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Supplementary Figure 1: Polarization dependence of (a) photoexcited free-carriers, (b) electron trajectories in k space,
(c) third-harmonic currents from different electrons, (d) transmitted third-harmonic intensity, and (e) corresponding blueshift.
Different colors of curves in (b,c) correspond to different points in k space illustrated in (f). Plots (a,c) illustrate the analytical
derivation of (a) out-of-equilibrium carriers and (c) currents in Sec. II, while plots (b,c,d) are achieved though numerical
integration of the full GBEs [Sec. I, Supplementary Equations (1,2)]. Labels LP, EP, and CP indicate linear (ϑ = 0), elliptical
(ϑ = π/4), and circular polarization (ϑ = π/2), respectively.
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Supplementary Figure 2: Dependence of (a,g,o) Rejωx /max|jωx |, (d,l,r) Imjωx /max|jωx |, (b,h,p) Rej3ωx /max|j3ωx |, (e,m,s)
Imj3ωx /max|j3ωx |, (c,i,q) Rej5ωx /max|j5ωx |, and (f,n,t) Imj5ωx /max|j5ωx | over the dimensionless electron wavenumber 2vFk/ω for
wavelength λ = 2πc/ω = 3.1 µm, impinging intensity I0 = 10 GW/cm2, and several polarization states: (a-f) linear ϑ = 0,
(g-n) elliptical ϑ = π/4, and (o-t) circular ϑ = π/2.

Supplementary Note 1: Extended graphene in the Massless Dirac fermion picture

We consider an optical field E(t) = E0(t)e−iωt+c.c. of carrier angular frequency ω and complex envelope amplitude
E0(t) impinging at normal incidence on a self-standing extended graphene sheet. At visible and lower frequencies,
electrons in this material behave as massless Dirac fermions (MDFs), with their temporal evolution governed by
the single-particle Dirac equation ih̄∂tψk(t) = vFπ · σψk(t), where h̄k is the electron momentum, ∂t is the time
derivative, vF ' c/300 is the Fermi velocity, c is the speed of light in vacuum, h̄ is the reduced Planck constant,
σ = (σx, σy) is the two-dimensional (2D) Pauli-matrix vector, and ψk(t) is the k- and time-dependent two-component
spinor accounting for the quantum states in the upper and lower Dirac-cone bands. The graphene band-structure
thus consists of two infinite cones, neglecting higher-band effects that are only relevant at high photon energies,
above ∼ 2 eV. We introduce an electron quasi-momentum π that coincides with the unperturbed momentum (i.e.,
π = h̄k) in the absence of external illumination. In this case, the Dirac equation admits spinor eigenvectors ψ±k,0(t) =

(1/
√

2)(e−iφ/2 ± eiφ/2)Te−iε±t, where ε± = ±vFk is the unperturbed conical dispersion of upper (+) and lower (−)
energy bands, while φ identifies the momentum direction, such that k = k(cosφ, sinφ), and a spatial dependence

eik·r/
√
A (normalized to the sheet area A) is understood in the spinor.

In the presence of the impinging optical field, we use the customary minimal electron-light coupling prescription
to write the electron quasi-momentum as π(t) = h̄k + (e/c)A(t), where −e is the electron charge and A(t) =
−c
∫
E(t)dt is the potential vector in the Coulomb gauge (∇ · A = 0). Following the nonperturbative approach

developed by Ishikawa1,2, we write the time-dependent spinor as a linear combination of the instantaneous upper-
and lower-cone states ψk(t) = c+k (t)ψ+

k (t) + c−k (t)ψ−k (t), where ψ±k (t) = (1/
√

2)(e−iθk(t)/2 ± eiθk(t)/2)Te∓iΩk(t),
Ωk(t) = vF

∫
|k + (e/h̄c)A(t)| dt is a global dynamical phase, and θk(t) = atan{[ky +(e/h̄c)Ay(t)]/[kx+(e/h̄c)Ax(t)]}

is the time-dependent direction angle of the electron quasi-momentum π. We then insert the Ansatz above into the
Dirac equation and define the interband coherence ρk = c+k c

−∗
k and the population difference nk = |c+k |2 − |c

−
k |2.

Without making any approximations, we can then rewrite the two-dimensional Dirac equation for MDFs in the form
of generalized Bloch equations (GBEs)1,2,

ρ̇k(t) = −γρk(t)− i

2
θ̇k(t)nk(t)e2iΩk(t), (1)

ṅk(t) = −γ[nk(t) + 1] + 2θ̇k(t)Im
{
ρk(t)e−2iΩk(t)

}
, (2)

where we have introduced the artificial damping parameter γ accounting for inelastic electron transitions that are
produced for example by impurity scattering and coupling to phonons. The temporal evolution of graphene electrons
can be evaluated by solving the above equations in the time-domain and setting the initial conditions ρk(−∞) = 0 and
nk(−∞) = −1, where we have assumed the limit of vanishing temperature and doping. The single-electron current is
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thus obtained as

jk(t) = (−e/h̄)〈ψk(t)|∇k[vFπ · σ]|ψk(t)〉 = −evF

[
nk(cos θkx̂ + sin θkŷ)− 2(sin θkx̂− cos θkŷ)Im

{
ρke−2iΩk

}]
. (3)

We emphasize that this expression for the microscopic current is obtained without making any approximation beyond
the MDF picture. The nk terms account for the intraband current, while the remaining terms, which depend on
the coherence ρk, arise from interband dynamics1,2. One should note that the intraband current of the valence band
nk cos θk should vanish when it is fully filled (nk = −1) in virtue of a well-known sum rule (see3). The macroscopic
induced surface current J(t) is finally obtained by integrating over all electron momenta,

J(t) =
gsgv

(2π)2

∫
jk(t)d2k, (4)

where gs = gv = 2 account for spin and valley degeneracies, and the integral extends over the entire 2D k plane.
It is important to note that this integral is ill-behaved due to the unphysical assumption of an infinitely extended
valence band (i.e., for arbitrarily large k’s). The noted sum rule explains that this divergence must disappear in real
systems due to the periodicity of the band in k space. A regularization procedure to tackle this problem leads to
the replacement of nk in Supplementary Equation (3) with nk + 1 when calculating the integral of Supplementary
Equation (4), and this prevents the divergence since nk → −1 for large k’s4. In order to calculate the surface current
density J(t) induced on graphene by the impinging light we solve numerically Supplementary Equations (1,2) through
a fourth-order Runge Kutta algorithm. The transmitted field ET(t) is thus obtained by considering the scattering
problem and applying the boundary conditions at the graphene plane accounting for the induced surface current
density. As a result, at normal incidence we obtain ET(t) = E(t) − (1/2)µ0cJ(t). In the results given in the main

paper, we considered a Gaussian input pulse E(t) = E0e−(t/2τ)2−iωt + c.c. with several pulse durations τ , amplitudes
E0, and polarization states E0.

Supplementary Note 2: Continuous wave analysis of polarization-dependent third- and fifth- harmonic
generation

Here, we provide an analytical demonstration of the quenching of harmonic generation for circularly polarized im-
pinging light in the continuous-wave regime. We start our analysis from the Bloch equations under the approximation
h̄k � (e/c)A(t). Such an approximation is valid in the regime where the optical intensity remains low enough not to
temporally displace the Dirac cone up to the resonant electron wavenumber k = ω/(2vF), leading to the (safely met)
condition I0 << 137h̄π3c4/2v2

Fλ
4 ≈ 2 GW/cm2 at λ = 3.1 µm. Under this approximation, the GBEs reduce to

Γ̇k = −(2iω0 + γ)Γk −
ie

2h̄k
[sinφEx(t)− cosφEy(t)] nk, (5)

ṅk = −γ(nk + 1) +
2e

h̄k
[sinφEx(t)− cosφEy(t)] ImΓk, (6)

where we have set ρk = Γke2iω0t and ω0 = vFk. Then, defining the polarization angle ϑ such that Ex(t) = E0 sinωt
and Ey(t) = E0 sin(ωt+ ϑ), and taking the Ansatz

Γk(t) = Γ
(1+)
k eiωt + Γ

(1−)
k e−iωt + Γ

(3+)
k e3iωt + Γ

(3−)
k e−3iωt + Γ

(5+)
k e5iωt + Γ

(5−)
k e−5iωt, (7a)

nk(t) = n
(0)
k + Re

{
n

(2)
k e−2iωt

}
+ Re

{
n

(4)
k e−4iωt

}
+ Re

{
n

(6)
k e−6iωt

}
, (7b)
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one gets

Γ
(1−)
k − Γ

(1+)∗
k =

−eE0(γ − iω)[ηkn
(2)
k − 2η∗kn

(0)
k ]

4h̄k[γ + i(2ω0 − ω)][γ − i(2ω0 + ω)]
≡ h̄k

eE0
ξ1

[
ηkn

(2)
k − 2η∗kn

(0)
k

]
, (8a)

Γ
(3−)
k − Γ

(3+)∗
k =

−eE0(γ − 3iω)[ηkn
(4)
k − η∗kn

(2)
k ]

4h̄k[γ + i(2ω0 − 3ω)][γ − i(2ω0 + 3ω)]
≡ h̄k

eE0
ξ3

[
ηkn

(4)
k − η

∗
kn

(2)
k

]
, (8b)

Γ
(5−)
k − Γ

(5+)∗
k =

−eE0(γ − 5iω)[ηkn
(6)
k − η∗kn

(4)
k ]

4h̄k[γ + i(2ω0 − 5ω)][γ − i(2ω0 + 5ω)]
≡ h̄k

eE0
ξ5

[
ηkn

(6)
k − η

∗
kn

(4)
k

]
, (8c)

n
(0)
k = −γ

{
γ − Re

[
2|ηk|2ξ1+ (8d)

+
2|ηk|4ξ2

1 [(γ − 4iω − |ηk|2(ξ3 + ξ5))(|ηk|2ξ5 − γ + 6iω) + |ηk|4ξ2
5 ]

[γ − 2iω − |ηk|2(ξ1 + ξ3)][(γ − 4iω − |ηk|2(ξ3 + ξ5))(|ηk|2ξ5 − γ + 6iω) + |ηk|4ξ2
5 ]− |ηk|4ξ2

3(|ηk|2ξ5 − γ + 6iω)

]}−1

,

(8e)

n
(2)
k =

−2(η∗k)2ξ1{[γ − 4iω − |ηk|2(ξ3 + ξ5)](|ηk|2ξ5 − γ + 6iω) + |ηk|4ξ2
5}n

(0)
k

[γ − 2iω − |ηk|2(ξ1 + ξ3)]{[γ − 4iω − |ηk|2(ξ3 + ξ5)](|ηk|2ξ5 − γ + 6iω) + |ηk|4ξ2
5} − |ηk|4ξ2

3(|ηk|2ξ5 − γ + 6iω)
,

(8f)

n
(4)
k =

−(η∗k)2ξ3(|ηk|2ξ5 − γ + 6iω)n
(2)
k

[γ − 4iω − |ηk|2(ξ3 + ξ5)](|ηk|2ξ5 − γ + 6iω) + |ηk|4ξ2
5

, (8g)

where we have introduced the dimensionless parameter ηk = sinφ− cosφeiϑ accounting for the polarization state of
the impinging light. Under the approximation taken, the surface current density reduces to

J(t) =
evF

π2

∫
(cosφŷ − sinφx̂)

{
[Γ

(1−)
k − Γ

(1+)∗
k ]e−iωt + [Γ

(3−)
k − Γ

(3+)∗
k ]e−3iωt + [Γ

(5−)
k − Γ

(5+)∗
k ]e−5iωt + c.c.

}
d2k.

(9a)

As we have discussed in the main paper, in our simulations we observe a drastic drop of the third and fifth harmonic
parts of the current for circularly polarized light, while the fundamental harmonic remains unaffected. In order to
understand the vanishing harmonic generation for circularly polarized light, we examine the equation above. The
third and fifth harmonic currents are given by

J3ω(t) = Re

{[∫
(cosφŷ − sinφx̂)(η∗k)3f

(
|ηk|2

)
dφ

]
e−3iωt

}
, (10a)

J5ω(t) = Re

{[∫
(cosφŷ − sinφx̂)(η∗k)5g

(
|ηk|2

)
dφ

]
e−5iωt

}
, (10b)

where f and g are involved functions of |ηk|2, and ηk = sinφ − cosφeiϑ. For linearly polarized light (ϑ = 0) |ηk|2
depends on φ, and the integrals above show a complicated dependence on φ resulting in non vanishing third and fifth
harmonic currents. On the contrary, for circularly polarized light (ϑ = ±π/2) |ηk|2 = 1 and is thus independent on
φ. Thus, the above integrals reduce to

J3ω(t) = Re

{
±i
[∫

(sinφx̂− cosφŷ)e∓3iφdφ

]
f(1)e−3iωt

}
= 0, (11a)

J5ω(t) = Re

{
±i
[∫

(cosφŷ − sinφx̂)e∓5iφdφ

]
g(1)e−5iωt

}
= 0. (11b)

As we discuss in the main paper, the physical origin of this cancellation stems from the phase mismatch of electron
trajectories from opposite points in the reciprocal space [see Fig. S1]. In Fig. S2 we contour plot the dependence
of the complex current amplitudes amplitudes jωx , j3ω

x , and j5ω
x over the dimensionless electron wavenumber 2vFk/ω

for wavelength λ = 2πc/ω = 3.1 µm, impinging intensity I0 = 10 GW/cm2, and several polarization states ϑ, where
we have defined such amplitudes as Jω(t) = Re[

∫
jω(k)d2ke−iωt], J3ω(t) = Re[

∫
j3ω(k)d2ke−3iωt], and J5ω(t) =

Re[
∫
j5ω(k)d2ke−5iωt]. The y components of the current amplitudes jωy , j3ω

y , and j5ω
y exhibit a similar behavior.

Supplementary Note 3: Atomistic quantum-mechanical simulations

We consider a graphene ribbon containing M → ∞ unit cells with period b along its direction of trans-
lational symmetry. Following a previously reported procedure5–7, we construct the corresponding one-electron
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wave functions from a tight-binding Hamiltonian HTB (assuming a nearest-neighbor hopping energy of 2.8 eV) as

|j, k〉 =
∑
l,m ajl,keikmb |l,m〉 /

√
M , where j denotes the band index, k is the in-plane Bloch wave vector along the

ribbon, |l,m〉 is the 2p carbon orbital at site Rl in unit cell m, and ajl,k are complex expansion coefficients. The
optical response is simulated via direct numerical integration of the single-electron density matrix equation of motion,

∂ρ

∂t
= − i

h̄
[HTB − eφ, ρ]− 1

2τ

(
ρ− ρ0

)
, (12)

where φ = −Rl · E(t) − 2e
∑
l′,m′ vll′,mm′ρl′l′,m′m′ is the self-consistent electric potential, with vll′,mm′ denoting

the Coulomb interaction between atom l in unit cell m and atom l′ in unit cell m′. Relaxation in Supplementary
Equation (12) brings us back to the equilibrium density matrix ρ0 at a rate τ−1. In the state representation, the
relaxed matrix elements ρ0

jj′,kk′ = fj,kδjj′δkk′ are constructed by populating electron states according to the Fermi-

Dirac distribution (see occupation numbers fj,k). Here we consider light impinging along the graphene plane normal,
with polarization E0 directed across the ribbon [i.e., the incident light field is E(t) = Re {E0 exp(−iωt)}]. Upon
integration of Supplementary Equation (12), the time-dependent elements ρll yield the induced dipole moment per
unit length of the nanoribbon

p(t) = −2e
∑
l

Rl ·E0

∫ π/b

−π/b

dk

2π

(
ρll,kk − ρ0

ll,kk

)
. (13)
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