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1. Experimental procedures

1.1. General methods

TLC (Thin-layer chromatography) analysis was performed through pre-coated silica gel plates. Melting points were recorded
on X-6 melting point apparatus and uncorrected. FT-IR spectra were obtained from Bruker RFS100/S spectrophotometer
(Bio-Rad, Cambridge, MA, USA) using KBr pellets in the 400-4000 cm™ range. *H NMR and **C NMR were recorded on a
Bruker AV 600 spectrometer with TMS as an internal standard. The chemical shifts were reported in parts per million (ppm), the
coupling constants (J) are expressed in hertz (Hz) and signals were described as singlet (s), doublet (d), triplet (t), broad (br) as
well as multiplet (m). The high-resolution mass spectra (HRMS) were recorded on lonSpec FT-ICR mass spectrometer with ESI
resource.

Commercial carbazoles la—e were deprotonated with potassium hydroxide, and the resulting anion reacted with
epichlorohydrin to provide intermediates 2a—e in 65.1-78.6% yields, which were further treated with various azoles in ethanol
under reflux to afford carbazole derivatives 3a—e, 4a—e, and 5—6 with yields of 24.7—-75.5%. It was noticed that under the same
condition above methyl group containing imidazolyl carbazoles 4c and 4d were obtained in relatively low yields, which might be
explained by the weak acidity of imidazole ring. Moreover, compounds 2f—g were obtained from epoxide 2a by using
N-chlorosuccinimide (NCS) and N-bromosuccinimide (NBS) as chloration and bromination agents in N,N-dimetylformamide at
room temperature. Subsequently, intermediates 2f-g went through ring opening reaction using triazole and
2-methyl-5-nitro-1H-imidazole to afford final compounds 3f—g and 4f. Quantitative nuclear magnetic resonance (QNMR) method
was employed to check the purity of the target compounds with 1,3,5-trioxane as internal standard and it was found that all the
target compounds demonstrated a purity of more than 95%.

1.1.1. General procedure for the synthesis of compounds 2a—g

In a dry round bottom flask, various carbazoles 1a—e (3 mmol, 1 equiv) was added to a solution of KOH (7.5 mmol, 2.5 equiv)
in N,N-dimetylformamide (20 mL) at 4 °C. After stirring the mixture for 30 min at 4 °C, epichlorohydrin (3.6 mmol, 1.2 equiv)
was added to the cooled flask drop-wise. The reaction was stirred at 4 °C overnight. The reaction heated to 25 °C, water (15 mL)
was added to the mixture, and white solid precipitant formed. The mixture was filtered and washed with water (3 x 15 mL) to
provide 2a—e. Yields: 65.1-78.6%. To a solution of NCS or NBS (8.96 mmol, 2 equiv) in 10 mL N,N-dimetylformamide was
added slowly to a suspension of 9-(oxiran-2-ylmethyl)-9H-carbazole 2a (4.48 mmol, 1 equiv) in N,N-dimetylformamide (20 mL).
The reaction mixture was stirred at room temperature and the progress of the reaction was monitored by TLC (petroleum
ether/chloroform, 3/1, V/V). After the reaction was completed, the solution was washed with water (3 x 200 mL), the organic
layer was dried under magnesium sulfate and filtered. The solvent was evaporated and the residue was dissolved in acetone (20
mL) and precipitated with hexane (60 mL). The crude products were filtered and dried under vacuum to afford desired



3,6-dichoro-9-(oxiran-2-ylmethyl)-9H-carbazole 2f and 3,6-dibromo-9-(oxiran-2-ylmethyl)-9H-carbazole 2g in yields of 45.3%
and 50.7%, respectively.

1.1.2. Synthesis of 1-(9H-carbazol-9-yl)-3-(1H-1,2,4-triazol-1-yl)propan-2-ol (3a)

To a stirred solution of triazole (0.186 g, 2.7 mmol) and potassium carbonate (0.608 g, 4.4 mmol) in ethanol was added
intermediate 2a (0.5 g, 2.2 mmol). The mixture was stirred at 80 °C for 5 h. After the reaction was completed (monitored by TLC,
chloroform/methanol, 10/1, V/V), the solvent was removed under reduced pressure, and the residue was dissolved in ethyl acetate
(20 mL) and extracted with water (3 x 20 mL). After that, the combined organic phase was dried over anhydrous sodium sulfate
and concentrated under reduced pressure. The resulting residue was purified by silica gel column chromatography eluting with
chloroform/acetone (5/1-3/1, V/V) to give the pure compound 3a (0.336 g) as white solid. Yield: 52.3%. mp: 154-155 °C. 'H
NMR (600 MHz, CDCl3) 8 7.94 (d, J = 7.7 Hz, 2H, carbazole-4,5-H), 7.45 (d, J = 9.2 Hz, 2H, carbazole-1,8-H), 7.37 (t, J = 7.6
Hz, 2H, carbazole-2,7-H), 7.29 (d, J = 8.1 Hz, 2H, triaozle-3,5-H), 7.14 (t, J = 7.3 Hz, 2H, carbazole-3,6-H), 4.33 (d, J = 5.0 Hz,
1H, trizole-CH,), 4.20 (d, J = 6.0 Hz, 2H, carbazole-CH,), 4.02 (d, J = 11.5 Hz, 1H, trizole-CH,), 3.89 (dd, J = 13.8, 8.1 Hz, 1H,
chiral-H) ppm; **C NMR (151 MHz, CDCls) & 151.47, 143.92, 140.57, 126.00, 123.04, 120.39, 119.53, 108.88, 68.77, 53.07,
46.67 ppm; HRMS (ESI): calcd for C;;HgN,O [M+H]", 293.1402, found, 293.1404.

1.1.3. Synthesis of 1-(2-bromo-9H-carbazol-9-yl)-3-(1H-1,2,4-triazol-1-yl)propan-2-ol (3b)

Compound 3b (0.245 g) was prepared as white solid according to the procedure described for compound 3a starting from
triazole (0.137 g, 1.99 mmol) and intermediate 2b (0.5 g, 1.65 mmol). Yield: 67.4 %. mp: 174-175 °C. '"H NMR (600 MHz,
DMSO-dg) 8 8.49 (s, 1H, triazole-5-H), 8.16 (d, J = 7.7 Hz, 1H, carbazole-4-H), 8.10 (d, J = 8.2 Hz, 1H, carbazole-5-H), 8.01 (s,
1H, triazole-3-H), 7.90 (s, 1H, carbazole-1-H), 7.63 (d, J = 8.2 Hz, 1H, carbazole-8-H), 7.48 (t, J = 7.7 Hz, 1H, carbazole-7-H),
7.34 (d, J = 8.2 Hz, 1H, carbazole-3-H), 7.23 (t, J = 7.4 Hz, 1H, carbazole-6-H), 5.45 (s, 1H, CHOH), 4.50 (d, J = 12.9 Hz, 1H,
chiral-H), 4.46—4.36 (m, 2H, carbazole-CH,), 4.31-4.29 (m, 2H, triazole-CH,) ppm; BC NMR (151 MHz, DMSO-dg) 6 156.54,
150.10, 146.82, 145.97, 131.36, 126.99, 126.91, 126.84, 126.82, 126.60, 125.54, 124.65, 123.74, 117.89, 115.18, 73.33, 57.94,
52.02 ppm; HRMS (ESI): calcd for Cy;H15sBrN,O [M+Na]*, 393.0327, found, 393.0328.

1.1.4. Synthesis of 1-(3-bromo-9H-carbazol-9-yl)-3-(1H-1,2,4-triazol-1-yl)propan-2-ol (3c)

Compound 3c (0.315 g) was prepared as white solid according to the procedure described for compound 3a starting from
triazole (0.137 g, 1.99 mmol) and intermediate 2c (0.5 g, 1.65 mmol). Yield: 60.9%. mp: 191-192 °C. *H NMR (600 MHz,
DMSO-dg) 6 8.46 (s, 1H, triazole-5-H), 8.39 (d, J = 1.8 Hz, 1H, carbazole-5-H), 8.20 (d, J = 7.8 Hz, 1H, carbazole-8-H), 7.99 (s,
1H, triazole-3-H), 7.63 (d, J = 8.3 Hz, 1H, carbazole-1-H), 7.61 (d, J = 8.7 Hz, 1H, carbazole-2-H), 7.57 (s, 1H, carbazole-4-H),
7.48 (t, J = 7.7 Hz, 1H, carbazole-7-H), 7.22 (t, J = 7.5 Hz, 1H, carbazole-6-H), 5.44 (d, J = 5.4 Hz, 1H, CHOH), 4.49 (dd, J =
14.9, 3.6 Hz, 1H, carbazole-CH,), 4.42-4.36 (m, 2H, carbazole-CHj,, triazole-CH,), 4.32-4.26 (m, 2H, triazole-CH,, chiral-H)
ppm; BC NMR (151 MHz, DMSO-dg) 6 151.75, 145.33, 141.37, 139.86, 128.37, 126.89, 124.56, 123.13, 121.65, 121.15, 119.75,
112.30, 111.43, 110.44, 68.53, 53.25, 47.25 ppm; HRMS (ESI): calcd for C;,H;sBrN,O [M+Na]", 393.0327, found, 393.0326.

1.1.5. Synthesis of 1-(3-iodo-9H-carbazol-9-yl)-3-(1H-1,2,4-triazol-1-yl)propan-2-ol (3d)

Compound 3d (0.384 g) was prepared as yellow solid according to the procedure described for compound 3a starting from
triazole (0.119 g, 1.72 mmol) and intermediate 2d (0.5 g, 1.43 mmol). Yield: 73.6 %. mp: 185-186 °C.'"H NMR (600 MHz,
DMSO-dg) & 8.54 (s, 1H, triazole-5-H), 8.47 (s, 1H, triazole-3-H), 8.19 (d, J = 7.7 Hz, 1H, carbazole-5-H), 8.00 (s, 1H,
carbazole-4-H), 7.71 (d, J = 8.6 Hz, 1H, carbazole-8-H), 7.62 (d, J = 8.3 Hz, 1H, carbazole-1-H), 7.52-7.45 (m, 2H,
carbazole-2,7-H), 7.23 (t, J = 7.4 Hz, 1H, carbazole-6-H), 5.49 (d, J = 5.4 Hz, 1H, CHOH), 4.49-4.46 (m, 1H, carbazole-CH,),
4.40-4.36 (m, 2H, carbazole-CH,, triazole-CH,), 4.29-4.23 (m, 1H, triazole-CH,), 4.02-3.94 (m, 1H, chiral-H) ppm; ¥C NMR
(151 MHz, DMSO-dg) 8 151.77, 145.25, 141.01, 140.27, 133.91, 131.05, 129.00, 126.84, 125.38, 121.46, 121.02, 119.90, 112.80,
110.32, 68.51, 53.26, 47.24 ppm; HRMS (ESI): calcd for C;7H;5IN,O [M+Na]", 441.0188, found, 441.0189.

1.1.6. Synthesis of 1-(3,6-di-tert-butyl-9H-carbazol-9-yl)-3-(1H-1,2,4-triazol-1-yl)propan-2-ol (3e)



Compound 3e (0.313 g) was prepared as yellow solid according to the procedure described for compound 3a starting from
triazole (0.123 g, 1.79 mmol) and intermediate 2e (0.5 g, 1.49 mmol). Yield: 54.7%. mp: 234-235 °C. 'H NMR (600 MHz,
DMSO-dg) & 8.46 (s, 1H, triazole-5-H), 8.17 (s, 2H, carbazole-4,5-H), 7.97 (s, 1H, triazole-3-H), 7.50-7.46 (m, 4H,
carbazle-1,2,7,8-H), 5.44 (d, J = 4.6 Hz, 1H, CHOH), 4.33 (m, 5H, carbazole-CH,, triazole-CH,, chiral-H), 1.41 (s, 18H,
CH(CH,)3) ppm; *C NMR (151 MHz, DMSO-dg) & 151.75, 145.29, 141.64, 139.51, 123.58, 122.66, 116.63, 109.43, 71.79,
68.66, 63.18, 34.86, 32.38 ppm; HRMS (ESI): calcd for C,5H3,N,0 [M+Na]*, 427.2474, found, 427.2475.

1.1.7. Synthesis of 1-(3,6-dichloro-9H-carbazol-9-yl)-3-(1H-1,2,4-triazol-1-yl)propan-2-ol (3f)

Compound 3f (0.204 g) was prepared as white solid according to the procedure described for compound 3a starting from
triazole (0.142 g, 2.05 mmol) and 3,6-dichlorocarbazole intermediate 2f (0.5 g, 1.17 mmol). Yield: 47.4 %. mp: 151152 °C. *H
NMR (600 MHz, DMSO-dg) 6 8.51 (s, 1H, triazole-5-H), 8.30 (s, 1H, triazole-3-H), 8.21 (d, J = 7.7 Hz, 1H, carbazole-5-H), 7.98
(d, J = 4.8 Hz, 1H, carbazole-4-H), 7.69 (d, J = 4.7 Hz, 1H, carbazole-8-H), 7.51 (d, J = 8.5 Hz, 1H, carbazole-1-H), 7.48 (d, J =
7.8 Hz, 1H, carbazole-2-H), 7.20 (d, J = 8.2 Hz, 1H, carbazole-6-H), 5.40 (s, 1H, CHOH), 4.89-4.85 (m, 1H, carbazole-CH,),
4.71-4.59 (m, 1H, carbazole-CH,), 4.42—-4.30 (m, 3H, triazole-CH,, chiral-H) ppm; *C NMR (151 MHz, DMSO-dg) & 151.79,
145.37, 128.68, 127.94, 126.68, 120.22, 112.93, 111.18, 69.96, 53.25, 48.45 ppm; HRMS (ESI): calcd for Cy;H,CI,N,O
[M+Na]", 383.0442, found, 383.0443.

1.1.8. Synthesis of 1-(3,6-dibromo-9H-carbazol-9-yl)-3-(1H-1,2,4-triazol-1-yl)propan-2-ol (3g)

Compound 3g (0.291 g) was prepared as white solid according to the procedure described for compound 3a starting from
triazole (0.109 g, 1.57 mmol) and 3,6-dibromocarbazole intermediate 2g (0.5 g, 1.31 mmol). Yield: 49.3 %. mp: 134-135 °C. 'H
NMR (600 MHz, DMSO-dg) § 8.50 (s, 2H, carbazole-4,5-H), 8.46 (s, 1H, triazole-3-H), 8.00 (d, 2H, J = 2.1 Hz, carbazole2,7-H),
7.79 (s, 1H, triazole-5-H), 7.64 (d, J = 1.5 Hz, 2H, carbazole-1,8-H), 5.42 (d, J = 5.6 Hz, 1H, CHOH), 4.91 (d, J = 14.5 Hz, 1H,
carbazole-CH,), 4.58 (d, J = 11.5 Hz, 1H, carbazole-CH,), 4.39 (dd, J = 17.6, 11.2 Hz, 3H, triazole-CH,, chiral-H) ppm; **C NMR
(151 MHz, DMSO-dg) & 151.66, 145.38, 133.18, 130.06, 123.50, 123.24, 113.67, 112.77, 111.85, 69.77, 52.83, 47.87 ppm;
HRMS (ESI): calcd for C;;H1,Br,N,O [M+Na+2]", 472.9432, found, 472.9433.

1.1.9. Synthesis of 1-(9H-carbazol-9-yl)-3-(1H-imidazol-1-yl)propan-2-ol (4a)

Compound 4a (0.225 g) was prepared as white solid according to the procedure described for compound 3a starting from
imidazole (0.184 g, 2.7 mmol) and compound 2a (0.5 g, 2.2 mmol). Yield: 65.2%. mp: 162—163 °C. "H NMR (600 MHz, CDCI,)
5 8.04 (d, J = 7.7 Hz, 2H, carbazole-4,5-H), 7.43 (t, J = 7.5 Hz, 2H, carbazole-2,7-H), 7.37 (d, J = 8.1 Hz, 2H, carbazole-1,8-H),
7.21 (t, J = 7.3 Hz, 2H, carbazole-3,6-H), 7.11 (s, 1H, imidazole-2-H), 6.71 (d, J = 14.3 Hz, 2H, imidazole-4,5-H), 4.71 (s, 1H,
CHOH), 4.40-4.25 (m, 3H, carbazole-CH,, imidazole-CH,), 3.93-3.80 (m, 2H, imidazole-CH, chiral-H) ppm; *C NMR (151
MHz, CDCls) 6 140.61, 137.29, 128.24, 125.98, 123.09, 120.39, 119.66, 119.47, 108.85, 69.54, 51.50, 47.08 ppm; HRMS (ESI):
calcd for CigH17N5O [M+H]", 292.1450, found, 292.1449.

1.1.10. Synthesis of 1-(9H-carbazol-9-yl)-3-(4-nitro-1H-imidazol-1-yl)propan-2-ol (4b)

Compound 4b (0.285 g) was prepared as yellow solid according to the procedure described for compound 3a starting from
4-nitro-1H-imidazole (0.305 g, 2.7 mmol) and compound 2a (0.5 g, 2.2 mmol). Yield: 48.9%. mp: 231-232 °C. 'H NMR (600
MHz, DMSO-dg) 6: 8.39 (s, 1H, imidazole-5-H), 8.14 (d, J = 7.6 Hz, 2H, carbazole-4,5-H), 7.83 (s, 1H, imidazole-2-H), 7.65 (d, J
= 8.1 Hz, 2H, carbazole-1,8-H), 7.45 (t, J = 7.6 Hz, 2H, carbazole-2,7-H), 7.21 (t, J = 7.4 Hz, 2H, carbazole-3,6-H), 5.50 (s, 1H,
CHOH), 4.46 (dd, J = 14.8, 3.0 Hz, 1H, carbazole-CH,), 4.42—4.32 (m, 2H, imidazole-CH,), 4.30 (s, 1H, chiral-H), 4.15 (dd, J =
13.4, 9.0 Hz, 1H, carbazole-CH,) ppm; *C NMR (151 MHz, DMSO-ds) &: 141.25, 138.36, 126.09, 122.74, 122.46, 120.54,
119.31, 68.97, 52.16, 47.11 ppm; HRMS (ESI): calcd for CygH;6N,O5 [M+Na]", 359.1120, found, 359.1123.

1.1.11. Synthesis of 1-(9H-carbazol-9-yl)-3-(2-methyl-5-nitro-1H-imidazol-1-yl)propan-2-ol (4c)

Compound 4c (0.285 g) was prepared as yellow solid according to the procedure described for compound 3a starting from
2-methyl-5-nitro-1H-imidazole (0.343 g, 2.7 mmol) and compound 2a (0.5 g, 2.2 mmol). Yield: 36.3%. mp: 161-162 °C. *H
NMR (600 MHz, DMSO-ds) & 8.31 (s, 1H, imidazole-4-H), 8.14 (d, J = 7.7 Hz, 2H, carbazole-4,5-H), 7.68 (d, J = 8.2 Hz, 2H,
carbazole-1,8-H), 7.45 (t, J = 7.6 Hz, 2H, carbazole-2,7-H), 7.20 (t, J = 7.4 Hz, 2H, carbazole-3,6-H), 5.46 (d, J = 5.6 Hz, 1H,

3



CHOH), 4.49 (dd, J = 15.0, 3.4 Hz, 1H, carbazole-CHy), 4.40 (dd, J = 14.9, 7.9 Hz, 1H, carbazole-CH,), 4.27 (d, J = 12.3 Hz, 2H,
imidazole-CH,), 4.12—4.07 (m, 1H, chiral-H), 2.35 (s, 3H, imidazole-CH;) ppm; *C NMR (151 MHz, DMSO-dg) & 146.08,
141.22, 126.03, 123.07, 122.71, 120.48, 119.35, 110.37, 69.92, 51.17, 47.12, 13.23 ppm; HRMS (ESI): calcd for CgH:gN,O5
[M+Na]", 373.1277, found, 373.1278.

1.1.12. Synthesis of 1-(9H-carbazol-9-yl)-3-(2-methyl-1H-imidazol-1-yl)propan-2-ol (4d)

Compound 4d (0.170 g) was prepared as white solid according to the procedure described for compound 3a starting from
2-methyl-1H-imidazole (0.221 g, 2.7 mmol) and compound 2a (0.5 g, 2.2 mmol). Yield: 24.7%. mp: 200-201 °C. 'H NMR (600
MHz, DMSO-dg) & 8.14 (d, J = 7.7 Hz, 2H, carbazole-4,5-H), 7.58 (d, J = 8.2 Hz, 2H, carbazole-1,8-H), 7.43 (t, J = 7.6 Hz, 2H,
carbazole-2,7-H), 7.19 (t, J = 7.4 Hz, 2H, carbazole-3,6,-H), 7.10 (s, 1H, imidazole-4-H), 6.75 (s, 1H, imidazole-5-H), 5.40 (s,
1H, CHOH), 4.37 (m, 2H, carbazole-CH,), 4.17 (s, 1H, chiral-H), 4.08 (d, J = 14.1 Hz, 1H, imidazole-CH,), 3.99 (dd, J = 14.1,
8.2 Hz, 1H, imidazole-CH,), 2.23 (s, 3H, imidazole-CH3) ppm; *C NMR (151 MHz, DMSO-dg) & 144.84, 141.08, 126.39,
125.90, 122.55, 120.82, 120.44, 119.24, 110.14, 69.98, 50.03, 47.20, 13.49 ppm; HRMS (ESI): calcd for CygHgN;O [M+H]",
306.1606, found, 306.1608.

1.1.13. Synthesis of 1-(9H-carbazol-9-yl)-3-(2-phenyl-1H-imidazol-1-yl)propan-2-ol (4€)

Compound 4e (0.360 g) was prepared as yellow solid according to the procedure described for compound 3a starting from
2-phenyl-1H-imidazole (0.388 g, 2.7 mmol) and compound 2a (0.5 g, 2.2 mmol). Yield: 43.5%. mp: 187—188 °C. 'H NMR (600
MHz, DMSO-dg) 8 8.17 (d, J = 7.7 Hz, 2H, carbazole-4,5-H), 7.52 (d, J = 8.2 Hz, 2H, carbazole-1,8-H), 7.47 (d, J = 7.9 Hz, 2H,
carbazole-2,7-H), 7.44 (d, J = 7.8 Hz, 2H, carbazole-3,6-H), 7.40 (s, 1H, imidazole-4-H), 7.31 (t, J = 7.3 Hz, 1H, Ph-4-H),
7.24-7.20 (m, 4H, Ph-2,3,5,6-H), 7.04 (s, 1H, imidazole-5-H), 5.70 (d, J = 4.8 Hz, 1H, CHOH), 4.36 (d, J = 4.0 Hz, 2H,
carbazole-CH,), 4.28 (s, 1H, chiral-H), 4.25-4.16 (m, 2H, imidazole-CH,) ppm; BC NMR (151 MHz, DMSO-dg) 6 147.28,
140.52, 131.06, 128.83, 128.69, 128.58, 128.15, 125.92, 123.19, 122.64, 120.44, 119.34, 109.95, 69.73, 50.87, 47.43 ppm; HRMS
(ESI): caled for Cy4H, N3O [M+H]", 368.1763, found, 368.1765.

1.1.14. Synthesis of 1-(3,6-dibromo-9H-carbazol-9-yl)-3-(2-methyl-5-nitro-1H-imidazol-1-yl)propan-2-ol (4f)

Compound 4f (0.225 g) was prepared as yellow solid according to the procedure described for compound 3a starting from
2-methyl-5-nitro-1H-imidazole (0.2 g, 1.57 mmol) and 3,6-dibromocarbazole intermediate 2g (0.5 g, 1.31 mmol). Yield: 38.3%.
mp: >250 °C. 'H NMR (600 MHz, DMSO-dg) & 8.48 (s, 2H, carbazole-4,5-H), 8.31 (s, 1H, imidazole-4-H), 7.71 (d, J = 8.7 Hz,
2H, carbazole-2,7-H), 7.63 (d, J = 10.1 Hz, 2H, carbazole-1,8-H), 5.45 (d, J = 5.7 Hz, 1H, CHOH), 4.51 (d, J = 14.8 Hz, 1H,
carbazole-CH,), 4.40 (dd, J = 14.9, 8.4 Hz, 1H, carbazole-CH,), 4.28 (d, J = 13.8 Hz, 1H, imidazole-CH,), 4.21 (s, 1H, chiral-H),
4.08 (dd, J = 13.9, 9.4 Hz, 1H, imidazole-CH,), 2.51 (s, 3H, imidazole-CH,) ppm; *C NMR (151 MHz, DMSO-dg) & 146.14,
145.79, 140.20, 129.16, 123.69, 123.58, 123.05, 112.77, 111.87, 69.33, 50.82, 47.39, 13.41 ppm; HRMS (ESI): calcd for
C1oH16Br,N,O3 [M+Na+2]", 530.9487, found, 530.9463.

1.1.15. Synthesis of 1-(1H-benzo[d]imidazol-1-yl)-3-(9H-carbazol-9-yl)propan-2-ol (5)

Compound 5 (0.578 g) was prepared as white solid according to the procedure described for compound 3a starting from
benzimidazole (0.318 g, 2.7 mmol) and compound 2a (0.5 g, 2.2 mmol). Yield: 75.5%. mp: 157-158 °C. "H NMR (600 MHz,
DMSO-dg) & 8.20 (s, 1H, benzimidazole-2-H), 8.15 (d, J = 7.7 Hz, 2H, carbazole-4,5-H), 7.65 (d, J = 8.1 Hz, 3H,
carbazole-1,8-H, benzimidazole-7-H), 7.60 (d, J = 7.8 Hz, 1H, benzimidazole-4-H), 7.45 (t, J = 7.6 Hz, 2H, carbazole-2,7-H),
7.24 (t, J = 7.4 Hz, 1H, carbazole-3-H), 7.21 (t, J = 6.8 Hz, 3H, carbazole-6-H, benzimidazole-5,6-H), 5.41 (d, J = 4.8 Hz, 1H,
CHOH), 4.57-4.51 (m, 2H, carbazole-CH,), 4.42 (m, 1H, chiral-H), 4.33 (t, J = 8.8 Hz, 2H, benzimidazole-CH,) ppm; ¥C NMR
(151 MHz, DMSO-dg) & 144.95, 141.26, 134.81, 125.88, 122.68, 122.64, 121.82, 120.56, 119.83, 119.25, 110.91, 110.28, 69.25,
48.97, 47.46 ppm; HRMS (ESI): calcd for C,,H;oN;O [M+H]", 342.1606, found, 342.1605.

1.1.16. Synthesis of 1-(9H-carbazol-9-yl)-3-(5-methyl-1H-tetrazol-1-yl)propan-2-ol (6)
Compound 6 (0.201 g) was prepared as pink solid according to the procedure described for compound 3a starting from
5-methyl-1H-tetrazole (0.227 g, 2.7 mmol) and compound 2a (0.5 g, 2.2 mmol). Yield: 28.8%. mp: 160-161 °C. ‘H NMR (600

4



MHz, DMSO-dg) 6 8.15 (d, J = 7.7 Hz, 2H, carbazole-4,5-H), 7.66 (d, J = 8.2 Hz, 2H, carbazole-1,8-H), 7.46 (t, J = 7.6 Hz, 2H,
carbazole-2,7-H), 7.21 (t, J = 7.4 Hz, 2H, carbazole-3,6-H), 5.50 (d, J = 5.4 Hz, 1H, CHOH), 4.76 (m, 2H, carbazole-CH,), 4.57
(t, J = 9.1 Hz, 1H, chiral-H), 4.49 (dd, J = 13.0, 6.7 Hz, 2H, imidazole-CH,), 2.44 (s, 3H, imidazole-CH,) ppm; *C NMR (151
MHz, DMSO-dg) & 162.46, 140.97, 126.11, 122.70, 120.60, 119.36, 110.15, 68.64, 56.80, 47.04, 10.80 ppm; HRMS (ESI): calcd
for Cy7H1;NsO [M+Na]", 330.1331, found, 330.1334.

2. Biological assay procedures

Minimal inhibitory concentration (MIC, ng/mL) is defined as the lowest concentration of target compounds that completely
inhibited the growth of bacteria and fungi, by means of standard two-fold serial dilution method in 96-well microtest plates
according to the Clinical & Laboratory Standards Institute (CLSI). The tested microorganism strains were provided by the
Clinical Laboratory Department, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital. Norfloxacin and
fluconazole were used as control drugs. DMSO with inoculation bacterial not medicine was used as positive control to ensure that
the solvent had no effect on bacteria growth. All the microbe growth was monitored visually and spectrophotometrically, and the
experiments were performed in triplicate.
2.1. Antibacterial assay

The prepared compounds were evaluated for their antibacterial activities against Gram-positive bacteria (Staphylococcus
aureus, Methicillin-Resistant Staphylococcus aureus, Enterococcus faecalis, Staphylococcus aureus ATCC 25923,
Staphylococcus aureus ATCC 29213) and Gram-negative bacteria (Klebsiella pneumonia, Escherichia coli, Acinetobacter
baumanii, Pseudomonas aeruginosa, Pseudomonas aeruginosa ATCC 27853, Escherichia coli ATCC 25922). The bacterial
suspension was adjusted with sterile saline to a concentration of 1 x 10° CFU. Initially the compounds were dissolved in DMSO
to prepare the stock solutions, then the tested compounds and reference drugs were prepared in Mueller-Hinton broth (Guangdong
huaikai microbial sci. & tech co., Ltd, Guangzhou, Guangdong, China) to obtain the required concentrations of 512, 256, 128, 64,
32, 16, 8, 4, 2, 1, 0.5 pg/mL. These dilutions were inoculated and incubated at 37 °C for 24 h. Antibacterial screening
demonstrated that some of the target compounds could effectively inhibit the growth of the tested bacteria and exhibit broad
antimicrobial spectrum. In general, intermediates 2a—g exhibited weak to moderate activities against the tested bacteria in
comparison with clinical drug, while the final compounds incorporated with azole ring displayed enhanced antibacterial effects on
the whole.
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Figure S1. Antibacterial activities of compound 4c under different pH conditions.
Table S1. Antibacterial data as MIC (ng/mL) for intermediates 2a—g*°

Gram-positive bacteria Gram-negative bacteria
Compds S S P
E. ) ) K. E. A. P ; E. coli
MRSA faecali aureus  aureus . Ii b .. . aeruginosa 25920
aureus aecalis 55953 20213 pneumoniae  coli aumanii  aeruginosa 27853
2a 256 >256 >256 128 128 128 >256 128 256 256 256
2b 128 256 256 64 64 64 256 256 128 256 128
2c 128 128 128 64 64 64 128 128 64 128 64
2d 256 128 256 128 128 128 256 128 256 128 64
2e 256 >256 >256 256 256 256 >256 256 256 256 256
2f 64 256 128 64 64 64 128 256 128 64 64



29 128 256 256 128 128 128 256 256 128 128 128
A 2 8 4 1 8 4 16 8 2 0.5 8

#Minimal inhibitory concentrations were determined by micro broth dilution method for microdilution plates.

bS. aureus, Staphylococcus aureus; MRSA, Methicillin-Resistant Staphylococcus aureus; E. faecalis, Enterococcus faecalis; S. aureus
25923, Staphylococcus aureus ATCC 25923; S. aureus 29213, Staphylococcus aureus ATCC 29213; K. pneumonia, Klebsiella
pneumonia; E. coli, Escherichia coli; A. baumanii, Acinetobacter baumanii; P. aeruginosa, Pseudomonas aeruginosa; P. aeruginosa
27853, Pseudomonas aeruginosa ATCC 27853; E. coli 25922, Escherichia coli ATCC 25922.

¢ A = Norfloxacin.
Table S2. Antibacterial data as MIC (pg/mL) for compounds 3—6

Gram-positive bacteria Gram-negative bacteria

Compds g E. > > K. E. A. P. > =

MRSA areus aureus aeruginosa  coli
aureus faecalis pneumoniae coli baumanii aeruginosa
25923 29213 27853 25922

3a 256 256 64 64 64 256 256 128 256 128 256
3b 128 128 32 32 32 128 128 64 128 64 128
3c 64 128 32 32 16 128 128 64 128 32 64
3d 128 256 32 64 64 256 256 128 256 64 128
3e 256 256 128 128 128 256 256 256 256 128 256

3f 64 32 2 16 4 64 64 128 64 16 8

3g 64 64 8 32 8 128 64 64 64 16 8
4a 128 256 256 128 128 256 256 64 128 32 128

4b 128 128 32 32 64 128 128 32 64 64 8
4c 128 256 64 64 32 128 128 64 128 32 32
4d 256 256 64 64 8 256 64 128 256 64 128
4e 256 256 128 256 256 256 128 256 256 256 256
4f 64 128 32 64 32 128 64 64 128 4 16
5 256 256 128 128 128 256 128 256 256 256 128
6 256 256 256 64 64 256 256 128 256 256 256

A 2 8 4 1 8 4 16 8 2 0.5 8

2.2. Antifungal assay

The newly synthesized compounds were evaluated for their antifungal activities against Candida albicans, Candida tropicals,
Aspergillus fumigatus, Candida albicans ATCC 90023, Candida parapsilosis ATCC 22019. A spore suspension in sterile
distilled water was prepared from one day old culture of the fungi growing on Sabouraud agar (SA) media. The final spore
concentration was 1-5 x 10% spore mL™. From the stock solutions of the tested compounds and reference antifungal drug
fluconazole, dilutions in sterile RPMI 1640 medium (Neuronbc Laboraton Technology CO, Ltd, Beijing, China) were made
resulting in eleven wanted concentrations (0.5 to 512 pg/mL) of each tested compound. These dilutions were inoculated and

incubated at 37 °C for 24 hours.
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Figure S2. Antifugal activities of compound 4c under different pH conditions.



Table S3. Antifungal data as MIC (pg/mL) for intermediates 2a—g"

Fungi

SIS Caieans cmpicds A e
2a >256 >256 256 256 256
2b 256 256 256 128 128
2¢ 128 128 128 64 64
2d >256 >256 256 128 128
2e >256 256 256 256 256
2f 128 64 128 64 64
2g 256 128 128 128 64

Fluconazole 4 8 256 2 4

d C. albicans, Candida albicans; C. tropical, Candida tropical; A. fumigatus, Aspergillus fumigatus; C. albicans ATCC 90023,
Candida albicans ATCC 90023; C. parapsilosis ATCC 22019, Candida parapsilosis ATCC 22019.

The antifungal data in Table S3 displayed that most of the target isopropanol-conjugated carbazole azoles revealed a similar
tendency to their antibacterial activities. Triazolyl ethanols 3a—g also behaved more active than imidazolyl ethanols 4a—f in
inhibiting the growth of tested fungi, revealing that triazole was positive to antifungal activities. It was noticeable that compound
3f had comparable anti-C. parapsilosis ATCC 22019 (MIC = 4 pg/ 185 mL) and superior anti-A. fumigatus (MIC = 32 pg/mL)
abilities to clinical fluconazole. It was surprising that nitroimidazole derivative 4f could inhibit the growth of A. fumigatus at a
low concentration of 16 ug/mL, and was 16 times superior to fluconazole, which suggested that compound 4f might be further
investigated as a promising candidate for the administration of A. flavus infection.

Table S4. Antifungal data as MIC (pg/mL) for compounds 3—-6

Fungi
Compds A
C. albicans C. tropicals

. C. albicans  C. parapsilosis
Sfumigatus  ATCC 90023  ATCC 22019

3a 256 128 256 128 128
3b 128 64 128 64 32
3¢ 64 64 128 32 8
3d 128 128 256 64 64
3e 256 256 >256 256 256
3f 64 32 32 16 4
3g 64 64 64 32 8
4a 256 128 >256 256 128
4b 128 64 128 32 16
4c 128 64 128 64 64
4d 256 256 256 128 128
4e >256 >256 >256 256 256
4f 64 128 16 64 16
5 >256 >256 >256 >256 256
6 128 256 128 128 128
Fluconazole 4 8 256 2 4

4. Resistance study

E. faecalis was employed to develop antimicrobial resistance with compound 3f. The E. faecalis strain was exposed to the
increasing concentrations of compound 3f from MIC for the sustained passages, and the new MIC values were determined every
24h after the propagation of E. faecalis. The initial MIC values of compound 3f and antibiotic norfloxacin against E. faecalis were
obtained as described above. Serial passage and MICs determination were performed in 96 well microtiter plate containing
compounds, each over a range of doubling dilution concentrations. After the incubation period 18 h, the entire content of the
triplicate wells with a concentration of compounds permitting visible growth was then used to prepare the bacterial dilution
(approximately 2 x 10° CFU/mL) for the successive exposure. The experiment was repeated for 16 days. As a positive control,
parallel cultures were exposed to two fold dilutions of the standard antibiotic norfloxacin.

5. Time kill kinetics



The rate of bactericidal activity was evaluated by performing time-kill kinetics. Briefly, E. faecalis bacterium was grown in
suitable growth medium at 37 °C for 6 h and diluted in respective media. Compound 3f was added to the bacterial solution (E.
faecalis of approximately 1.8 x 10° CFU/mL) at concentrations of 4 x MIC in a 96-well plate. The plate was then incubated at 37
°C. At different time intervals (0, 1, 2, 3, 4, 5, 6 and 7 h), 20 mL of aliquots from the solution were taken out and serially diluted
(10-fold serial dilution) in 0.9% saline. Then 20 mL of the dilutions was plated on respective agar plates and incubated at 37 °C
for 24 h. The bacterial colonies were counted, and results are represented in logarithmic scale: log;q (CFU/mL) vs time (h).
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Figure S3. Time—kill kinetic of compound 3f (4 x MIC) against E. faecalis.

6. Bacterial membrane disruption

The culture (mid log phase) of E. faecalis and E. coli ATCC 25922 was harvested (3500 rpm, 5 min), washed, and resuspended
in 5 mM glucose and 5 mM HEPES buffer (pH 7.2) in 1:1 ratio after growth for 6 h. Then an amount of 10 mL of test compound
3f (12 x MIC) was added to a cuvette containing 2 mL of bacterial suspension and 10 mM propidium iodide (PI). Fluorescence
was monitored at excitation wavelength of 535 nm (slit width of 10 nm) and emission wavelength of 617 nm (slit width of 5 nm).
As a measure of inner membrane permeabilization, the uptake of Pl was monitored by the increase in fluorescence for 10 min. A
control experiment was performed by treating the preincubated bacterial and dye solution only with water (10 mL).
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Figure S4. Membrane dysfunction ability of compound 3f at concentration of 12 x MIC against: (A) E. faecalis; (B) E. coli ATCC
25922.

7. Cytotoxicity evaluation

RAW264.7 cells (Kunming wildlife cell bank of the Chinese academy of sciences, Kunming, China) were grown in H-DMEM
medium supplemented with 10% (v/v) fetal bovine serum, 1% (v/v) penicillin/streptomycin solution and incubated at 37 °C in a
humidified atmosphere containing 5% CO,. The medium was changed every 2 days. For the cell viability assay, cells were seeded
in fresh culture medium at a density of 3.5 x 104 cells/mL. Cell viability was measured using MTT assay. RAW264.7 cells (3.5 x
104 cells/mL) were seeded into 96-well flat bottom plates and incubated overnight prior to the experiment. By use of a Falcon
96-well, flat-bottom plate, 100 pL of the cell suspension was added to each of the wells and the cells were incubated for 24 h.
Cells were cultured for 24 h in these solutions. The cell viability was examined by a microplate reader. Compound 3f was
dissolved in DMSO to prepare the stock solutions, and then the tested compound was prepared in medium to obtain the required
concentrations of 8, 16, 32, 64, 128, 256 and 512 pg/mL, one containing no compound (non-treated cells) was applied as the
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control. After incubation with compound 3f for 24 h, 10 pL of a 5 mg/mL solution of MTT in PBS was added to each well and
further incubated for an additional 4 h. The supernatant was removed, and 150 L DMSO was added to each well. Following
oscillation for 10 min, absorbance values were measured at 490 nm by microplate reader (Tecan, Salzburg, Switzerland).

8. Interactions with DNA
8.1 DNA isolation and general procedures

The isolation of DNA from E. faecalis bacterium needs a four-step process:

(1) An overnight culture (1 mL) was added to a microcentrifuge tube (1.5 mL), and then centrifuged at 13,000-16,000 x g for 2
min to pellet the cells. The supernatant was removed and the cells were resuspended thoroughly in EDTA (480 pL, 50 mM). The
lytic enzyme (120 pL) was added appropriately to the resuspended cell pellet, and mixed gently. Nuclei Lysis solution (600 pL)
was added to the sample and it was gently pipeted until the cells are resuspended. RNase solution (3 pL) was added to the cell
lysate, the tube was inverted to mix for 2-5 times. After the sample was incubated at 37 °C for 15-60 min, then it was cooled to
room temperature. (2) Protein precipitation solution (200 uL) was added to the RNase-treated cell lysate, and vortex vigorously at
high speed for 20 s to mix the protein precipitation solution with the cell lysate. (3) The supernatant containing the DNA was
transfered to a clean microcentrifuge tube (1.5 mL) containing room temperature isopropanol (600 pL). The supernatant was
carefully poured off and the tube was drained on a clean absorbent paper. The room temperature ethanol (70%, 600 puL) was
added to the tube and it was gently inverted several times to wash the DNA pellet. (4) DNA rehydration solution (100 pL) was
added to the tube and the DNA was rehydrated by incubating at 65 °C for 1 h. The solution was mixed periodically by gently
tapping the tube. Alternatively, the DNA was rehydrated by incubating the solution overnight at room temperature or at 4 °C. The
obtained DNA was stored at 2-8 °C.

UV spectra were recorded at room temperature on a TU-2450 spectrophotometer (Puxi Analytic Instrument Ltd. of Beijing,
China) equipped with 1.0 cm quartz cells. NR was obtained from Sigma-Aldrich (Sigma Chemical Co., St. Louis, MO). Tris, HCI
were analytical purity. Fluorescence spectra were recorded on F-7000 Spectrofluorimeter (Hitachi, Tokyo, Japan) equipped with
1.0 cm quartz cells, the widths of both the excitation and emission slit were set as 5 nm, and the excitation wavelength was 288
nm. Fluorescence spectra were recorded at 290 K in the range of 200—800 nm. Sample masses were weighed on a microbalance
with a resolution of 0.1 mg. All other chemicals and solvents were commercially available, and used without further purification.
E. faecalis DNA was used without further purification, and its stock solution was prepared by dissolving an appropriate amount of
DNA in doubly distilled water. The solution was allowed to stand overnight and store at 4 °C in the dark for about a week. The
concentration of DNA in stock solution was determined by UV absorption at 260 nm using a molar absorption coefficient & =
6600 L mol™ cm™ (expressed as molarity of phosphate groups) by Bouguer-Lambert-Beer law. The purity of DNA was checked
by monitoring the ratio of the absorbance at 260 nm to that at 280 nm. The solution gave a ratio of > 1.8 at A,g/Asg0, Which
indicated that DNA was sufficiently free from protein. NR stock solution was prepared by dissolving its solid in doubly distilled
water and was kept in a cool and dark place. All the solutions were adjusted with Tris-HCI buffer solution (pH = 7.4), which was
prepared by mixing and diluting Tris solution with HCI solution.

8.2 Absorption spectra

Hypochromism and hyperchromism have been acknowledged to be important spectral characteristics to distinguish the change
of DNA double-helical structure in absorption spectroscopy. With a fixed concentration of DNA, UV-vis absorption spectra were
recorded with the increasing amount of compound 3f. The maximum absorption peak of DNA at 260 nm in Figure S5 showed a
proportional increase accompanied by slightly red shift with the increasing concentration of compound 3f. Meanwhile, the
measured value of 3f—-DNA complex was lower than the sum of free DNA and free compound 3f, suggesting a hypochromic
effect between 3f and DNA and further demonstrating a close proximity of the aromatic chromophore to the DNA bases (inset of
Figure S5), where the intercalation of the aromatic chromophore of compound 3f into the helix and the strong overlap of n-n*
states in the large m-conjugated system with the electronic states of DNA bases could be observed as a result of noncovalent
interactions. The hypochromism and slightly red shift preliminarily confirmed an intercalative action mode between DNA and
compound 3f.
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Figure S5. UV absorption spectra of various concentrations of compound 3f. c(compound 3f)/(10~° mol-L™), a—h: from 0 to 0.99 at

increment of 0.165.
On the basis of the variations in the absorption spectra of DNA upon binding to 3f, equation 1 can be utilized to calculate the

intrinsic binding constant (K)".

A’ Ec Sc 1

= + x

A-A éo-c _ac aD-c _éc K[Q] 1)

A% and A represent the absorbance of DNA in the absence and presence of compound 3f at 260 nm, & and &-c are the
absorption coefficients of compound 3f and 3f-DNA complex respectively. The plot of A%(A-A°) versus 1/[compound 3f] is
constructed by using the absorption titration data and linear fitting (Figure S6), yielding the binding constant, K = 3.17 x 10
L/mol, R =0.9987, SD =0.2152 (R is the correlation coefficient, and SD is standard deviation).
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Figure S6. The plot of A%(A-A) versus 1/[compound 3f].

Further exploration of action mode between carbazole based triazolyl ethanol 3f and DNA was carried out by employing low
toxic, highly stable and convenient neutral red (NR) as a spectral probe, which has been evidenced to bind with DNA in an
intercalative binding type?. The absorption spectra of the NR dye upon the addition of DNA (Figure S7) demonstrated that the
absorption peak of the NR at around 460 nm presented gradual decrease along with the increasing concentration of DNA, and a
new band appeared around 530 nm, which suggested the formation of the new DNA—-NR complex. This was further evidenced by
the isosbestic point at 504 nm. The absorption spectrum (Figure S8) showed a competitive binding between between NR and 3f
with DNA. With the increasing concentration of 3f, the maximum absorption around 530 nm decreased presented a reverse
process in comparison with the absorption of free NR in the presence of the increasing concentrations of DNA. This suggested
that compound 3f could intercalate into the double helix of DNA by emulatively substituting NR in NR-DNA complex, which
further block DNA replication and thus exert the antimicrobial activities. Moreover, the increase of absorbance around 276 nm

further proved the intercalation of compound 3f into DNA.
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Figure S7. UV absorption spectra of NR in the presence of DNA at pH 7.4 and room temperature. c(NR) = 2 x 107> mol/L, and c(DNA)
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Figure S8. UV absorption spectra of the competitive reaction between 3f and neutral red with DNA. ¢(DNA) = 4.0 x 10~° mol/L, ¢(NR)
=2 x 10° mol/L, and c(compound 3f) = 0-0.99 x 10™° mol/L for curves a—g respectively at an increment of 0.165 x 107> mol/L. Inset:
absorption spectra of the system with the increasing concentration of 3f in the wavelength range of 400-600 nm absorption spectra of

competitive reaction between compound 3f and NR with DNA.

8.3 lodide quenching experiments

Steady-state emission quenching experiments is thought to be capable of further confirming about the binding of compound 3f
with DNA. If a molecule is protected from being quenched by anionic quencher with the existence of anionic quencher, the
binding of the small molecule with DNA belongs to an intercalative mode. Moreover, the Stern-Volmer plots get changed with
the addition of DNA, which is attributed to the repulsions between the negative charged quencher and the DNA polyanion
backbone. This hinders the access of the I ion to the DNA bound complexes. A larger slope for the Stern-Volmer curve means
poorer protection and lower binding®*. In this work, negatively charged I~ ion was selected as quencher to give fluorescence
quenching curves Figure S9 & S10 of compound 3f in the absence and presence of DNA. It can be indicated that the addition of
Kl led to extensive quenching of the fluorescence intensity.

The quenching constant can be deduced from Stern-Volmer equation (2)°:

% =1+Ky [Q] 2

Where F, and F represent the fluorescence intensity of compound 3f/3f-DNA system in the absence and presence of the
quencher KI, respectively. Ksy (L-mol™) is the Stern-Volmer quenching constant, and [Q] is the concentration of KI. The
Stern-Volmer equation was applied to determine K, by linear regression of a plot of F/F versus [Q] (inset of Figures S9 & S10).
The observed quenching constant Kg,, of 9.3 L/mol in the presence of DNA was higher than that of 14.4 L/mol without DNA. The
fluorescence quenching of compound 3f was reduced when compound 3f was bound to the DNA helix, which reconfirmed that
compound 3f could act as an intercalator of DNA to disturb its biological function.
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Figure S9. Fluorescence spectra of compound 3f with increasing concentration of KI. c(compound 3f) = 1.0 x 10° mol/L; ¢(KI) = 0-12
x 107° mol/L for curves a—g at an increment of 2 x 107 mol/L; T = 298 K, Aex = 295 nm. Inset: Stern-Volmer plot of the fluorescence
titration data of compound 3f.
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Figure S10. Fluorescence spectra of compound 3f and DNA system with increasing concentration of KI. c(compound 3f) = 1.0 x 107°
mol/L; ¢(DNA) = 4 x 107> mol/L; ¢(KI) = 0-12 x 10~ mol/L for curves a—g at an increment of 2 x 1073 mol/L; T = 298 K, Aex = 295 nm.
Inset: Stern-Volmer plot of the fluorescence titration data of compound 3f and DNA system.

9. Molecular docking

Figure S11. Molecular modeling of compound 3f and DNA gyrase: (A) and (B) S-enantiomer; (C) and (D) R-enantiomer
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10. Some spectra of target compounds
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Figure S12. *H NMR spectrum of compound 3a
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Figure S$18. *H NMR spectrum of compound 3c
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ZCH-1321 6 (0.111) AM (Cen,4, 80.00, Ht,5000.0,0.00,1.00): Sm (SG, 2x3.00); Cm (1:14)
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Figure S20. HRMS spectrum of compound 3c
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Figure S21. *H NMR spectrum of compound 3d
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Figure $22. **C NMR spectrum of compound 3d

ZCH-1322 5 (0.093) AM (Cen,4, 80.00, Ht,5000.0,0.00,1.00): Sm (SG, 2x3.00); Cm (1:26)
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Figure S23. HRMS spectrum of compound 3d
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Figure S24. 'H NMR spectrum of compound 3e
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ZCH-1323 1 (0.019) AM (Cen,4, 80.00, Ht,5000.0,0.00,1.00); Sm (SG, 2x3.00); Cm (1:13)
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Figure S26. HRMS spectrum of compound 3e
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Figure S27. *H NMR spectrum of compound 3f
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Figure $28. *C NMR spectrum of compound 3f
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Figure $29. 'H NMR spectrum of compound 3g
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Figure S31. *H NMR spectrum of compound 4a
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Figure $32. *C NMR spectrum of compound 4a
ZCH-1016 3 (0.052) AM (Cen,4, 80.00, Ht,5000.0,0.00,1.00); Sm (Mn, 2x3.00); Cm (1:17)
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Figure S33. HRMS spectrum of compound 4a
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Figure S34. *H NMR spectrum of compound 4b
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Figure S$35. *C NMR spectrum of compound 4b
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ZCH-1046 7 (0.120) AM (Med,4, Ht,5000.0,0.00,1.00); Sm (Mn, 2x3.00); Cm (1:13)
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Figure S36. HRMS spectrum of compound 4b
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Figure S37. *H NMR spectrum of compound 4d
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Figure $38. *C NMR spectrum of compound 4d

ZCH-1049 5 (0.086) AM (Med, 4, Ht,5000.0,0.00,1.00); Sm (Mn, 2x3.00); Cm (1:13)
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Figure S39. HRMS spectrum of compound 4d
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Figure S40. *H NMR spectrum of compound 4f
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Figure S42. *C NMR spectrum of compound 4f
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ZCH-1127 15 (0.258) AM (Med,4, Ht,5000.0,0.00,1.00); Sm (Mn, 2x3.00); Cm (1:17)
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Figure S45. HRMS spectrum of compound 5
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Figure S47. **C NMR spectrum of compound 6
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ZCH-1217 7 (0.130) AM (Med, 4, Ht,5000.0,0.00,1.00); Sm (Mn, 2x3.00); Cm (1:13)
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Figure S48. HRMS spectrum of compound 6
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