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Supplementary Figures, Movie and Table 
 

 



 

Supplementary Figure 1 | Shaping. (A) Schematic illustration of the 10 different shaping             
mazes (T1 – T10) and the final accumulation maze (T11). (B) Progression through shaping              
stages of two example mice, where each color indicates a different maze according to the               
colorbar on the bottom right. (C) Number of sessions training sessions spent on each shaping               
stage. Gray crosses: individual mice, black circles: population mean (n = 17), error bars: ± SEM.                
(D) Average overall performance for each shaping stage. Conventions as in (C).  



 

 

Supplementary Figure 2 | Mice display stable performance over many sessions. (A) Overall             
performance in the final accumulation maze as a function of session number, for mice with at                
least 5 sessions (n = 30), and selecting all trials regardless of overall performance (i.e. not                
applying any performance thresholds). Thin gray lines: individual mice, black line: average            
across mice, error bars: ± SEM. Red line is best linear fit to average data. (B) Distribution of                  
slopes extracted from best-fitting lines to performance of each mouse as a function of session               
number (i.e. thin gray lines in panel A). Bars are color-coded according to whether the slope is                 
significant (dark gray, i.e. its 95% confidence interval does not overlap zero) or not (light gray).                
Arrowhead indicates population mean. The distribution was not significantly different from zero            
(P = 0.99, signed rank test), indicating stable performance across sessions. (C) Distribution of              
standard deviation of average performance across (gray) and within (green) sessions for the             
mice. Arrowheads: population means. Within-session standard deviation was calculated using          
performance over a 40-trial running window.  

 

  



 

 

 

Supplementary Figure 3 | Mice can undergo bouts of high/low performance (A) Three             
individual examples of consecutive trial blocks on the final accumulation maze, showing            
performance calculated with a sliding half-Gaussian window (σ = 15 trials), plotted as a function               
of trial number (trial 1 is the first within the block, not necessarily the first in the session). Dotted                   
lines of different shades of green indicate performance thresholds applied in the analysis shown              
in D. (B) Psychometric curves for aggregate data (metamouse), obtain after excluding trials with              
performance below different thresholds (illustrated in A).   



 

 

Supplementary Figure 4 | Different mouse strains have comparable performance. (A)           
Psychometric curves for aggregate data (metamouse) divided into five different strains according            
to the color code on the top left. Error bars: binomial confidence intervals, lines: best sigmoidal                
function fits. (B) Overall performance averaged across blocks with performance over 60% (see             
Materials and Methods). Crosses: individual animals, error bars: SEM for each mouse strain. (C)              
Percentage of sessions with at least one trial block over our performance threshold (60%).              
Conventions as in B. (D) Logistic regression of choice on net evidence for each spatial bin. (E)                 
Weight decay index according to genotype. Conventions as in B. (F) Average running speed,              
conventions as in B. (G) Accuracy of decoding choice from view angle as a function of maze                 
position for different strains. For all but one measure above, there was no significant difference               
between the different strains, (P > 0.05, one-way ANOVA)(Decoding accuracy was measured in             
the cue period, y < 200 cm). The exception was running speed, significantly different between               
genotypes (P = 0.04). 

  

 

 

 

 

 

 



 

 

Supplementary Figure 5 | Best-fit parameters for the Brunton et al. model for each mouse.               
(A) – (I). Vertical red bars indicate the median of best-fit parameters across cross-validation             
runs, gray shadings indicate one standard deviation of the distribution obtained from            
cross-validation runs. All panels are sorted according to the same mouse order. 

 

 

  



 

Supplementary Figure 6 | Tower order explains behavior at least as well as position does.               
(A) Best-fit model coefficients for the tower order model with trial history terms. Thin gray               
lines: individual mice, thick black lines: population mean, error bars: ± SEM. (B) Comparison of              
cross-validated prediction performance of the spatial bins and tower order models, both with trial              
history (n = 20 mice). MI: model information index. (C) Psychometric curve predictions for an               
example mouse with large trial history effects, divided according to previous choice in rewarded              
trials. Circles: data, lines: model prediction. Black: average post-reward curve, blue: trials            
following rewarded right choices, red: trials following rewarded left choices. Error bars:            
binomial confidence intervals. (D) Psychometric curve predictions for the same mouse in (C),             
divided according to previous choice in error trials. Conventions as in (C).  

 

 

  



 

Supplementary Figure 7 | Stability of running patterns. (A) Examples of running speed over              
time during 25 consecutive trials, aligned by entry in the cue region (t = 0). Each line is                  
color-coded according according to the portion of the maze (start, cue, delay or turn). Tower               
onset times are shown as leftward red or rightward blue arrows on top of each trace. (B)                 
Distribution of average running speed across trials and sessions for animals with at least 1000               
trials (n = 25). Arrowhead indicates population mean. (C) Distribution of standard deviations of              
average running speed across session-wide averages (gray, mean ± SEM: 6.7 ± 0.6 cm/s) and               
across trials within a session (green, mean ± SEM: 7.5 ± 0.6 cm/s). Arrowheads indicate               
population mean, and follow the same color code. (D) Distribution of standard deviations of              
average view angle across sessions and across trials within a session, calculated separately for              
right- and left-choice trials and then averaged (mean ± SEM: 4.9 ± 0.4 ˚ vs. 10.4 ± 0.9 ˚,                   
respectively). Conventions as in C. (E) Correlation between average running speed and average             
overall performance across all sessions for each mouse (n = 25, r = 0.48, P = 0.02, Pearson's                  
correlation). (F) Distribution of session-wise correlations between average running speed and           
average overall performance, showing that although there is an overall correlation between the             
two indicators, for any given mouse there is little correlation of speed and performance on               
individual sessions: only 4/25 mice had significant correlations between running speed and            
performance across sessions, and the sign of the correlation was negative for one of these mice (r                 
= 0.06 ± 0.05, mean ± SEM). (G) Average frequency of different types of putative motor errors,                
belonging to five categories: trials with large-magnitude view angles during the cue period (>              



60˚), trials with early turns (i.e. a turn immediately before the arm, resulting in a wall collision),                 
trials in which the mouse first entered the opposite arm to its final choice, trials with speeds                 
below the 10th percentile (defined separately for each mouse), and trials with traveled distance in               
excess of 110% of nominal maze length. Frequency was calculated separately for correct and              
error trials. Error bars, ± SEM. *** P < 0.001, n.s.: not significant.  

  



 

Supplementary Figure 8  |  Cue-triggered change in view angles for individual mice.  Each 
panel corresponds to data from a single mouse in this study, otherwise this is the same as Figure 
8D: cue-triggered change in the view angle θ relative to the average trajectory 〈θ〉 for trials of the 
same choice. The bands indicate the 1 standard deviation spread across trials, with the lines 
being the mean across trials. 

 



 

 

Supplementary Figure 9 | Comparison between the degree of primacy in the            
accumulating-towers and the Morcos and Harvey tasks. For direct comparison with the            
Morcos and Harvey task, we recalculated the logistic regression from the final accumulation             
maze of our task using 6 bins. Data from Supplementary Figure 2, panel d, in Morcos and                 
Harvey (2016) was kindly provided by A.S. Morcos and C.D. Harvey. We then calculated the               
weight decay ratio as previously described (Materials and Methods and Results, Fig. 3C).             
Arrowheads, median. 

 

 

 

 

 

 

 

 

 

 

 

 



 T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 

Total length  
(cm) 

60 170 270 330 330 330 330 330 330 330 330 

Cue period (cm) 45 120 220 280 280 240 200 200 200 200 200 

Delay (cm) 10 20 20 20 20 60 100 100 100 100 100 

Tower density  
(m-1) 

3.0 3.8 3.8 3.8 4.2 4.2 4.2 4.5 4.8 4.8 5.0 

Tower duration  
(ms) 

Inf Inf Inf Inf Inf Inf Inf Inf Inf 200 200 

Tower visible  
from (cm) 

10 10 10 10 10 10 10 10 10 10 10 

Visual guide? Y Y Y Y N N N N N N N 

Tower side ratio   
(m-1) 

Inf Inf Inf Inf Inf Inf Inf 8.3:0.7 8.0:1.6 8.0:1.6 7.7:2.3 

Warm-up none none none none 

30 T4  
trials 
with <  
10% 
bias 
and >  
80% 
correct 

30 T4  
trials 
with <  
10% 
bias 
and >  
80% 
correct 

30 T4  
trials 
with <  
10% 
bias 
and >  
80% 
correct 

10 T4  
and 15  
T7 
trials 
with <  
10% 
bias 
and >  
80% 
correct 

10 T4  
trials 
with <  
10% 
bias 
and >  
85% 
correct 

10 T4  
trials 
with <  
10% 
bias 
and >  
85% 
correct 

10 T4  
trials 
with <  
10% 
bias 
and >  
85% 
correct 

Advancement 
criteria 

10 
complet
ed trials 

40 
complet
ed trials 

80 
complet
ed trials  
at >  
60% 
correct 

2 
session
s with  
100 
trials at  
> 90%  
correct 

1 
session 
with 
100 
trials at  
> 80%  
correct 

1 
session 
with 
100 
trials at  
> 80%  
correct 

1 
session 
with 
100 
trials at  
> 80%  
correct 

1 
session 
with 
100 
trials at  
> 75%  
correct 

1 
session 
with 
100 
trials at  
> 70%  
correct 

1 
session 
with 
100 
trials at  
> 70%  
correct 

n/a 

Easy blocks 

(performance 
calculated over  
40-trial window) 

none none none none 

10 T4  
trials if  
< 70%  
correct 

10 T4  
trials if  
< 70%  
correct 

10 T4  
trials if  
< 70%  
correct 

10 T4  
trials if  
< 65%  
correct 

10 T7  
trials if  
< 60%  
correct 

10 T7  
trials if  
< 60%  
correct 

10 T7  
trials if  
< 55%  
correct 

Supplementary Table 1 | Detailed parameters for all shaping mazes and main accumulation             
maze.  



Supplementary Movie 1. Playback of six example trials from the accumulating-towers task.            
Left: flattened view of the mice's perspective as they navigated the maze. The red lines indicate                
the estimated boundaries of the binocular field (± 17.5˚ at the horizon), and the yellow lines                
indicate ± 45˚ for reference. θ: view angle. Negative numbers indicate left side by convention.               
Luminance has been increased for convenience. Right: equivalent top-down view of the virtual             
maze. The mouse avatar turns according to its recorded virtual view angle, and towers become               
gray outlines when they disappear from the maze. Movie has been slowed down by 2x.  

 

 

  



Supplementary Methods 
 

Spatial Poisson distribution of tower locations 

We used the following algorithm to randomly generate tower placement locations according to a              
Poisson process, i.e. with exponentially distributed inter-tower spacings subject to a minimum            
interval between towers: 

Algorithm 1:  Spatial Poisson process with refractory interval 

Inputs L  : Maximum possible location towers 
dy : Minimum possible spacing between towers 
mu : Mean number of towers 

Outputs y  : A list of locations of towers. Will be distributed in the range [0,L] 

1 maxN ← ⌊L/dy⌋ Draw a random Poisson 
distributed number that is less 
than the maximum possible 
(given the refractory interval) 

2 do 

  n ← random(Poisson(mu)) 

until n ≤ maxN 

3 Leffective ← L - (n-1)*dy Randomly distribute 
locations within [0,L], but 
impose a minimum 
separation 

4 y ← random(Uniform(0,Leffective)) 

5 y ← sort(y) 

6 y ← y * Leffective + (0:n)*dy 

7 y ← y + random(Uniform(0,L)) Randomly rotate to get rid of 
edge artifacts (non-uniform 
probability of 0 and L values) 8 y[y > L] ← y[y > L] - L 

 

 

Exponential gain for translating treadmill movements into changes in virtual view angle 

Learning to use a spherical treadmill to execute navigational movements in virtual reality             
constitutes a substantial portion of the training time for this task. One of the optimizations we                
have performed to ease this process is to select treadmill-to-virtual-movement transformations so            
that mice can execute smooth motions without spending aversive amounts of time during turns              
into the arms of the T-maze. Historically we had first utilized a constant gain (Harvey et al.                 
2012) for the , but when this gain was low mice required a large amount of time to turn into the                     
arms, encouraging them to initiate turns early (at the expense of accumulating later cues).              

https://paperpile.com/c/wyKVnc/pGdv
https://paperpile.com/c/wyKVnc/pGdv


Conversely, when this gain was high, small postural shifts in the stem of the T-maze caused the                 
virtual scene to wobble, which was undesirable in a task involving visual cues. These              
observations motivated the use of a nonlinear gain function that deemphasizes small,            
uncontrollable movements of the treadmill during running down the stem, but facilitates sharper             
turns at the end of the T-maze to encourage straighter view angle trajectories.  

 

Heuristic models: optimization technique 

Here we defined several models where the choice of the mouse in a series of trials is assumed to                   
be a Bernoulli process parameterized by a probability of making a choice to the right,               

, that depends on a set of trial-specific quantities  (see Materials and Methods).  

We obtained best-fit parameters for each model by maximizing the log likelihood of the model               
for a given dataset comprising of trials. Let the mouse’s choice on the ith trial be                 

which is 1 (0) if the mouse chose right (left), then the likelihood of observing                
this choice is given by the binomial distribution . Taking          
the product of individual-trial likelihoods we obtain: 

 

Additionally we subtracted L1 penalty terms for all free parameters of the model. For a model                
that includes all factors, the quantity that is maximized is therefore: 

 

where is the L1 norm. This regularization is used as a method for selecting the                
most parsimonious model in terms of driving coefficients to zero when they do not result in a                 
significantly better fit for the model (Schmidt, 2010). It was also crucial for some models,               
particularly those that contain history-dependent lapse terms, because of the presence of multiple             
local maxima that made the problem otherwise ill-posed.  

The regularization strength hyperparameter was determined by using a 3-fold cross-validation            
(CV) procedure to find the optimal model in terms of predictive power. A given dataset was first                 
divided into thirds, and each third is used exactly once as a test set and the remaining two thirds                   
as its complementary training set. To equalize the highly different scales of the factors               
compared to the rest of the factors which are bounded within [-1,1], for each coordinate the                
standard deviation was computed using the trials in the           
training set, and used to scale the evidence factors, . In other words, the only thing                
that this changed was that the coefficients were expressed in units of where are                 
constants derived using the training set (the same are used for the test set, as it would be unfair                   
use of information if they were re-derived for the test set).  

https://www.codecogs.com/eqnedit.php?latex=p_R%20%3D%20p_R(%5Cvec%7Bx%7D)
https://www.codecogs.com/eqnedit.php?latex=%5Cvec%7Bx%7D
https://www.codecogs.com/eqnedit.php?latex=m
https://www.codecogs.com/eqnedit.php?latex=c_i%2C%20i%20%3D%201%2C%5Cldots%2Cm
https://www.codecogs.com/eqnedit.php?latex=B(1%2Cp_R)%20%3D%20p_R(%5Cvec%7Bx%7D_i)%5E%7Bc_i%7D~%5B1%20-%20p_R(%5Cvec%7Bx%7D_i)%5D%5E%7B1%20-%20c_i%7D
https://www.codecogs.com/eqnedit.php?latex=%5Cln%20L_x%20%3D%20%5Csum_%7B1%20%5Cleq%20i%20%5Cleq%20m%7D%20%5Cleft%5C%7B%20c_i~p_R(%5Cvec%7Bx%7D_i)%20%5Cln%20p_R(%5Cvec%7Bx%7D_i)%20%2B%20(1%20-%20c_i)%20%5Cln%5B1%20-%20p_R(%5Cvec%7Bx%7D_i)%5D%20%5Cright%5C%7D
https://www.codecogs.com/eqnedit.php?latex=%5Cln%20L%20%3D%20%5Cln%20L_x%20-%20%5Clambda~(%5C%7C%5Cvec%7B%5Cbeta%7D_%5CDelta%5C%7C_1%20%2B%20%5C%7C%5Cbeta_m%5C%7C_1%20%2B%20%5C%7C%5Cvec%7B%5Cbeta%7D_%7Bh%7D%5C%7C_1%20)
https://www.codecogs.com/eqnedit.php?latex=%5Ctextstyle%20%5C%7C%5Cvec%7By%7D%5C%7C_1%20%5Cequiv%20%5Csum_i%20%7Cy_i%7C
https://paperpile.com/c/vf6Dms/TJ2j
https://www.codecogs.com/eqnedit.php?latex=%5Clambda
https://www.codecogs.com/eqnedit.php?latex=%5Cvec%7B%5CDelta%7D
https://www.codecogs.com/eqnedit.php?latex=%5Ctextstyle%20%5Csigma_i%20%3D%20%5Csqrt%7B%20%5Clangle%20(%5CDelta_i%20-%20%5Cmu_i)%5E2%20%5Crangle%20%2F%20(m_%7B2%2F3%7D-1)%20%7D
https://www.codecogs.com/eqnedit.php?latex=m_%7B2%2F3%7D
https://www.codecogs.com/eqnedit.php?latex=%5CDelta_i%20%5Crightarrow%20%5CDelta_i%20%2F%20%5Csigma_i
https://www.codecogs.com/eqnedit.php?latex=%5Cvec%7B%5Cbeta%7D_%5CDelta
https://www.codecogs.com/eqnedit.php?latex=1%2F%5Cvec%7B%5Csigma%7D
https://www.codecogs.com/eqnedit.php?latex=%5Cvec%7B%5Csigma%7D


Alternative strategy models: one-random-tower analysis details 

For the analysis in Figure 4C, for each mouse we selected the top 1 third performance blocks,                 
and only analyzed mice that had at last 200 trials in these blocks; we pooled together all trials                  
from these blocks and mice. To test the 1-random tower hypothesis, we reasoned that we expect                
to obtain a linear psychometric curve when the sum of towers (#R+#L) was fixed for all trials.                 
This is because the probability to go right for the 1-random tower strategy is given by                
#R/(#R+#L), and if the denominator is fixed, then the psychometric curve (which is given by               
(#R-#L)/(#R+#L)) is linear in the difference of towers #R-#L, which is the standard x-axis of the                
psychometric curve. However, we have empirically observed sigmoid shapes for the           
psychometric curves of the mice's choices. Thus, we proceeded to quantify if the psychometric              
curves of the mice choices were different from that of the 1-random tower model (as described in                 
Materials and Methods). To obtain a dataset with fixed #R+#L, we next selected only trials               
where #R+#L=12. This number was chosen because it was the maximum number of #R+#L for               
which there were at least 4000 trials. We then found the psychometric curve for the actual data                 
and the 1-random tower model. As expected, the 1-random tower model results in a linear               
psychometric curve, whereas the actual data appears more sigmoidal. To find whether these             
curves are significantly different from each other, we performed a shuffling test in the following               
way: we generated 5000 bootstrapped pairs of curves by pooling for all trials with a given #R –                  
#L the number of times the mice (or model) chose right, and then randomly assigning the same                 
number of right choices between the two curves, while keeping the total number of trials as in                 
the original data. The sum of absolute differences between the two curves was used as the test                 
statistic. 

 

 

 

 

 


