ERK inhibition represses gefitinib resistance in non-small cell lung cancer cells

SUPPLEMENTARY MATERIALS

Supplementary Figure 1: *In vivo* screening of gefitinib-resistant PC9/GR and HCC827/GR NSCLC cells. (A) Schematic of the experimental workflow for isolating the gefitinib-resistant PC9/GR and HCC827/GR cells from the xenograft tumor tissues. (B) The tumor size was measured every week from weeks 4 to 10. (C) Microscopic images of PC9, PC9/GR, HCC827, and HCC827/GR cells.

Xenograft tissues

Supplementary Figure 2: TEM images of the xenograft tissues derived from PC9, PC9/GR, HCC827, and HCC827/ GR cells. The xenograft tissues derived from the following cells: PC9, PC9/GR, HCC827, and HCC827/GR (from top to bottom) were dissected, and sent for TEM imaging analysis. The autophagic vacuoles are pointed by the red arrows in PC9/GR and HCC827/GR cells, while they are absent in PC9 and HCC827 cells.

Supplementary Figure 3: WB detection of changes in signaling pathways over time in PC9 and PC9/GR cells. WB detection of the total (T-) and phosphorylated (P-) EGFR, ERK1/2, and AKT protein levels in PC9 cells (left) and PC9/GR cells (right) cultured in media containing 3 μ M gefitinib for various lengths of time (0, 0.5, 1, 2, 5, 12, 24, and 48 hours). Actin or GAPDH serves as the loading control.

Β

Supplementary Figure 4: The effect of ERK1/2 inhibition by SCH772984 on gefitinib resistance and autophagy in PC9R and HCC827R cells. (A) PC9R cells (top) and HCC827R cells (bottom) were cultured in media containing either DMSO (Control), 0.5 µM SCH772984 (ERK1/2 inhibitor), 3 µM gefitinib, or the combination of both SCH772984 and gefitinib, and cultured for additional 12 days followed by colony formation assays; (B) WB detection of the total and phosphorylated ERK1/2, LC3B, p62, ATG5, ATG7, Beclin 1 levels in the PC9R and HCC827R cells cultured in the four treatment conditions described above.

Supplementary Figure 5: The model of ERK-mediated autophagy and gefitinib resistance. Activated ERK1/2 enhances autophagy, in which LC3B-II is up-regulated and p62 is down-regulated. This leads to gefitinib-resistant NSCLC cells. Inhibition of the ERK signaling results in the suppression of gefitinib resistance in NSCLC cells.

Supplementary Table 1: Antibody names and catalogue numbers

Antibody name	Catalogue number
LC3B	CST #3868
GAPDH	Sigma G9545
Actin	CST #4970
ATG7	CST #8558
ATG5	CST #2630
P-EGFR (Tyr1068)	CST #3777
EGFR	CST #4267
P-ERK (Thr202/Tyr204)	CST #4370
ERK	Santa Cruz Biotechnology: sc-94
P-AKT (Ser473)	CST #4060
AKT	Santa Cruz Biotechnology: sc-1619
p62	CST #8025
P-Beclin 1 (Ser93)	CST #14717
Beclin 1	CST #3495
Goat anti-rabbit IgG	CST, #7074S
Goat polyclonal anti-mouse IgG	Abcam, #ab136815

Supplementary Table 2: PCR primer names and sequences

PCR primer name	sequence
CANX forward	5'-AACCCGAAGGCTGGTTAGAT-3'
CANX reverse	5'-CATCCAGGAGCTGACTCACA-3'
EDEM1 forward	5'-AAGCCTGCAATGAAGGAGAA-3'
EDEM1 reverse	5'-CTATCAGCACCTGCAGTCCA-3'
RB1CC1 forward	5'-GCGGAACAACAGACCAATTT-3'
RB1CC1 reverse	5'-CGTTCTTGTTGCTGCATTGT-3'
FOXO1 forward	5'-CTGCATCCATGGACAACAAC-3'
FOXO1 reverse	5'-AGGCCATTTGGAAAACTGTG-3'
MAPK1 forward	5'-GTTGGTACAGGGCTCCAGAA-3'
MAPK1 reverse	5'-TGGAAAGATGGGCCTGTTAG-3'
HSPB8 forward	5'-GCTTCAAGCCAGAGGAGTTG-3'
HSPB8 reverse	5'-TGCAGGAAGCTGGATTTTCT-3'
CDKN1A forward	5'-GGAAGACCATGTGGACCTGT-3'
CDKN1A reverse	5'-GGCGTTTGGAGTGGTAGAAA-3'
ATG16L2 forward	5'-TGACAGCTGCCAAATTCAAG-3'
ATG16L2 reverse	5'-GGACATTGATGGTCCTGGAG-3'
GAPDH forward	5'-CCGGGAAACTGTGGCGTGATGG-3'
GAPDH reverse	5'-AGGTGGAGGAGTGGGTGTCGCTGTT-3'

Supplementary Table 3: The GFOLD output files of the mRNA-Seq data (PC9/GR compared to PC9 cells). Two biological replicates were used for mRNA-Seq experiments, which are labeled as "PC9GRvsPC9" and "PC9GRvsPC9_rep" in the table. See Supplementary_Table_3

Supplementary Table 4: The KEGG pathway enrichment analysis of top 2000 up or down-regulated genes in PC9/GR cells, as compared with those in PC9 cells. See Supplementary_Table_4