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Figure S1. Graphical user interface (GUI) Manual. 

Before starting please read the manuscript and make sure the assumptions of normalization are 

met. Intensify3D can correct an unlimited number of images since it operates in a serial manner. 

Hence, it only supports image sequences. However if your image stack is in multi-Tiff format 

there is an option in the GUI to convert the file to individual images. The *.tif files should ideally 

be unprocessed data in a 12 or 16bit format. Memory requirements depend on image size and 

parallel processing. Based on our experience, the maximum requirements are 750 bytes/pixel. 

Thus, processing a single Light-Sheet image of 2560x2160 pixels will require ~ 4Gb of RAM 

from each processor + 4Gb for general processes. For example, if your PC has 4 cores, it is 
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possible to analyze 4 Light Sheet images simultaneously, which will require 20Gb of RAM. It is 

highly recommended to start with a few representative images (~20), adjust the parameters 

and only then run the process on the entire stack. 

Operation instructions and GUI options: 

a. The graphical user interface is divided to 3 panels:

Panel 1 – Folder or file selection: Here the user selects the directory containing the individual 

images in the stack in TIFF format. Alternatively, if the images are in multi-TIFF format, the user 

should select the “browse file” option and the multi-Tiff will be converted to multiple file form in 

a directory carrying the file name. 

Panel 2 – Estimate your background: The objective of this section is to assist the user to select 

the ideal maximum background intensity (MBI) in a single image. This value will be used by 

Intensify3D to estimate the background across all images in the stack. “Image number to display” 

is used to select a representative image from the stack that carries a clear signal. Once the image 

has been selected, pressing the “show image and estimate parameters” button displays the 

requested image is displayed, a brightness contrast adjustment window opens (b) and an initial 

estimation of the MBI is assigned based on the 99th
 percentile of intensity potentially showing 

only signal pixels in red. Next, the user should adjust the MBI selection with the dedicated slide 

bar at the bottom of the image in the following order: (1) adjust brightness and contrast (2) move 

slide bar to set MBI (performing 2 before 1 will show a distorted selection of the MBI). Repeat 1-

>2 until satisfied with the result*. The matched value for the MBI will be set in the “stack 

parameters” section in panel 3. 

Panel 3 – Setting run parameters: The parallel processing section is very useful when analyzing 

large image stacks. The GUI detects how many cores your CPU has and offers the user the option 

of how many of them will be dedicated to the run. If your MATLAB license does not include the 
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parallelization package, select 0 and work without it (this limitation does not apply to the standalone 

version). The “stack parameters” section defines the first and last image that would be processed 

in the stack, the MBI (described above) and the spatial filter size. Spatial filter size determines the 

frequency of intensity changes that would be corrected by Intensify3D. The minimum value for 

this parameter should be at least twice the diameter of the largest signal structure. Lower values 

could affect the signal. “Z normalization type” section allows selection of the desired normalization 

type across the images in the stack (for more information see main text and supplementary figure 

S3).  Last, Intensify3D has the ability to detect the background or tissue area in an image based 

on 2 clustering algorithms: K means and Expectation Maximization (E.M.). This option should be 

explored for images where not all the image area is relevant for normalization and is critical in 

such images. The sensitivity of the tissue detection should be experimented by the user to fit to 

the specific image set (for more information see main text and supplementary figure S4).   

Last, after running Intensify3D, The “Start” will change to messages regarding the run's 

progression. 

*intuition for selection of the MBI value: The correct approximation of the image background

depends on “cleaning out” the signal pixels by thresholding and spatial filtering. High brightness 

signal pixels can affect the ability of the spatial filter.  The MBI should be set so that most 

signal pixels will be removed without removing background pixels. Notice the red-labeled 

pixels in the example image of bright spheres. Lowering the MBI would result in removing 

background pixels and increasing the MBI would retain more signal pixels. Both ways will lead 

to a sub-optimal estimation of the background. 

Figure S2. The basic normalization process of a 2-photon image stack with Intensify3D. 

a. For a given image stack (red frames) the user is encouraged (but not obliged) to select 2

parameters: Maximum Background Intensity (MBI, green circle) and Spatial Filter Size (SFS, 
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green parenthesis), both derived from a single image in the stack. b. The MBI is matched with the 

image quantile and that quantile is then measured in the entire image stack to serve as an image 

specific MBI estimate. c. Initially the pixels in the image that are brighter than the MBI are 

replaced by values derived from an empirical distribution based on the rest of the pixels in the 

original image*. Next, the image is filtered based on the SFS with a Savitzky-Golay low pass 

filter to generate mask image M that should now depict the intensity gradients in the background. 

The mask image is standardized (max value = 1). d. Normalization by division of the original 

image I (left) by the mask image M (middle) produces image N (green frame). Note the magenta 

rectangles, highlighting a relatively unchanged region (with high background intensity), and the 

yellow rectangles, representing a region that was intensified post-normalization. Between-image 

normalization (Z axis normalization) is achieved either by upper quantile, contrast stretch or 

semi-quantile normalization (see figure S5 and methodological outline for details). 

*image presented in enhanced brightness

Figure S3. Z normalization types and the expected effect on image data. Each normalization 

approach is presented relative to the pixel histogram of the “ideal case” imaging setup (Target 

histogram). Left/right panels are before/after normalization a. Upper quantile normalization will 

multiply each image in the stack by a different constant to match the upper quantile (extrapolated 

from the maximum background intensity) value for the entire stack. b. Contrast stretch 

normalization linearly transforms each image in the stack so that the lower percentile (10
th
) and 

Upper quantile values will match for the entire stack. c. Semi-quantile normalization will force 

10000 image quantiles lower than the upper quantile to match across the stack. From the upper 

quantile and above, the pixels will undergo the contrast stretch correction.  

Figure S4. Automated tissue detection. a. Representative pre- normalized Light-Sheet scans of 

cleared adult mouse brains from 2 district regions: Z = 300, mid sagittal and Z = 900, lateral. Top 
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illustrations present the imaged planes and the orthogonal viewing angle of the Light-Sheet 

microscope. b. The value of each pixel and of neighboring pixels serve as a basis for PCA 

analysis and dimensionality reduction. An iterated expectation-maximization (E.M.) algorithm is 

used to cluster pixels that belong to the image’s background (blue) and the tissue (red). c. The 

image is normalized only according to tissue pixels, ignoring the background and thus allowing 

accurate normalization even if the tissue area changes significantly throughout the image stack. 

Scale bar represents 1mm.

Figure S5. Cortical Cholinergic Interneurons (CChIs) with representative bipolar 

morphology. a. Coronal cortical tissue sections (30μm thick) were extracted from a 1 month old 

ChAT-IRES-Cre X tdTomato-loxp (Ai14) mouse and imaged with a confocal microscope (fv-

10i, Olympus) at 60X magnification, 1μm Z-step. Images are projected along the Z axis. Scale 

bar is 20μm. White arrows indicate the orientation to the surface of the cortex. b. Quantification 

of dendrite and soma diameters across cortical depth. Right panel. Multiple line ROIs (yellow thin

lines) were manually selected along the neuronal dendrites and soma (n = 6 neurons). Images 

were rotated so that the cortical surface will point up. The dendrite diameter was estimated from 

the maximum half-width of the intensity profile along the line. Left panel. data from all neurons 

was centered (soma is 0), merged and smoothed with a moving average (5 lag/lead). All units are 

in pixels of original images. Color code matches the one in Figure 2 d.

Supplementary Movies 

Movie 1. 3D rendering of 2-Photon image stack. A movie showing a 360° rotation of a 

3D rendering (Fiji, 3D viewer plugin) based on original images (left) and corrected 

images (right). Last 10s show the same rendering but with 50% transparency. The image 

stacks are shown at the same contrast levels.  
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Movie 2. Light-Sheet auto fluorescence sweep through pre- and post-normalization. 

Light-Sheet scan in the blue/green excitation emission spectrum of cleared mouse 

hemisphere samples before (left) and after (right) Intensify3D correction. Last 10s 

show the same images but with a higher intensity threshold. The images are shown at the 

same contrast levels.  

Movie 3. 3D rendering of barrel fields based on auto-fluorescence iDISCO scans 

before (left) and after (right) Intensify3D normalization. 

Supplementary files 

1) “2Photon_CChIs_Before_and_After.mp4“- Movie presenting 3D rendering of 2-photon

imaged CChIs before and after normalization. 

2) “barrel_Before_After.mp4”: Movie of identified barrel fields from light-sheet imaging 

before and after normalization.

3) “LightSheet_Before_After_Thr.mp4“: Movie of Light Sheet images while scanning

along the Z axis before and after normalization, side by side. 

4) Code – MATLAB code and standalone installation files with instructions.

Supplementary Table 1 – Open source MATLAB and Image j scripts used in the normalization 

algorithm. 

Platform Function name Use author 

MATLAB mixGaussEm Gaussian mixture 

model  

Mo Chen (sth4nth@gmail.com) 

MATLAB neighbourND Get indices of 

neighboring pixels 
Ronald Ouwerkerk 
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MATLAB Savitzky_Golay Savitzky Golay 

filtering 
By Image Analyst 

MATLAB parfor_progress Track progression 

of a parallel 

process 

Jeremy Scheff 

http://www.jeremyscheff.com/ 

MATLAB HartigansDipSign

ifTest 
calculates 

Hartigan's DIP 

statistic and its 

significance for the 

empirical p.d.f  

XPDF 

F. Mechler (27 August 2002) 

MATLAB emprand Generates random 

numbers from 

empirical 

distribution of data 

Durga Lal Shrestha 

eMail: durgals@hotmail.com 

% Website: 

http://www.hi.ihe.nl/durgalal/index.htm 

Image j 3D Viewer Visualization and 

rendering of 3D 

images 

Benjamin Schmid, Albert Cardona, Mark 

Longair, Johannes Schindelin. 

http://3dviewer.neurofly.de 

Image j 3D object 

counter 

counts the number 

of 3D objects in a 

stack 

Fabrice P. Cordelieres and Daniel James 

White. 

http://imagejdocu.tudor.lu/doku.php?id=plugi

n:analysis:3d_object_counter:start 

http://3dviewer.neurofly.de/
http://imagej.net/User:White
http://imagej.net/User:White



