1	Increased intracellular action of MP1102 and NZ2114 against Staphylococcus aureus in vitro and			
2	in vivo			
3	Xiao Wang ^{1,2*} , Xiumin Wang ^{1,2**} , Da Teng ^{1,2*} , Ruoyu Mao ^{1,2} , Ya Hao ^{1,2} , Na Yang ^{1,2} , Zhanzhan Li ^{1,2} ,			
4	Jianhua Wang ^{1,2**}			
5	¹ Key Laboratory of Feed Biotechnology, Ministry of Agriculture, Beijing 100081, P. R. China. ²			
6	Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences,			
7	Beijing 100081, P. R. China. * Equal contributors into this paper. ** Correspondence and requests			
8	for materials should be addressed to X.M.W. (email: wangxiumin@caas.cn) and J.H.W. (email:			
9	wangjianhua@caas.cn)			
10				
11	SUPPORTING INFORMATION			
12	Supplementary 1: Materials and Methods			
13	Antimicrobial susceptibility testing of <i>S. aureus</i> . Antimicrobial susceptibility testing of <i>S. aureus</i>			
14	(ATCC43300 and CVCC546) was performed by Kirby Bauer disc diffusion method according to the			
15	standards procedures recommended by Clinical Laboratory Standards Institute (CLSI 2012) ^{1,2} . The used			
16	22 antibiotics included: 1) aminoglycosides (amikacin, neomycin, gentamicin, kanamycin, and			
17	streptomycin), 2) quinolones (ciprofloxacin, norfloxacin), 3) sulfonamides (sulfisoxazole), 4)			
18	tetracyclines (tetracycline), 5) polypeptides (bacitracin and polymyxin B), 6) penicillins (penicillin,			
19	amoxicillin, ampicillin, oxacillin), 7) lincosamides (lincomycin), 8) macrolides (erythromycin and			
20	azithromycin), 9) amphenicols (chloramphenicol), 10) glycopeptides (vancomycin), and 11)			
21	cephalosporins (cefazolin and cefotaxime) (Qianshun Bio-tech, Beijing).			

22 SCCmec and spa typing of S. aureus. For rapid DNA extraction, one to five bacterial colonies were

suspended in 50 µl of sterile distilled water and heated at 100°C for 10 min. Then the solution was frozen in -80°C for 30 min and heated at 100°C for 10 min. After centrifugation at 5000 rpm/min for 2 min. A total of 2 µl of the supernatant was used as a template in a 50-µl PCR. The SCC*mec* and x region of the *spa* gene was amplified by PCR with primers in Supplementary Table 1³⁻⁵. The x region of the spa genes was sequenced by Sangon Biotech (Shanghai, China) and the types were determined with the database accessible via http://spa.ridom.de/spatypes.shtml.

29 Growth curves of S. aureus. The S. aureus ATCC25923, ATCC43300 and CVCC546 strains were 30 used to evaluate growth rate in Mueller – Hinton broth (MHB)⁶. Briefly, overnight cultures in MHB was 31 inoculated into 50 ml of fresh MHB (with the inoculum size of 1% (v/v))⁷. All flasks were incubated at 32 37°C for 15 h with shaking (250 rpm). Aliquots (2 ml) were taken out per hour to determine the culture 33 turbidity at 600 nm in a TU-1810 ultraviolet visible spectrophotometer. It was performed for three times. 34 FITC-labeled peptides. The FITC-labeled peptides were carried out in ChinaPeptides Co., Ltd. 35 (Shanghai, China) as previously described⁸. The peptides (MP1102 or NZ2114) were dissolved in 0.2 M 36 PBS (pH 8.4) containing 1.1 equivalent of FITC. The mixture was stirred at room temperature for 12 h 37 to complete the reaction. The reaction product was then dialyzed in dialysis tubing MD18 (with a 38 molecular weight cut-off 2.0 kDa) at 4°C for 48 h with an exchange of ddH_2O per 12 h to remove free 39 FITC. The fluorescence intensity of FITC in dialyzed ddH₂O was monitored to assure the complete 40 removal of free FITC. Finally, the product was lyophilized in a freezer dryer for 36 h. The procedure was 41 kept away from light.

42 **References:**

[1] Kahsay, A., Mihret, A., Abebe, T., Andualem, T. Isolation and antimicrobial susceptibility pattern of *Staphylococcus aureus* in patients with surgical site infection at Debre Markos Referral Hospital, Amhara

- 45 Region, Ethiopia. Arch Public Health 72, 16 (2014).
- 46 [2] Wikler, M. A., et al. Performance standards for antimicrobial sensitivity testing: seventeenth
- 47 informational supplement. CLSI. 26, 1–177 (2007).
- 48 [3] Zhang, K., McClure, J. A., Elsayed, S., Louie, T., Conly, J. M. Novel multiplex PCR assay for
- 49 characterization and concomitant subtyping of staphylococcal cassette chromosome mec types I to V in
- 50 methicillin-resistant *Staphylococcus aureus*. J Clin Microbiol 43, 5026–5033 (2005).
- 51 [4] Rong, D., Wu, Q., Xu, M., Zhang, J., Yu, S. Prevalence, virulence genes, antimicrobial susceptibility,
- 52 and genetic diversity of *Staphylococcus aureus* from retail aquatic products in China. *Front Microbiol* 8,
- 53 714 (2017).
- 54 [5] Strommenger, B., et al. spa Typing of Staphylococcus aureus as a frontline tool in epidemiological
- 55 typing. J Clin Microbiol 46, 574-81 (2008).
- 56 [6] Diarra, M. S., Petitclerc, D., Lacasse, P. Response of *Staphylococcus aureus* isolates from bovine
- 57 mastitis to exogenous iron sources. *J Dairy Sci* **85**, 2141–2148 (2002).
- 58 [7] Buchanan, R. L., et al. Response surface models for the effects of temperature, pH, sodium chloride,
- and sodium nitrite on the aerobic and anaerobic growth of *Staphylococcus aureus* 196e1. *J Food Safety*
- **60 13**:159–175 (1993).
- 61 [8] Sun, X. X., *et al.* Fluorescence characterization of the thermal stability of collagen mimic peptides.
- 62 Chinese Chem Lett 28, 963–967 (2017).
- 63

64 Supplementary 2: Tables

Table 1 Primers used in SCCmec and spa typing of S. aureus

Name	Primer (5'→3')	Amplicon size (bp)	Reference
SCCmec type			
SCCmecI-F	GCTTTAAAGAGTGTCGTTACAGG	613	3, 4
SCCmec I -R	GTTCTCTCATAGTATGACGTCC		
SCCmec II -F	CGTTGAAGATGATGAAGCG	398	
SCCmec II -R	CGAAATCAATGGTTAATGGACC		
SCCmecⅢ-F	CCATATTGTGTACGATGCG	280	
SCCmecⅢ-R	CCTTAGTTGTCGTAACAGATCG		
SCCmecⅣa-F	GCCTTATTCGAAGAAACCG	776	1
SCCmecIVa-R	CTACTCTTCTGAAAAGCGTCG		
SCCmecIVb-F	TCTGGAATTACTTCAGCTGC	493	
SCCmecIVb-R	AAACAATATTGCTCTCCCTC		
SCCmecIVc-F	ACAATATTTGTATTATCGGAGAGC 200]
SCCmecIVc-R	TTGGTATGAGGTATTGCTGG		
SCCmecIVd-F	CTCAAAATACGGACCCCAATACA	GACCCCAATACA 881	
SCCmecIVd-R	TGCTCCAGTAATTGCTAAAG		
SCCmec V -F	GAACATTGTTACTTAAATGAGCG	325	
SCCmec V - R	TGAAAGTTGTACCCTTGACACC		
mecA gene			
mecA-F	GTGAAGATATACCAAGTGATT	147	3
mecA-R	ATGCGCTATAGATTGAAAGGAT		
mecI-F	CCCTTTTTATACAATCTCGTT	146	
mecI-R	ATATCATCTGCAGAATGGG		
Spa type			
Spa-x-F	TAAAGACGATCCTTCGGTGAGC	-	5
Spa-x-R	CAGCAGTAGTGCCGTTTGCTT		

68 -: no data. The primers were synthesized by Sangon Biotech (Shanghai, China).

71	Antibiotics	S. aureus ATCC43300	S. aureus CVCC546
72	Vancomycin	S	S
73	Lincomycin	R	Ι
	Amoxicillin	R	S
74	Ciprofloxacin	S	S
75	Amikacin	R	S
, 5	Ampicillin	R	S
76	Oxacillin	R	S
77	Erythromycin	R	Ι
//	Tetracycline	Ι	R
78	Bacitracin	Ι	R
79	Norfloxacin	S	S
79	Polymyxin B	R	R
80	Sulfisoxazole	R	R
01	Neomycin	R	Ι
81	Azithromycin	R	S
82	Kanamycin	R	Ι
22	Streptomycin	Ι	S
83	Cefotaxime	Ι	Ι
84	Gentamicin	R	S
	Chloramphenicol	S	S
85	Cefazolin	S	S
86	Penicillin	R	Ι

 Table 2 Antimicrobial susceptibility patterns of S. aureus ATCC43300 and CVCC546

87 R: resistant; I: Intermediate; S: susceptible.

88

Table 3 Sources, types and susceptibilities of different S. aureus strains

S. aureus	Source	SCCmec	Spa	Antibiotic resistance	Biosafety
		type	type	profile	level
Methicillin-	Clinical isolate	-	-	-	II
susceptible					
ATCC25923					
Methicillin-	Clinical isolate	II	t007	Methicillin, oxacillin ^a	II
resistant					
ATCC43300					
Highly virulent	Isolation from a	-	t034	Tetracycline, bacitracin,	III
CVCC546	pig in Bejing,			polymyxin B and	
	China			sulfisoxazole ^b	

91 -: negative. a: the ATCC website. b: in this study.

94		MI	C (µg/ml)
95		Buffer + AMP	Buffer + cathepsin B + AMP
	MP1102	0.25	0.25
96	NZ2114	0.5	0.5

Table 4 Effect of cathepsin B on the MICs of MP1102, NZ2114 against *S. aureus* resistant ATCC43300

M 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

M 25 26 27 28 29 30 31 32 33 34 35 36

B

A

S. aureus ATCC43300

TAAT<u>TAAAGACGATCCTTCGGTGAGC</u>AAAGAAATTTTAGCAGAAGCTAAAAAGCTAAA CGATGCTCAAGCACCAAAAGAGGAAGACAACAACAAGCCTGGCAAAGAAGACAACA ACAAGCCTGGTAAAGAAGACGGCAACAAACCTGGTAAAGAAGACGGCAACAAACCT GGTAAAGAAGACGGCAACAAACCTGGTAAAGAAGACGGCAACAAACCTGGTAAAGA AGACAACAAAAAACCTGGCAAAGAAGATGGCAACAAACCTGGTAAAGAAGACGGCA ACAAGCCTGGTAAAGAAGACGGCAACGGCAACGGCAACAAACCTGGTGATACAGT AAATGACATTGCAA<u>AAGAAGACGGCAACGGCACTACTGCTG</u> t007,15-12-16-16-16-16-02-25-17

S. aureus CVCC546

TAAAGACGATCCTTCGGTGAGCAAAGAAATTTTAGCAGAAGCTAAAAAGCTAAACGAT GCTCAAGCACCAAAAGAGGAAGACAACAACAAGCCTGGTAAAGAAGACGGCAACAA ACCTGGTAAAGAAGACAACAAAAAAACCTGGCAAAGAAGATGGCAACAAAACCTGGTA AAGAAGACAACAAAAAACCTGGCAAAGAAGATGGCAACAAACCTGGTAAAGAAGAC AACAAAAAACCTGGTAAAGAAGATGGCAACAAGCCTGGTAAAGAAGATGGCAACAA ACCTGGTAAAGAAGACGGCAACGGAATACATGTCGTTAAACCTGGTGATACAGTAAAT GACATTGCAA<u>AAGCAAACGGCAACGGCAACTGCTG</u> t034,08-16-02-25-02-25-34-24-25

100

101

Fig. S1

102 Figure 1 PCR assay identifies SCCmec and spa types and subtypes and simultaneously detects the

- 103 methicillin resistance (mecA gene). (A) Gel electrophoresis. M: DNA Marker II; 1-12: S. aureus
- 104 ATCC25923; 13-24: *S. aureus* ATCC43300; 25-36: *S. aureus* CVCC546. 1, 13, 25: SCCmec I; 2, 14, 26:
- 105 SCCmec II; 3, 15, 27: SCCmec III; 4, 16, 28: SCCmec IVe; 5, 17, 29: SCCmec IVe; 6, 18, 30:
- 106 SCCmec IVc; 7, 19, 31: SCCmec IVe; 8, 20, 32: SCCmec V; 9, 21, 33: spa-x-1; 10, 22, 34: spa-x-2;
- 107 11, 23, 35: *mecA*; 12, 24, 36: *mec* I. (**B**) The x region of the *spa* gene sequence.
- 108

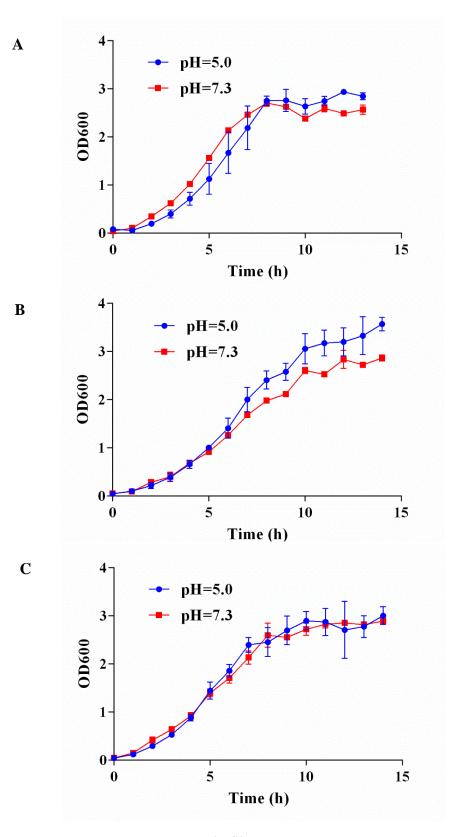
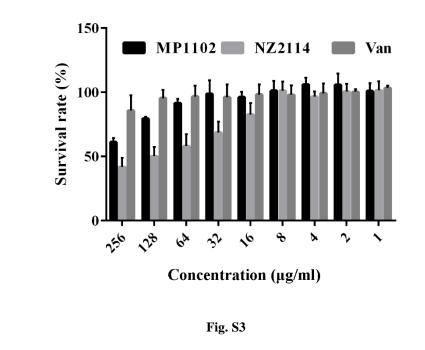



Fig. S2

- 111 Figure 2 Growth curves of *S. aureus* ATCC25923 (A), ATCC43300 (B) and CVCC546 (C) at pH 5.0
- and pH 7.3.

115

117 Figure 3 Viability of RAW 264.7 cells incubated with NZ2114 and MP1102 for 24 h. RAW 264.7 cells

118 were incubated with 1-256 µg/ml for 24 h and subsequently cell viability was determined using the MTT

119 assay. Results are means \pm S.D. for three experiments.

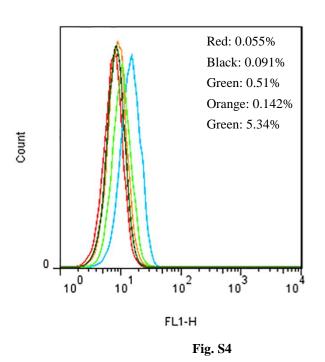


Figure 4 Effect of MP1102 and NZ2114 on the cell membrane of RAW 264.7 cells. Cells were incubated
with different concentrations of MP1102 and NZ2114 for 24 h prior to staining with 5 µg/ml PI at 37°C
for 10 min. PI fluorescence in RAW 264.7 cells was measured by flow cytometry. Red line: control;
black line: 25 µg/ml MP1102; green line: 250 µg/ml MP1102; orange line: 25 µg/ml NZ2114; green line:
250 µg/ml NZ2114.