Systems analysis of the Glycoside Hydrolase family 18 enzymes from Cellvibrio japonicus characterizes essential chitin degradation functions Estela C. Monge^a, Tina R. Tuveng^b, Gustav Vaaje-Kolstad^b, Vincent G. H. Eijsink^b, and Jeffrey G. Gardner^{a#} **Running Title** Chitin degradation in C. japonicus Keywords: *Cellvibrio japonicus*, chitin, chitinase, enzyme, gene knockout, glycosyl hydrolase, polysaccharide **Author Affiliations** ^a Department of Biological Sciences, University of Maryland - Baltimore County, Baltimore, Maryland, USA ^b Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), Aas, Norway [#]Correspondence Jeffrey G. Gardner **Department of Biological Sciences** University of Maryland - Baltimore County Email: jgardner@umbc.edu Phone: 410-455-3613 Fax: 410-455-3875

49 Figure S1. Growth of C. japonicus mutants on Glc and GlcNAc. Growth analysis was 50 conducted on MOPS minimal medium supplemented with glucose (Glc; 0.20%) (A&B) or N-51 acetylglucosamine (GlcNAc; 0.50%) (C&D) as the sole source of carbon. While all belonging 52 to the same experiment, the glucose experimental data is shown as two panels: single (A) 53 and multiple (B) deletion mutants. The same applies to the GlcNAc experiments (panels C 54 and **D**, respectively). All experiments were performed in biological triplicates; error bars 55 represent standard deviations, but are not visible in many cases due to errors being <10%. 56 These growth experiments were performed simultaneously, but are separated into multiple 57 panels for clarity. As a consequence, the same control strain (wild type) is repeated in each 58 set of panels (A&B and C&D).

61 62 Figure S2. Growth of C. japonicus mutants on β-chitin. Growth analysis of family GH18 63 deletion mutants of C. japonicus was performed in MOPS minimal medium supplemented 64 with 0.2% β-chitin as the sole source of carbon. All experiments were performed in biological 65 triplicates; error bars represent standard deviations. The experimental data is shown as two 66 panels: (A) single and (B) double deletion mutants, although they all belong to the same 67 experiment. As a consequence, the same control strains (wild type and Δqsp) are repeated in 68 each panel.

71 72

Figure S3. Product profile after degradation of a-chitin. Chromatograms of samples 73 taken after 6h and 48h reaction time are shown, representing the product profile early and 74 late in the degradation process. GlcNAc and/or (GlcNAc)₂ are the main products for all enzymes. Reactions were done at 30 °C in 20 mM BisTris pH 6.5, 0.1 mg/mL BSA at 30 °C. 75 76 The enzyme concentration was 0.5 µM.

Figure S4. Product profile after degradation of (GlcNAc)₆. Chromatograms showing the product profile obtained 60 minutes after mixing chitinases with substrate. Degree of polymerization (DP1-6) represent (GlcNAc)₁₋₆. A chromatogram for a reaction without enzyme is also shown (grey line). These experiments were done with the catalytic domains of the chitinases. The reactions contained 2 mM (GlcNAc)₆, 10 mM BisTris pH 6.5, 0.1 mg/mL BSA and 50 nM enzyme, and were done in triplicates. Data for samples taken after 2 min of reaction appear in **Fig. 7** of the main manuscript.

Figure S5. Differential gene expression in *C. japonicus.* (A) Comparison of early stationary phase (Sta) transcriptomes during growth on glucose (Glc) or α -chitin (B) Comparison of Sta and exponential phase (Exp) transcriptomes during growth on α -chitin. These volcano plots show the log₂(fold change) plotted against the $-\log_{10}(p$ -value) of all expressed genes in *C. japonicus* and each gray circle represents the expression of a gene. The dashed lines indicate significance cut-off values: $-\log_{10}(p$ -value)> 2 and $\log_2(fold change)> 1$.

97

101 Figure S6. Structural comparison of models of the C. japonicus chitinases with crystal 102 structures of S. marcescens chitinases. Aromatic residues in the substrate-binding cleft 103 and on the surface of CBMs are shown in orange. The catalytic Glu, which sometimes is 104 almost hidden, is shown in blue, while the α + β domain discussed in the text, and lacking in 105 some of the enzymes, is colored pink. (A) Structures of the S. marcescens chitinases and 106 key enzyme features. The structures SmChiA of SmChiB show complete two-domain 107 proteins containing an FnIII and a CBM5 domain, respectively, which is shown in dark grey. 108 SmChiC has an FnIII and a CBM5/12 domain located at the C-terminal end of the catalytic 109 domain that is lacking from the structure. The structure of SmChiD has not been determined. 110 however, the structure of a homologue from S. proteamaculans with 86% sequence identity 111 (1,2) is available and is used here for illustration purposes. An extra loop occluding the active 112 site in SpChiD is shown in yellow. (B) Structural models of the catalytic domains of the four 113 C. japonicus GH18 chitinases. The models of the catalytic domains of the C. japonicus

- 114 115 116 chitinases were built using PyMod 2.0 (1). The positions of lacking domains and, when visible, the N- and/or C-terminus of the protein are indicated.

Monge, et al. Supporting Information

a (a) (b	505	-AATGSYEAGGTAYAKCGNEWWSFDTPQTLTGKMDYVNQQNLGGTFFWELSGPTAN
CjChiB CjChiC	523 496	GVN
SmChiC CiChiA	285	
SmChiA SmChiB	467 318	-PVKGTWENGIVDYRQIAGQF-MSGEWQYTYDATAEAPYVFKPSTGDLITFDDARSVQAKGKYVLDKQLGGLFSMEIDADNGD YPSTDYWLVGCEECVRDK-DPRIASYRQLEQMLQGNYGYQRLWNDKTKTPYLYHAQNGLFVTYDDAESFKYKAKYIKQQQLG <mark>G</mark> VMF <mark>W</mark> HLGQDNRN
CjChiD	439	KTGPTAPHSALYEYSGIPIAGGSATGGYQSDNAVQLLKSKGIPANKILLGVGFYGRGWNGVTQLAPGGSATG
CiChiC	431	<pre>er = vgryarie bbs/vbsb-=gwse isaig-ibiliti bwijens rakerini by i i rgwedvoggtngewersetswijens vgryarie </pre>
CjChiA	279	-PH-TGHHTALFSTDQQKDSTDNAVRFLERNRVPPQKIVIGAFYARVWQAVEPTNNGLYQACHVD
SmChiC	214	GIWVDELNAWITQNNDAMKED-FLYYLTESLVTGTRGYA-KIPAAKFVICLPSNNDAAATGYVVNKQAVYNAF
<i>Sm</i> ChiA <i>Sm</i> ChiB	398 222	LKN-LGHQTALNAPAWKPDT
CjChiD	362	DIR YPNECGLVCDTSGFASYKTLMQALRARFGSSNLVTSAIGAGAAK INAADYAGAAQYV FYMPMT DFFGA
CjChiC CjChiC	335	IDIELA ISMENAAMSTAUMSI AMARKAKLINGGI VALMATI KEKALDAAS VQUGKHILLIVAAFSSGI L-LKGMMMIQVIQII DIVAIMSI DUHGAMN IILLISGACV-HEGAVIOMMYSAIK-OLHAM-FPDLYVSMAPEHPYVOGGYVAYTGIWGAVI.PMI DOI.NNERI-DI.HVOI.NNERI
CjChiA CiChiB	198	IDW YPTYPGYPCHAYGPODKPNFTALIQALRATGCHYELSFAAGGPDSYLEQAYDWEVIMPLLDSVNLMSYDWNGGT
SmChiC	137	IIII QAAIGAANNKTVLPAALKKVKDHYAAQ-GKNFIISMAPEFPYLRTNGTYLDYINALEGYYDFIAPQYYNQGGD-
SmChiB	140	DIDWYYPQAAEVDYSKLAQIVAPLDYINLMTYDLAGP
SmChiA	311	*
CJUNID	281	AIIAADSVDGVADIWDQPLKGSFNQLKKLKQMYPGLKVIW BPGGM IWSGGFQQASQNATAFANSCYNLVEDPRWADVF DA I
CjChiC	270	RL
CjChiB	247	wPDVPGAEMDPSLSYKGHFNLLTKFKKQYPQVKTMI <mark>S</mark> V <mark>GGW</mark> AETGGYFDGNGERVASGGFYTLTDSQANIDTFADSVVAFLRTY-HF DG A
CjChiA	130	GSAENRQAFADSTLALLKQY-SG <mark>DG</mark> GGCETCSAVFGSAENRQAFADSTLALLKQY-SG <mark>DG</mark>
SmChiC	76	KK-G-EXLKDEIRQVGVLN-SQGRAVLISLGGADAHIELKTGD-EDKLKDEIRLVEVY-GFDG
SmChiB	64	Construction of the second
SmChill	210	
CjChiD	222	ARNYHVKNIHTSGSAAKLTHILYA <mark>R</mark> GNVQNGQCVIGDAYADYER
<i>Cj</i> ChiC	212	GNARVPGDAASLPKHALVGYWHN <mark>F</mark> DNGSGLLRVADVDPAWDVIVIAFVDDAGNGNVEF
CjChiB	151	GNEACRPDGLYRTPGQDVPYCSVYDSEGREKMAIDRRIIGYFPSWRLGANGTPRYLANNIPWGKITHINYAFAHIENNKISVGDVTSPSNPSTGLT
CiChiA	87	
SmChiC	1	
CmChiD	159	

Figure S7. Sequence alignment. The catalytic domains of four *C. japonicus* chitinases are aligned with the catalytic domains of three well-characterized chitinases from *S. marcescens*. Fully conserved residues are shown with green background, and a blue star indicates the catalytic Glu acting as the catalytic acid/base. Trp residues in *Sm*ChiA and *Sm*ChiB known to be important for processivity (3-5) are shown with a red background, and aligned Trp residues in *C. japonicus* chitinases are shown on orange background.

125 Table S1A. Growth of *C. japonicus* strains grown in MOPS defined media

126 supplemented with α -chitin^a

127

-

Strain	Growth Rate (gen h ⁻¹)	Lag time (h)	Max OD ₆₀₀
Wild Type ^b	0.051 ± 0.009	17.5	1.14 ± 0.14
∆ <i>gsp</i>	Not determined	Not determined	0.02 ± 0.001
Δchi18A ^c	0.059 ± 0.016	17.5	1.20 ± 0.21
Δchi18B ^d	0.050 ± 0.012	41	0.84 ± 0.09
Δchi18C ^d	0.058 ± 0.009	49	1.08 ± 0.16
Δchi18D	Not determined	Not determined	0.002 + 0.001
Δchi18A Δchi18B ^c	0.046 ± 0.008	17.5	0.88 ± 0.05
Δchi18A Δchi18C ^e	0.047 ± 0.002	41	1.41 ±0.43
Δchi18B Δchi18C ^f Δchi18A Δchi18B Δchi18C ^g	$\begin{array}{l} 0.032 \pm 0.007 \\ 0.022 \ \pm 0.004 \end{array}$	41 41	0.50 ± 0.06 0.51 ± 0.001

128 129

^a Experiments were performed in biological triplicates; the Table shows average values and standard deviations

^b Time points used to calculate growth rate were $T_i=24$ and $T_f=66$

^c Time points used to calculate growth rate were T_i =41 and T_f =66

^d Time points used to calculate growth rate were T_i =41 and T_f =72

^e Time points used to calculate growth rate were T_i =41 and T_f =96

^f Time points used to calculate growth rate were T_i =41 and T_f =137

^g Time points used to calculate growth rate were T_i =96 and T_f =120

130	Table S1B. Growth of	C. japonicus strains grow	n in MOPS defined media
		0	

supplemented with crab shell^a 131

132

Strain	Growth Rate (gen h ⁻¹)	Lag time (h)	Max OD ₆₀₀
Wild Type ^b	0.011 ± 0.001	25	0.707 ± 0.011
∆gsp	Not determined	Not determined	0.011 ± 0.004
$\Delta chi18A^{c}$	0.009 ± 0.0009	25	0.480 ± 0.104
$\Delta chi18B^{d}$	0.0134 ± 0.004	25	0.514 ± 0.051
∆chi18C ^d	0.011 ± 0.002	25	0.612 ± 0.072
∆chi18D	Not determined	Not determined	0.014 ± 0.008
Δ chi18A Δ chi18B ^b	0.012 ± 0.002	25	0.539 ± 0.153
∆chi18A ∆chi18C [♭]	0.023 ± 0.018	25	0.732 ± 0.182
$\Delta chi18B \Delta chi18C^{\flat}$	0.013 ± 0.011	25	0.342 ± 0.101
Δchi18A Δchi18B Δchi18C ^d	0.025 ± 0.008	25	0.485 ± 0.236

133

^a Experiments were performed in biological triplicates; the Table shows average values and standard deviations ^b Time points used to calculate growth rate were T_i =53 and T_f =125 ^c Time points used to calculate growth rate were T_i =53 and T_f =148 ^d Time points used to calculate growth rate were T_i =53 and T_f =103

Table S2. Quantification of the zone of clearance generated by various *C. japonicus* strains grown on colloidal chitin plates^a 134

135

136

Strain	Zone of Clearing (cm ²)
Wild Type	1.77 ± 0.08
Δ <i>gsp</i>	None detectable
∆chi18A	1.93 ± 0.14
∆chi18B	1.61 ± 0.13
∆chi18C	1.54 ± 0.22
Δchi18D	None detectable
Δchi18A Δchi18B	1.54 ± 0.01
Δchi18A Δchi18C	1.47 ± 0.12
Δchi18B Δchi18C	0.89 ± 0.10
Δchi18A Δchi18B Δchi18C	0.92 ± 0.10

137

^a Experiments were performed in biological triplicates, and the table shows average values and standard deviations

138 Table S3A. Up-regulated putative CAZyme-encoding genes during exponential

139 growth on α -chitin compared to glucose^a

140

Substrate	CAZy	Fold	p-	Putative activity	Locus
	name ^b	change ^c	value ^d	-	ID ^e
Chitin	lpmo10A	6.7	5.6	Lytic polyssaccharide	CJA_2191
				mono-oxygenase	_
Chitin	chi18D	6.7	6.3	Chitinase	CJA_2611
Chitin	chi18C	5.1	4.6	Chitinase	CJA_2993
Chitin	hex20B	4.1	4.6	Hexosaminidase	CJA_0287
Chitin	chi18A	4.0	3.4	Chitinase	CJA_1182
Chitin	chi18B	3.6	2.5	Chitinase	CJA_0988
Chitin	nag9A	3.5	3.4	Deacetylase	CJA_1163
Arabinan	abf43L	3.4	6.0	α-Arabinofuranidase	CJA_0806
Starch	amy13A	3.3	2.5	α-Amylase	CJA_2618
Arabinan	abf43M	3.0	3.2	α-Arabinofuranidase	CJA_0819
Transglycosylase	lmt23D	2.9	5.2	Transglycosylase	CJA_2884
Pectin	bgl2C	2.9	4.5	β-Galactosidase	CJA_2610
Arabinan	gly43D	2.8	2.1	α-Arabinofuranidase	CJA_0818
Arabinan	gly43C	2.7	3.6	α-Arabinofuranidase	CJA_0816
Cellulose	cbp2E	2.7	2.8	Predicted redox	CJA_2615
Chitin	hex20A	2.7	4.1	Hexosaminidase	CJA_0350
Carbohydrate	cbp6B	2.7	2.8	Carbohydrate biding	CJA_0276
biding protein				protein	
Xylan	abf62A	2.6	3.2	α-Arabinofuranidase	CJA_3281
Chitin	csn46F	2.6	2.	Chitosanase	CJA_2611
Pectin	pga28A	2.6	3.7	Polygalacturonase	CJA_0172
Cellulose	cbp2D	2.6	2.2	Predicted redox	CJA_2616
β-Glucan	ebg98	2.6	3.5	Endogalactosidase	CJA_3286
Arabinan	arb43A	2.5	2.5	α-Arabinofuranidase	CJA_0805
Glycosyl	gt5B	2.3	2.1	Glycosyl transferase	CJA_3255
transferase					
Starch	pul13B	2.3	3.2	Pullanase	CJA_3161
Xylan	xyn11B	2.3	2.6	Endoxylanase	CJA_3762
Chitin	chi19A	2.2	2.0	Chitinase	CJA_0996
Starch	agd31A	2.2	3.1	α-Glucosidase	CJA_3248
Xyloglucan	gly74A	2.1	4.1	Endoxyloglucanase	CJA_2477
Carbohydrate	cbp6A	2.0	2.3	Carbohydrate biding	CJA_1191
biding protein				protein	
Starch	gla15	2.0	4.2	α-Glucosidase	CJA_0731
Starch	cbp26A	2.0	4.3	Carbohydrate biding	CJA_2869

^a RNAseq sampling experiments were performed in biological triplicates

^b Names as described by Deboy *et al.* and Henrissat (6,7)

^c log₂ of the fold change of the gene expression when grown in α - chitin versus glucose

^d The adjusted -log₁₀(p-value) was calculated using ArrayStar software. An adjusted p-value

< 0.01 was selected as the significance cut-off value

^e Locus IDs from Deboy *et al.* (7)

				protein	
Xylan	abf51A	1.9	4.7	α-Arabinofuranidase	CJA_2769
Xylan	xyn10C	1.9	2.0	Endoxylanase	CJA_3066
Xylan	qla67A	1.9	3.9	α-Glucuronidase	CJA 2887
Arabinan	alv43E	1.8	2.0	α-Arabinofuranidase	CJA_0799
Xvlan	xvn10A	1.8	20	Endoxylanase	C.IA 2471
Mannan	man26A	1.0	2.0	Endomannanase	C A 2770
Vylon	manzon vvnEA	1.7	2.0	Endovulanaaa	CIA_2270
Aylall	xyIIJA	1.7	2.0		CJA_3279
Starch	giu i 3A	1.7	2.2		CJA_0732
Starch	mai//Q	1.7	6.0	Amylomaltase	CJA_1882
Mannan	aga27A	1.6	2.0	α-Galactosidase	CJA_0246
Starch	amy13J	1.6	3.0	α-Amylase	CJA_0398
Cellulose	LPMO10B	1.6	2.5	Lytic polyssaccharide	CJA_3139
				mono-oxygenase	
Xylan	xyn11A	1.6	2.7	Endoxylanase	CJA 3763
Miscellaneous	alv57A	1.6	3.2	Glycoside hydrolase	CJA 1883
Mannan	man5B	1.6	2.1	Endomannanase	CJA 2480
Polysaccharide	nda4C	1.6	27	Deacetylase	$C_{\rm IA} 3428$
deacetylase	paaro	1.0	2.1	Deddetylase	00/(_0120
Collulopo	00/2P	16	2.1	P. Chucasidasa	CIA 1407
Cellulose		1.0	2.1		CJA_1497
Xyian	XYNTOB	1.0	3.3	Endoxylanase	CJA_3280
Pectin	bgi2A	1.6	3.1	p-Galactosidase	CJA_0496
Glycosyl	gt5A	1.6	2.4	Glycosyl transferase	CJA_1886
transferases					
Pectin	gal53A-2	1.6	3.2	Endogalactosidase	CJA_0491
Starch	pul13A	1.5	2.0	Pullanase	CJA_2160
Glycosyl	gt1B	1.5	2.1	Rhamnosyltransferase	CJA 0772
transferases	•			2	—
Glycosyl	at4A	1.5	2.5	Glycosyl transferase	CJA 3411
transferases	9 • <i>n</i> ·				
Pectin	nel1G	15	23	Pectate Ivase	C.IA 3120
Starch	amv13B	1.5	2.0	a Amylase	C 1A 1522
Destin	any iso	1.5	2.1	Destate lyane	CJA_1322
Peclin	period	1.5	3.0 0.7	Peciale lyase	CJA_2040
Pectin	pei3B	1.5	2.7	Pectate lyase	CJA_2413
Glycosyl	gt4B	1.5	2.1	Glycosyl transferase	CJA_3410
transferases					
Polysaccharide	pda4E	1.4	2.9	Deacetylase	CJA_3408
deacetylase					
Xylan	cbp35A	1.4	3.0	Carbohydrate biding	CJA 0020
				protein	—
Starch	alc13A	13	31	q-qlucosidase	CJA 0257
Pectin	bal354	13	2.0	ß-Galactosidase	$C_{\rm IA} 2707$
Cellulose	chn2A	1.0	2.0	Carbohydrate biding	
Cellulose	COPZA	1.5	2.1	carbonyurate biding	CJA_0007
Otomolo	aub a d O A	4.0	0.0		
Starch	gbe 13A	1.3	2.3		CJA_1885
Cellulose	cel45A	1.2	2.2	Cellulase	CJA_0374
Cellulose	cel6A	1.2	2.8	Cellobiohydrolase	CJA_2473
Starch	amy13F	1.2	3.0	α-Amylase	CJA_0398
Transglycosylase	lmt23B	1.1	2.3	Transglycosylase	CJA_2053
Cellulose	cel5D	1.0	3.1	Cellulase	CJA 3010
Starch	amy13D	1.0	3.3	α-Amylase	CJA_0737

141 Table S3B. Up-regulated putative CAZyme-encoding genes during early

142 stationary growth on α -chitin compared to glucose^a

143

Substrate	CAZy	Fold	p-	Putative activity	Locus ID ^e
	name	change	value		
Chitin	lpmo10A	10.6	4.3	Lytic polyssaccharide	CJA_2191
				mono-oxygenase	
Chitin	chi18D	5.8	3.0	Chitinase	CJA_2611
Chitin	chi18C	4.8	2.5	Chitinase	CJA_2993
Arabinan	abf43L	4.5	2.5	α-Arabinofuranidase	CJA_0806
Chitin	chi18B	3.7	3.8	Chitinase	CJA_0988
Pectin	pel3B	3.6	2.6	Pectate lyase	CJA_2413
Starch	amy13A	3.3	2.6	α-Amylase	CJA_2618
Xylan	axe2C	3.0	2.4	Acetylxylan esterase	CJA_0450
Arabinan	gly43C	2.8	3.1	α-Arabinofuranidase	CJA_0816
β-Glucans	ebg98	2.8	4.0	Endogalactosidase	CJA_3286
Arabinan	gly43D	2.7	2.5	α-Arabinofuranidase	CJA_0818
Glycosyl	gt9B	2.7	2.4	Glycosyl Transferase	CJA_1369
Transferase					
Chitin	nag9A	2.6	3.1	Deacetylase	CJA_1163
Pectin	bgl2C	2.6	2.3	β-Galactosidase	CJA_2610
Glycosyl	gt5B	2.5	2.2	Glycosyl Transferase	CJA_3255
Transferase					
Starch	amy13H	2.5	3.2	α-Amylase	CJA_3247
Starch	cgt13B	2.5	3.4	Glucanotransferase	CJA_3263
Transglycosylase	lmt23D	2.5	3.0	Transglycosylase	CJA_2884
Pectin	pme8C	2.4	2.1	Pectinesterase	CJA_0181
Starch	agd31A	2.4	3.3	α-Glucosidase	CJA_3248
Xylan	cpb35A	2.3	2.2	Carbohydrate biding	CJA_0020
				protein	
β-Glucan	cgs94A	2.3	2.4	Glucan synthetase	CJA_0849
Pectin	pme8A	2.3	2.6	Pectin methylesterase	CJA_0041
β-Glucan	glu16A	2.3	2.2	β-Glucanase	CJA_0225
Arabinan	gly43G	2.2	2.2	α-Arabinofuranidase	CJA_3070
Arabinan	abf43M	2.2	2.4	α-Arabinofuranidase	CJA_0819
Arabinan	gly43J	2.2	2.0	α-Arabinofuranidase	CJA_3067
Mannan	man5C	2.1	3.5	Endomannanase	CJA_3470
Chitin	hex20A	2.1	2.8	Hexosaminidase	CJA_0350
Chitin	chi19A	2.0	2.7	Chitinase	CJA_0996
Arabinan	afc95A	2.0	2.0	α-fucosidase	CJA_2710
Arabinan	abf51A	2.0	2.9	α-fucosidase	CJA_2769

^a RNAseq sampling experiments were performed in biological triplicate

^b Names as described by Deboy *et al.* and Henrissat (6,7)

^c \log_2 of the fold change of the gene expression when grown in α - chitin versus glucose

^d The adjusted -log₁₀(p-value) was calculated using ArrayStar software. An adjusted p-value

< 0.001 was selected as the significance cut-off value

^e Locus IDs from Deboy *et al.* (7)

Pectin	pel10B	2.0	2.2	Pectate lyase	CJA_2040
Pectin	pel1D	2.0	2.3	Pectate lyase	CJA_2040
Polysaccharide	pda4C	1.9	4.1	Deacetylase	CJA_3428
deacetylase					
Cellulose	cel5D	1.9	2.7	Cellulase	CJA_3010
Xylan	abf62A	1.9	2.5	α-Arabinofuranidase	CJA_3281
Cellulose	cbp2D	1.9	3.4	Predicted redox	CJA_2616
Xylan	gla67A	1.9	2.8	α-Glucuronidase	CJA_2887
Xylan	cbp35B	1.8	2.7	Carbohydrate biding	CJA_0559
				protein	
Pectin	bgl35A	1.7	2.2	β-Galactosidase	CJA_2707
Cellulose	cel6A	1.6	2.7	Cellulase	CJA_2473
Starch	amy13B	1.5	3.3	α-Amylase	CJA_1522
Mannan	man5D	1.4	2.2	Endomannanase	CJA_0244
Mannan	man5B	1.3	2.5	Endomannanase	CJA_2475
Carbohydrate	cbp35C	1.1	2.3	Carbohydrate binding	CJA_0494
Biding Protein				protein	
Cellulose	cel3B	1.0	2.7	β-Glucosidase	CJA_1497

Table S4. Product ratios after degradation of α -chitin and (GlcNAc)₆ 145 146

Chitinase	Chitin degradation	(GlcNAc) ₆ degradation
	(GlcNAc) ₂ /GlcNAc ratio, 12 h	(GlcNAc) ₂ /(GlcNAc) ₄ ratio, 2 min
CjChi18A _{cat}	0.2 ± 0.002	1.8 ± 0.048
<i>Cj</i> Chi18B _{cat}	7.0 ± 0.409	13.4 ± 0.692
CjChi18C _{cat}	7.3 ± 0.148	1.5 ± 0.067
CjChi18D _{cat}	2.8 ± 0.031	1.1 ± 0.048
CjChi18B _{cat+CBM5}	19.1 ± 0.034	Not determined
CjChi18D _{cat+CBM5}	3.4 ± 0.109	Not determined

148	Table S5. Strains,	plasmids	and primers	used in this s	study
-----	--------------------	----------	-------------	----------------	-------

149

Strains, plasmid or	Genotype	Source or	
primer		Reference	
Strains			
<i>Ε. coli</i> DH5α	λ-Φ80dlacZΔM15 Δ(lacZYA-argF)U169 recA1 endA1 hsdR17(rk-mk) supE44 thi-1gyrA relA1	Laboratory collection	
E. coli S17 λpir	Tpr Smr recA thi pro hsdR hsdM+ RP4-2- TC::Mu::Km Tn7 λpri	Laboratory collection	
<i>C. japonicus</i> Ueda 107	Wild Type	Laboratory collection	
C. japonicus ∆gsp	Ueda 107 Δ <i>gsp</i>	(8)	
C. japonicus Achi18A		This study	
C. japonicus ∆chi18B	Ueda 107 Achi18B ⁶	This study	
C. japonicus ∆chi18C	Ueda 107 $\Delta chi 18C^{\circ}$	This study	
C. japonicus Δchi18D	Ueda 107 $\Delta chi18D^{\circ}$	This study	
C. japonicus ∆chi18A∆chi18B	Ueda 107 Δ <i>chi18A</i> Δ <i>chi18B</i>	This study	
C. japonicus Achi184Achi18C	Ueda 107 Δ <i>chi18A</i> Δ <i>chi18C</i>	This study	
C. japonicus	Ueda 107 <i>∆chi18B∆chi18C</i>	This study	
C. japonicus Δchi18AΔchi18BΔchi18	Ueda 107 <i>∆chi18A∆chi18B∆chi18C</i>	This study	
Plasmids			
pK2013	CoIE1 RK2-Mob ⁺ RK2-Tra ⁺ ; Km ^r	(9)	
pK18mobsacB	pMB1 ori mob ⁺ sacB ⁺ : Km ^r	(10)	
рК18/ <i>Δchi18A</i>	Contains 500bp upstream and downstream of <i>chi18A</i> cloned into pK18mobsacB; Km ^r	This study	
рК18/Δ <i>chi18В</i>	Contains 500bp upstream and downstream of <i>chi18B</i> cloned into pK18mobsacB; Km ^r	This study	
рК18/Δ <i>chi18C</i>	Contains 500bp upstream and downstream of <i>chi18C</i> cloned into pK18mobsacB; Km ^r	This study	
рК18/Δ <i>chi18D</i>	Contains 1000bp upstream and downstream of <i>chi18D</i> cloned into pK18mobsacB; Km ^r	This study	
Primers			
(5') to amplify 750 bp	GCTATGACATGATTACGGGTGGTTATACGCGTAATA	This study	
(3') to amplify 750 bp upstream of <i>chi18D</i>	GAATTAGCGTTTCATAGTGTTTTCCTCAACGTTTTTA TATAAATACG	This study	

^a BioCyc accession number CJA_1182
 ^b BioCyc accession number CJA_0988
 ^c BioCyc accession number CJA_2993
 ^d BioCyc accession number CJA_2611

(5') to amplify 750 bp	CACTATGAAACGCTAATTCATGATTACCGGAAGC	This study
downstream of <i>chi18D</i>		
(3') to amplify 750 bp	GCCTGCAGGTCGACTGGTGATATCGATATAGCTGG	This study
downstream of chi18D	CGTTG	
∆ <i>chi18A</i> _CONF_ (5')	ATCATGGGCAGCTTTC	This study
∆ <i>chi18A</i> _CONF_ (3')	AGCAGGAGCCTGGTA	This study
∆ <i>chi18B</i> _CONF_ (5')	CAATTGGAAATTGGTAATC	This study
∆ <i>chi18B</i> _CONF_ (3')	ATATAGTCACGCCCTATTTTG	This study
∆ <i>chi18C</i> _CONF_ (5')	AAGGGCATCTGGTTATT	This study
∆ <i>chi18C</i> _CONF_ (3')	GTATTTCTATCTGCGTTCAC	This study
∆ <i>chi18D</i> _CONF_ (5')	CTGATTGTCCCCTATCTGC	This study
∆ <i>chi18D</i> _CONF_ (3')	ATTTCCCAGCGATTGTTAC	This study
<i>chi18A</i> INT_(5')	GGTGGTTCTAGAGCTTGTATCAGTGCG	This study
<i>chi18A</i> INT_(3')	GGTGGTGAATTCCAAGCATCCTTCACATC	This study
<i>chi18B</i> INT_(5')	GGTGGTGAATTCGCTATGTGGCGTTGA	This study
chi18B INT_(3')	GGTGGTTCTAGACTATGTCGTGCCAAATA	This study
<i>chi18C</i> INT_(5')	GGTGGTAAGCTTAGTTTGGGACAACTG	This study
<i>chi18C</i> INT_(3')	GGTGGTTCTAGATGGAGTTATTCAGCG	This study
<i>chi18D</i> INT_(5')	GGTGGTAAGCTTCGACATCCTCTGTTG	This study
<i>chi18D</i> INT_(3')	GGTGGTTCTAGAATAGGCATCACCAATA	This study

151 Table S6. Name and description of expressed and characterized versions of the

C. japonicus GH18 chitinases 152

153

Name	Description
CjChi18A _{cat}	Chi18A catalytic domain (residues 87-432 of totally 432)
CjChi18B _{cat+CBM5}	Chi18B catalytic domain + CBM5 domain (residues 151-890 of
	totally 890)
CjChi18B _{cat}	Chi18B catalytic domain (residues 151-808 of totally 890)
CjChi18C _{cat}	Chi18C catalytic domain (residues 218-537 of totally 537)
CjChi18D _{cat+CBM5}	Chi18D CBM5 + catalytic domain (residues 119-588 of totally 588)
CjChi18D _{cat}	Chi18D catalytic domain (residues 222-588 of totally 588)

154

155 **References**

- Madhuprakash, J., Singh, A., Kumar, S., Sinha, M., Kaur, P., Sharma, S., Podile, A.
 R., and Singh, T. P. (2013) Structure of chitinase D from *Serratia proteamaculans* reveals the structural basis of its dual action of hydrolysis and transglycosylation. *International Journal of Biochemistry and Molecular Biology* 4, 166-178
- Tuveng, T. R., Hagen, L. H., Mekasha, S., Frank, J., Arntzen, M. O., Vaaje-Kolstad,
 G., and Eijsink, V. G. (2017) Genomic, proteomic and biochemical analysis of the
 chitinolytic machinery of *Serratia marcescens* BJL200. *Biochimica et Biophysica Acta* **163 1865**, 414-421
- Horn, S. J., Sikorski, P., Cederkvist, J. B., Vaaje-Kolstad, G., Sorlie, M., Synstad, B.,
 Vriend, G., Varum, K. M., and Eijsink, V. G. (2006) Costs and benefits of processivity
 in enzymatic degradation of recalcitrant polysaccharides. *Proceedings of the National Academy of Sciences* 103, 18089-18094
- Zakariassen, H., Aam, B. B., Horn, S. J., Varum, K. M., Sorlie, M., and Eijsink, V. G.
 (2009) Aromatic residues in the catalytic center of chitinase A from *Serratia* marcescens affect processivity, enzyme activity, and biomass converting efficiency. *Journal of Biological Chemistry* 284, 10610-10617
- Payne, C. M., Baban, J., Horn, S. J., Backe, P. H., Arvai, A. S., Dalhus, B., Bjoras, M.,
 Eijsink, V. G., Sorlie, M., Beckham, G. T., and Vaaje-Kolstad, G. (2012) Hallmarks of
 processivity in glycoside hydrolases from crystallographic and computational studies
 of the Serratia marcescens chitinases. Journal of Biological Chemistry 287, 36322 36330
- Henrissat, B. (1998) Glycosidase families. *Biochemical Society Transactions* 26, 153156
- DeBoy, R. T., Mongodin, E. F., Fouts, D. E., Tailford, L. E., Khouri, H., Emerson, J.
 B., Mohamoud, Y., Watkins, K., Henrissat, B., Gilbert, H. J., and Nelson, K. E. (2008)
 Insights into plant cell wall degradation from the genome sequence of the soil
 bacterium *Cellvibrio japonicus*. *Journal of Bacteriology* **190**, 5455-5463
- Nelson, C. E., and Gardner, J. G. (2015) In-Frame Deletions Allow Functional Characterization of Complex Cellulose Degradation Phenotypes in *Cellvibrio japonicus*. *Applied and Environmental Microbiology*. **76**, 5079-5087
- Figurski, D. H., and Helinski, D. R. (1979) Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans. *Proceedings of the National Academy of Sciences*. **76**,1684-1652.
- Schafer, A., Tauch, A., Jager, W., Kalinowski, J., Thierbach, G., and Puhler, A. (1994)
 Small mobilizable multi-purpose cloning vectors derived from the *Escherichia coli*plasmids pK18 and pK19: selection of defined deletions in the chromosome of *Corynebacterium glutamicum. Gene* 145, 69-73
- 193
- 194