ν
= term1 + term2 + term3 = 0 (S.M.44)

where 385

term1 = (λ− 1)

R∑
r=1

d

dν
log(1 + IĈ2

r
(
1

2
,
ν

2
− 1)) (S.M.45)

386

term2 =
1

2

R∑
r=1

log((1− Ĉ2
r ) (S.M.46)

387

term3 =
R

2
(ψ(

ν − 1

2
)− ψ(

ν − 2

2
)) (S.M.47)

where ψ is the digamma function, i.e. ψ(x) = Γ′(x)
Γ(x) . The solution to Eqs. (S.M.43) and 388

(S.M.44) gives us estimates for ν = νeff and λ = λeff . 389

S.M.2.10 Hypothesis test and p-value for barcode matching 390

We now define a hypothesis test to quantify the significance of the matches of contig 391

barcodes on an experimental barcode (as compared to matches to random barcodes). 392

To that end, for a given contig barcode n of a certain size we use the procedure in the 393

previous subsection to calculate the distribution fit parameters, νeff and λeff , by 394

matching random contig barcodes of the same size to the experimental barcode, 395

including subsequent fitting. We also calculate observed match scores, Cn,x, by 396

comparing the actual contig barcode to the experimental barcode at all positions 397

(including flips). A p-value is then defined as: 398

p-value =

∫ 1

Cn,x

φν,λ(Ĉ ′)dĈ ′ = 1−
∫ Cn,x

−1

φν,λ(Ĉ ′)dĈ ′ = 1− ρν,λ(Cn,x) (S.M.48)

where φν,λ(Ĉ) is the fitted PDF, and ρν,λ(Ĉ) is given explicitly in Eq. (S.M.33). Then, 399

if the p-value is less than the significance level of pthresh (here we use pthresh = 0.01) we 400

say that the contig barcode is significantly different from a random barcode. Therefore, 401

for that given position, the contig barcode is deemed to fit well along the experimental 402

barcode. 403

S.M.3 Contig scaffolding using a combinatorial auction 404

algorithm 405

In this section we introduce a combinatorial auction method, which is then used to 406

place a set of contig barcodes along an experimental barcode without overlap. We begin 407

with giving some definitions and examples of the problem. Then we discuss some of the 408
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related algorithms, which were developed previously to solve similar combinatorial 409

problems. Finally we explain in detail the combinatorial auction method used in this 410

paper. In the contig scaffolding method, we assume that there are no inserts or 411

deletions in the experimental consensus barcode. This will allow us to consider a contig 412

as ”continuous”, and we will either find a placement for the whole contig, or we will not 413

place it at all. 414

S.M.3.1 Brute-force approach 415

Before getting into the combinatorial auctions algorithm, it is useful to explain why we 416

use a combinatorial auction algorithm to solve the problem, rather than use a 417

”brute-force” approach where all possible contig positions are tested. 418

Consider all contigs which passed the length threshold (see step 3 of the contig 419

scaffolding algorithm in the main text). For each of these contigs we compute placement 420

scores bn,x. These contigs could then, in principle, be placed using a brute force 421

algorithm. Each of the contigs labeled by n = 1, . . . N can be placed on the experimental 422

barcode in xmax different ways (not taking orientation into account), where xmax is the 423

length of the experimental barcode. This gives us xNmax different possibilities for 424

placement of contigs, see Supplementary Figure S11. In the brute force approach, we 425

then look through these to find the cases with no overlap. Then the placement with the 426

maximum placement score (defined below) gives us the solution to the contig scaffolding 427

problem. While this gives the correct solution to the contig scaffolding problem, the 428

computational time scales exponentially with N , thus rendering it very impractical for 429

larger N values (and xmax). In the subsequent subsections, we therefore introduce a 430

dynamic programming type approach to the present maximization problem. 431

S.M.3.2 Formulation of the contig placement challenge as a combinatorial 432

auction problem 433

We will approach the problem of contig scaffolding by formulating it as a special case, 434

the interval bidding problem [17], of a combinatorial auction problem (CAP). 435

Assume that we have a reference barcode, which is xmax pixels long. The reference 436

barcode is circular, therefore the pixels can be placed on a circle, see Supplementaary 437

Figure S11. We also have N contigs and contig n is dn long. A given contig n has a 438

placement score (bid value) bn,x associated to it, when placed with its last pixel at 439

position x on the reference barcode (x = 1, . . . , xmax). A bit value bn,x = 0 corresponds 440

to a ”no bid” (pn,x < pthresh, see main text). The challenge at hand is to combine the 441

placement scores bn,x from different contigs in such a way that the sum of their values, 442∑
bn,x, is maximized. To make the problem mathematically precise, let yn,x = 1 if 443

contig n is included in the final combination at the location x, and yn,x = 0 if it is not. 444

Then the winner determination problem is the following optimization problem 445

max

N∑
n=1

xmax∑
x=1

bn,xyn,x (S.M.49)

with the following set of constraints: 446∀ x
′ = 1, xmax ,

∑N
n=1

(∑
x=1,xmax

x′∈x’th location

yn,x

)
≤ 1

∀ n = 1, N
∑xmax

x=1 yn,x ≤ 1

(S.M.50)

The first constraint means that each pixel can be assigned only to one contig, i.e. we 447

can have no overlaps. The second constraint means that each contig can be placed at 448
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most once. The solution to this problem is a matrix Y, which stores all the information 449

needed about the placed contigs and the placement positions. 450

A simplified version of this problem was considered and solved in [18] and [19]. In 451

this simplified version, each contig would be allowed to have only one placement score 452

(bid only once), and further it could be assumed that the placement is on a line, rather 453

than a circle. A solution algorithm to this problem, running in O(x2
max) time and using 454

dynamical programming approach, was suggested in aforementioned articles. In [19] an 455

algorithm for solving the problem without simplification of bidding on a line was 456

introduced. Such an algorithm is solved in the same way as the first one after dividing 457

the problem into xmax subproblems. Therefore the original algorithm has to be run 458

xmax times, and hence it takes O(x3
max) time. In Van Hoesel’s paper [18], in addition to 459

the simplified version of the problem, a dynamic programming solution for a general 460

problem, running in O(N2Nx2
max) time, was also suggested. The idea of the algorithm 461

behind this solution is the same as the one we will use when defining a contig 462

scaffolding algorithm. Our contribution here is that we are able to decrease the factor 463

2N above by using additional structure of the contig assignment problem. 464

S.M.3.3 An improved exact combinatorial auction algorithm for the 465

interval bidding problem 466

As we mentioned before, the idea behind our algorithm is based on the dynamical 467

programming type approach to the interval bidding problem described in [18]. Assume 468

that the experimental barcode we place the contigs on is linear (any circular problem 469

can be reduced to xmax linear subproblems, as explained below). Let U be the subset of 470

contigs, i.e. U ⊂ Uall = {n1, . . . , nN}, and define by Foverall(U, x− 1) the value of the 471

optimal placement score of first x− 1 pixels, i.e., Foverall(U, x− 1) is the optimal 472

placement score for a contig placement problem involving only pixels 1, x− 1 with 473

0 ≤ x ≤ xmax. Then the optimal placement value for x pixels, Foverall(U, x) can be 474

found by 475

Foverall(U, x) = max

{
Foverall (U, x− 1)

maxn∈U (Foverall (U \ {n}, x− dn + 1) + bn,x)
(S.M.51)

with initial conditions Foverall(U, 0) = 0 and Foverall(∅, x) = 0. The method in [18] uses 476

Eq. (S.M.51) recursively as a way to generate the optimal score for the final problem, 477

i.e., to calculate Foverall(Uall, xmax), where Uall is the full set of contigs (bidders). We 478

improve on this method in two ways. Firstly, it can often happen that there are no new 479

placement scores when we move from placing x pixels to placing x+ 1 pixels (see Eq. 480

(S.M.55)). For such cases our algorithm therefore directly jump to the pixel where new 481

placement scores are introduced. Secondly, while the number of possible subsets of 482

contigs U ⊂ {n1, . . . , nN} is 2N , the number of subsets at a given step in the algorithm 483

is in general smaller (see Sec. S.M.3.4 for an example of this, as well as S.M.3.5 for 484

further explanation). 485

We now briefly explain all the steps of the algorithm used to find the optimal 486

placement value of all the contigs, which we call Foverall(Uall, xmax). As an input to this 487

algorithm we have contigs n1, . . . , nN , length of the reference barcode xmax, length of 488

contigs dn, and associated placement scores bn,x. The steps of the algorithm are then 489

the following: 490

1. Creating a matrix of placement scores. We represent all the placement scores bn,x 491

in the form of a matrix B, 492
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B := bn,x|n=1...N,x=1...xmax
=

 b1,1 b1,2 . . . b1,xmax

...
. . .

. . .
...

bN,1 bN,2 . . . bN,xmax

 (S.M.52)

Here each row n = 1, N contains all the placement scores for the contig n to be 493

placed along the reference barcode. The column x represents placement on the 494

reference barcode, when the last pixel of the contig is placed at x. 495

2. Mapping to m linear subproblems. We reduce the problem with a circular 496

reference barcode to xmax simpler subproblems. This is done by ”cutting” the 497

reference barcode at each of xmax possible pixels, in this way creating a new 498

matrix of placement scores, Bx′ , 499

Bx′ :=

 b1,x . . . b1,xmax
. . . b1,x−1

...
. . .

. . .
. . .

...
bN,x . . . bN,xmax

. . . bN,x−1

 (S.M.53)

Since the problem is now linear, not all of the placements are possible, and we 500

have bn,x = 0, if x < dn. For example, if the first contig has d1 = 5, then 501

b1,1 = b1,2 = b1,3 = b1,4 = 0. 502

3. Dynamical algorithm. Starting from the first pixel x, which has bn,x 6= 0 for some 503

n ∈ 1, N , we compute the Foverall,x′(Ux, x). This is done using Eq. (S.M.51). Here 504

the number of Ux, subsets of contigs, depends on the number of pixels x. Here Ux 505

differs from U used before, since before we considered all the subsets of Uall, but 506

now Ux is smaller. When only one pixel is present, x = 1, we have that Ux will 507

contain only one-contig subsets for contigs n for which bn,x 6= 0. For x > 1, there 508

will be more possible subsets, as subsets of two or more contigs will be possible 509

too. The optimal placement value of the algorithm will then be 510

Foverall(Uall, xmax) = max
x′

Foverall,x′(Uxmax
, xmax) (S.M.54)

4. Backtracking. We start from Uxmax
, the subset of contigs for which the optimal 511

placement value Foverall(Uall, xmax) is reached. These are the contigs that are 512

placed by the combinatorial auction algorithm. Then we just trace backwards 513

through Foverall,x′(Uxmax , xmax), using Eq. (S.M.51), to find out at which pixel 514

each contig has been placed. This gives us the optimal placement for each contig 515

as an outcome, i.e. we find the matrix Y = {yn,x, n = 1, N, x = 1, xmax}. 516

S.M.3.4 Example 517

We here provide a simple example of the working of our combinatorial contig placement 518

algorithm, introduced in Sec. S.M.3.3. Consider 5 contigs (N = 5) to be placed on a 519

linear reference barcode with 6 pixels (xmax = 6). We consider only the linear 520

subproblem with start pixel at x′ = 1 (the remaining subproblems are dealt with in an 521

identical way). Contig sizes are dn|n=1,5 = 1, 2, 3, 4, 5, and we are given placement 522

scores b1,3 = 2, b1,4 = 5, b2,3 = 3, b2,5 = 3, b3,1 = 2,b3,3 = 4, b4,1 = 2, b4,4 = 4,b4,6 = 3, 523

b5,1 = 1, b5,2 = 8, b5,3 = 3, b5,4 = 4 and b5,6 = 1. By applying a brute force approach, i.e. 524

manually going through all allowed contig configurations, it is straightforward (although 525

tedious) to show that the optimal contig placement is to place contig 1 at position x = 4 526

and that contig 3 covers the pixels x = 1, 3. The associated optimal placement score is 527

9. We now show that this result can be recovered using our method from Sec. S.M.3.3. 528
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1. Firstly, we represent the placement scores by a matrix of placement score, 529

B =


0 0 2 5 0 0
0 0 3 0 3 0
2 0 4 0 0 0
2 0 0 4 0 3
1 8 3 4 0 1


2. In the first linear subproblem (and here there is only one subproblem, since 530

reference barcode is linear), the matrix of placement scores becomes 531

B1 =


0 0 2 5 0 0
0 0 3 0 3 0
0 0 4 0 0 0
0 0 0 4 0 3
0 0 0 0 0 1

 (S.M.55)

Note that the first two columns of B1 are all zero. This happens because contigs 3, 4 532

and 5 are longer than 2 pixels, and neither of them can be placed just on the first two 533

pixels, while contigs 1 and 2 had no placement scores for these pixels from the 534

formulation of the problem. Therefore, when computing the optimal placement score, 535

we are able to start immediately from x = 3. 536

3. The first x for which there is n such that bn,x 6= 0 is x = 3, 537

B1 =


0 0 2 5 0 0
0 0 3 0 3 0
0 0 4 0 0 0
0 0 0 4 0 3
0 0 0 0 0 1


In the third column of B1 (olive color), we have first, second, and third contigs with 538

non-zero placement values b1,3, b2,3, b3,3. Therefore there will be three subsets of the 539

contigs in U3. Using Eq. (S.M.51), we find the values of Foverall,1(U, 3), Foverall,1(U, 3) 540

=( 2, 3, 4 ), where U ∈ U3 = (1), (2), (3) . Here by red color we label new subsets of 541

contigs and corresponding maximum placement scores. 542

The next pixel to consider is x = 4. Then 543

B1 =


0 0 2 5 0 0
0 0 3 0 3 0
0 0 4 0 0 0
0 0 0 4 0 3
0 0 0 0 0 1


and the contigs to consider are n = 1 and n = 4. This gives us U ∈ U4 = 544

(1), (2), (3), (4), (1,2), (1,3) and Foverall,1(U, 4) =( 5 , 3, 4, 4 , 8 , 9 ). Here by orange 545

color we label the placement score value that has changed from the value for previous 546

pixel. 547

Next pixel to consider is x = 5, 548

B1 =


0 0 2 5 0 0
0 0 3 0 3 0
0 0 4 0 0 0
0 0 0 4 0 3
0 0 0 0 0 1
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Only n = 2 contig has non-zero placement value here, and we compute U ∈ U5 = 549

(1), (2), (3), (4), (1, 2), (1, 3), (2,3) and Foverall(U, 5) = (5, 3, 4, 4, 8, 9, 7 ) 550

Finally, for x = 6, we have 551

B1 =


0 0 2 5 0 0
0 0 3 0 3 0
0 0 4 0 0 0
0 0 0 4 0 3
0 0 0 0 0 1


and U ∈ U6 = (1), (2), (3), (4), (5) , (1, 2), (1, 3), (2, 3), and Foverall(U, 6) = 552

(5, 3, 4, 4, 1 , 8, 9, 7) 553

4. Finally, we see that Foverall(Y) = 9, since that is the maximum of Foverall(U, 6). 554

To find Y, we do simple backtracking through step 3 of the algorithm. The optimal 555

value 9 was assigned for n = 4, and corresponds to the subset {1, 3}. Contig 3 had no 556

placement score for n = 4 pixel (b3,4 = 0), so contig 1 was placed on this pixel with 557

placement score b1,4 = 5. Tracing back, we get that the first contig is placed on x = 4, 558

and the third contig is placed on x = 1, 3, and the optimal placement value is 9. 559

Therefore y1,4 = 1, and it remains to find placement of contig 3, with the placement 560

score 9− 5 = 4. Moving back by one pixel, when n = 3, contig 3 has placement score 561

b3,3 = 4. Therefore, it is placed at pixels x = 2, 3, and y3,3 = 1. This gives the 562

combinatorial contig auction algorithm’s outcome, matrix Y, for the linear problem we 563

were considering, i.e. 564

Y =


0 0 0 1 0 0
0 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0


S.M.3.5 Validity and speed of the new algorithm 565

Here we discuss the computational times associated with our algorithm for solving the 566

winner determination problem for interval bidding from the previous subsections. 567

Explanations are based on a source-nodes-sink graph, which we can draw for the winner 568

determination problem considered here [20]. Then our algorithm is just a dynamical 569

solution to the shortest path problem on this graph. From the graph formulation of the 570

problem one sees that the maximum number of nodes for each pixel is 2N , where N is 571

the number of contigs. Therefore in the worst case the algorithm performs as well as the 572

previous algorithm. However, in the cases of interest we often do much better than the 573

worst case. The first improvement that we make is that we do not need to go through 574

all the pixels (as seen in Eq. (S.M.55)). Secondly, we do not consider all the subsets of 575

contigs. 576

For example, if the experimental barcode is xmax pixels long, but only M of the 577

contigs can be placed at the same time, then rather than a scaling 2xmax , the 578

computational time scales as
∑M
k=1

(
xmax

k

)
. For example, if we have N = 100 contigs, 579

and the reference barcode is xmax pixels long, but the smallest contig is of bxmax/10c 580

pixels length, then the number of nodes to go through is at worst 581∑10
k=1

(
100
k

)
≈ 1.7 · 1013, a dramatic improvement from 2100 ≈ 1.3 · 1030. In the example 582

given in the previous section, the number of different contig subsets to consider was only 583

8. If we have five contigs as we had in the example the worst case would give us 25 = 32 584

subsets. This also illustrates the argument about contig lengths. Since the sum of the 585

lengths of three shortest contigs is 6 (1+2+3), there can be no subsets of more than 586
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three bidders, and there could be only one subset with three bidders (but that did not 587

even happen in the example in the previous subsection). This greatly reduced the space 588

of elements to consider. Furthermore, we use sparse matrix interpretation to put all the 589

possible placement scores into one matrix, and the row index has one to one 590

correspondence to the subsets of contigs. 591

In practice, for the type of reference barcode length (xmax ≈ 373 pixels, pUUH) of 592

interest here, we tested the computational times by randomly cutting the chromosomal 593

DNA and pUUH into pieces of 24.5 kbps length on average and then attempting to 594

place those contigs (with pthresh = 0.01) on the pUUH contig barcode. We find that we 595

can solve this task in on average less than one second on a modern desktop computer (a 596

single Intel(R) Core(TM) i7-2600K CPU @ 3.40GHz processor) using our Matlab 597

implementation. 598

We here mention that there has been a lot of further development of generalizations, 599

inexact approaches to the solution of this problem, see [21–25]. The use of these 600

techniques would allow us to consider the cases also for larger N . For example, if we 601

used Lagrangian relaxation, our problem could be reduced to the optimization problem 602

of the simplified version of the problem. While these techniques are not exact and might 603

not converge in some cases (or converge to some local minima), this gives us an outlook 604

of other possibilities of solving the contig scaffolding problem, if the exact approach 605

introduced in the next subsection would run into computational speed limitations. 606
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