

Appendix Figure 1. Growth in cost-utility analyses over time.

Cancer type	Ν	Median ICER
Overall	118	32000
Breast	32	22000
Colorectal	20	15000
Cervix	22	28000
Prostate	4	98000
Lung	7	30000
Melanoma	3	46000
Gastrointestinal and		
hepatocellular	14	40000
Ovarian	2	9500
Kidney	2	68000
Head & Neck	3	Cost-Saving
Stomach	1	35000
Other	8	51000

Appendix Table 1. Number of Studies and Incremental Cost-Effectiveness Ratios (ICERs) (\$US2014) for Screening Studies by Cancer Types^a

^aIn each study, the estimated incremental cost-utility ratio was compared with the status quo (i.e., a less effective screening technique, etc).

Appendix Table: Table of the incremental cost-effectiveness ratios by cancer site

Contents

Bladder Cancer	
Brain Cancer	5
Breast Cancer	7
Cervical Cancer	83
Colorectal Cancer	112
Esophageal Cancer	143
Gastrointestinal and Hepatocellular Cancer	144
Hematologic Cancers	159
Kidney Cancer	172
Lung Cancer	176
Melanoma	196
Neck Cancer	200
Other Cancers	206
Ovarian Cancer	222
Pancreatic Cancer	226
Prostate Cancer	229
Stomach Cancer	248
Uterine Cancer	248
Citations	250

Bladder Cancer

Description	Original US\$/QALY	2014US\$/QALY	Reference
Gemcitabine, cisplatin (GC) 28-day cycle- Gemcitabine (1000 mg/m^2) and cisplatin (70 mg/m^2) VERSUS Methotrexate, vinblastine, doxorubicin, cisplatin (MVAC) 28-day cycle- Methotrexate (30 mg/m^2), vinblastine (3 mg/m^2), doxorubicin (30 mg/m^2), cisplatin (70 mg/m^2) IN UK patients with locally advanced or metastatic bladder cancer	33003	44000	Robinson et al., 2004 (1)
Immediate radical cystectomy VERSUS Intravesicle Bacillus Calmette-Guerin (BCG) IN Patients aged 60 years old with high- risk, high-grade (T1G3) bladder cancer	-56636	Cost-Saving	Kulkarni et al., 2009 (2)
Perioperative intravesical chemotherapy (PIC) + fulguration VERSUS Perioperative intravesical chemotherapy (PIC) + transurethral resection of bladder tumor (TURBT) IN Patients with low-risk bladder urothelial carcinoma not invading bladder muscle	-46720	Cost-Saving	Green et al., 2012 (3)
Perioperative intravesical chemotherapy (PIC) + fulguration VERSUS None IN Patients with low-risk bladder urothelial carcinoma not invading bladder muscle	4169	4500	Green et al., 2012 (3)
Perioperative intravesical chemotherapy (PIC) + fulguration VERSUS Transurethral resection of bladder tumor (TURBT) IN Patients with low-risk bladder urothelial carcinoma not invading bladder muscle	-4176	Cost-Saving	Green et al., 2012 (3)
Adjuvant perioperative intravesical chemotherapy VERSUS Usual care (resection only) IN US patients initially diagnosed with nonmuscle invasive bladder cancer who have received transurethral resection of bladder tumor and are untreated with perioperative intravesical chemotherapy	-24750	Cost-Saving	Lee et al., 2012 (4)
Outpatient (office-based) laser ablation VERSUS Inpatient cystodiathermy (IC). IN Specific disease- non-muscle-invasive bladder cancer (NMIBC); Age- Adult; Gender- Both; Country- United Kingdom.	-33775	Cost-Saving	Wong et al., 2013 (5)

Brain Cancer

Description	Original US\$/QALY	2014US\$/QA	LY Reference
Surgical resection with postoperative radiotherapy (RT) VERSUS Radiosurgery (RS) with radiotherapy IN Patients with single brain metastases treated with whole-brain irradiation and resection or radiosurgery	-23053	Increases Costs, Decreases Health	Mehta et al., 1997 (6)
Magnetic resonance imaging (MRI) VERSUS No neuroimaging with close follow up IN Children with headache suspected of having a brain tumor - lo patients		Increases Costs, Decreases Health	Medina et al., 2001 (7)
Computed tomography followed by magnetic resonance imaging (MRI) for results VERSUS No neuroimaging with close clinical follow up IN Children headache suspected of having a brain tumor - low risk patients		Increases Costs, Decreases Health	Medina et al., 2001 (7)
Computed tomography followed by magnetic resonance imaging (MRI) for positive results VERSUS No neuroimaging with close clinical follow up IN Children with headache suspected of having a brain tumor - Intermediate risk patients	1600000	2400000	Medina et al., 2001 (7)
Magnetic resonance imaging (MRI) VERSUS No neuroimaging with close clinical follow up IN Children with headache suspected of having a brain tumor - high risk patients	113800	170000	Medina et al., 2001 (7)
Computed tomography followed by magnetic resonance imaging (MRI) for positive results VERSUS No neuroimaging with close clinical follow up IN Children with headache suspected of having a brain tumor - high risk patients	1600000	2400000	Medina et al., 2001 (7)
Placement of an intra-vena-caval bird's nest filter (BNF) with anti- coagulation therapy VERSUS Anti-coagulation therapy alone IN Patients with malignant brain tumors and deep venous thrombosis of the lower extremities at risk for pulmonary embolism	277200	390000	Chau et al., 2003 (8)
Proton radiation therapy with surgery and chemotherapy VERSUS Conventional radiation therapy with surgery and chemotherapy IN Children with medulloblastoma - age 5	-32730 เ	Cost- Saving	Lundkvist et al., 2005 (9)

Second line temozolomide VERSUS Chemotherapy with procarbazine, lomustine, and vincristine IN Patients with glioblastoma multiforme that had relapsed after primary treatment with surgery and radiotherapy	29068	39000	Martikainen et al., 2005 (10)
Intracranial implantation of carmustine wafers (BCNU-W) as an adjunct to surgery followed by radiotherapy VERSUS Surgery plus radiotherapy IN Patients in the United Kingdom mean age 55 years with high grade gliomas	99898	130000	Rogers et al., 2008 (11)
Whole brain radiotherapy for treatment of brain tumors VERSUS No treatment IN Taiwanese patients 18 to 80 years old with multiple metastatic brain tumors and a pre-operative Karnofsky performance scale (KPS) score of 50 to 100.	17622	20000	Lee et al., 2009 (12)
Gamma knife radiosurgery for treatment of brain tumors VERSUS No treatment IN Taiwanese patients 18 to 80 years old with multiple metastatic brain tumors and a pre-operative Karnofsky performance scale (KPS) score of 50 to 100.	10831	12000	Lee et al., 2009 (12)
Stereotactic radiosurgery (SRS) and observation VERSUS Stereotactic radiosurgery (SRS) and brain radiation therapy (WBRT) IN Patients newly diagnosed with 1 to 3 brain metastases	41783	48000	Lal et al., 2011 (13)
Nitrosourea and radiotherapy (NT + RT) VERSUS Radiotherapy (RT) IN Glioblastoma patients in China	39185	43000	Wu et al., 2012 (14)
Temozolomide and radiotherapy (TMZ + RT) VERSUS Radiotherapy IN Glioblastoma patients in China	87941	97000	Wu et al., 2012 (14)
Intraoperative electrical stimulation (IES) mapping for resection with an asleep-awake-asleep technique VERSUS None IN Specific disease- WHO grade II gliomas within eloquent areas; Age- 19 to 40 years, 41 to 64 years, >=65 years; Gender- Both; Country- Spain.	10271	11000	Martino et al., 2013 (15)

Standard neurosurgical technique for glioma resection under general anesthesia without intraoperative electrical stimulation (IES) or other neurophysiological monitoring VERSUS None IN Specific disease- WHO grade II gliomas within eloquent areas; Age- 19 to 40 years, 41 to 64 years, >=65 years; Gender- Both; Country- Spain.	27904	29000	Martino et al., 2013 (15)
Temodar VERSUS Standard/Usual Care IN Specific disease- glioblastoma; Age- Adult; Gender- Both; Country- United States.	102364	110000	Messali et al., 2013 (16)
Temozolomide VERSUS Standard/Usual Care IN Specific disease- glioblastoma; Age- Adult; Gender- Both; Country- United States.	8875	9300	Messali et al., 2013 (16)
Proton therapy VERSUS Photon therapy IN Specific disease- pediatric medulloblastoma; Age- 19 to 40 years, 41 to 64 years, >=65 years; Gender- Both; Country- United States.	-9416	Cost- Saving	Mailhot Vega et al., 2013 (17)

Breast Cancer

Description	Original US\$/QAL		S\$/QALY	Reference
Adjuvant Chemotherapy for women age 60, assuming lifelong beneficities VERSUS No adjuvant chemotherapy, women age 60 IN Women with Stage I or IIa, node negative, estrogen receptor negative breast car following surgery.	า	100	14000	Hillner et al., 1991 (18)
Adjuvant Chemotherapy for women age 45, assuming increase in di free survival, but no change in overall 10 year survival with treatmen VERSUS No adjuvant chemotherapy for women age 45 IN 45 yo wo with Stage I or IIa, node negative, estrogen receptor negative breas cancer following surgery.	t men	3500	93000	Hillner et al., 1991 (18)

Adjuvant Chemotherapy for women age 60, assuming increase in disease free survival, but no change in overall 10 year survival with treatment VERSUS No adjuvant chemotherapy, women age 60 IN 60 yo women with Stage I or IIa, node negative, estrogen receptor negative breast cancer following surgery.	56800	110000	Hillner et al., 1991 (18)
Adjuvant Chemotherapy for women age 45, assuming 5 years of benefit VERSUS No adjuvant chemotherapy for women age 45 IN 45 yo women with Stage I or IIa, node negative, estrogen receptor negative breast cancer following surgery.	15400	29000	Hillner et al., 1991 (18)
Adjuvant Chemotherapy for women age 60, assuming 5 years of benefit VERSUS No adjuvant chemotherapy, women age 60 IN 60 yo women with Stage I or IIa, node negative, estrogen receptor negative breast cancer following surgery.	18800	36000	Hillner et al., 1991 (18)
Adjuvant Chemotherapy for women age 45, assuming lifelong benefit VERSUS No adjuvant chemotherapy for women age 45 IN Women with Stage I or IIa, node negative, estrogen receptor negative breast cancer following surgery.	5100	9700	Hillner et al., 1991 (18)
Biennial breast cancer screening in 50-70 yo VERSUS Triennial breast cancer screening in 50-65 yo IN Population of Dutch women	5495	10000	de Koning et al., 1991 (19)
Triennial breast cancer screening in 50-65 yo VERSUS No screening program IN Population of Dutch women	3400	6200	de Koning et al., 1991 (19)
Breast cancer screening in 50-70 yo every 1.3 yrs VERSUS Biennial breast cancer screening in 50-70 yo IN Population of Dutch women	11176	20000	de Koning et al., 1991 (19)
Biennial breast cancer screening in 50-75 yo VERSUS Biennial breast cancer screening in 50-70 yo IN Population of Dutch women	16000	29000	de Koning et al., 1991 (19)
high dose chemotherapy with ABMT VERSUS standard chemotherapy IN 45 yo woman metastatic (stage IV) breast CA	96600	170000	Hillner et al., 1992 (20)
high dose chemotherapy with ABMT VERSUS standard chemotherapy IN 45 yo woman metastatic (stage IV) breast CA	27300	49000	Hillner et al., 1992 (20)
Chemotherapy VERSUS No chemotherapy IN 45-yo premenopausal women who have undergone surgery for node-negative, estrogen- receptor-negative stage I or IIa breast cancer	15400	29000	Hillner et al., 1992 (21)

Chemotherapy VERSUS No chemotherapy IN 60-yo premenopausal women who have undergone surgery for node-negative, estrogen- receptor-negative stage I or IIa breast cancer	18800	36000	Hillner et al., 1992 (21)
adjuvant chemotherapy VERSUS no adjuvant chemotherapy IN 60 yo woman with early stage breast CA node negative, estrogen receptor negative	28000	53000	Hillner et al., 1993 (22)
adjuvant chemotherapy VERSUS no adjuvant chemotherapy IN 75 yo woman with early stage breast CA node negative, estrogen receptor negative	44000	84000	Hillner et al., 1993 (22)
Tamoxifen VERSUS no treatment IN 45 yo premenopausal woman with early stage breast CA either node - or + &, estrogen receptors (ER) + or -	11440	22000	Smith et al., 1993 (23)
Chemotherapy (cyclophosphamide, methotrexate and fluorouracil for 6 months) VERSUS Tamoxifen IN 45 yo premenopausal woman with early stage breast CA either node - or + &, estrogen receptors (ER) + or -	11370	22000	Smith et al., 1993 (23)
Combined (chemotherapy & tamoxifen) VERSUS Chemotherapy alone (cyclophosphamide, methotrexate and fluorouracil) IN 45 yo premenopausal woman with early stage breast CA either node - or + &, estrogen receptors (ER) + or -	33100	63000	Smith et al., 1993 (23)
Tamoxifen VERSUS no treatment IN 45 yo premenopausal woman with early stage breast CA either node - or + &, estrogen receptors (ER) + or -	214000	410000	Smith et al., 1993 (23)
Chemotherapy (cyclophosphamide, methotrexate and fluorouracil for 6 months) VERSUS Tamoxifen IN 45 yo premenopausal woman with early stage breast CA either node - or + &, estrogen receptors (ER) + or -	4970	9500	Smith et al., 1993 (23)
Combined (chemotherapy & tamoxifen) VERSUS Chemotherapy (cyclophosphamide, methotrexate and fluorouracil for 6 months) IN 45 yo premenopausal woman with early stage breast CA either node - or + &, estrogen receptors (ER) + or -	186200	360000	Smith et al., 1993 (23)

Tamoxifen VERSUS no treatment IN 45 yo premenopausal woman with early stage breast CA either node - or + &, estrogen receptors (ER) + or -	4330	8300	Smith et al., 1993 (23)
Chemotherapy (cyclophosphamide, methotrexate and fluorouracil for 6 months) VERSUS Tamoxifen IN 45 yo premenopausal woman with early stage breast CA either node - or + &, estrogen receptors (ER) + or -	9230	18000	Smith et al., 1993 (23)
Combined (chemotherapy & tamoxifen) VERSUS Chemotherapy (cyclophosphamide, methotrexate and fluorouracil for 6 months) IN 45 yo premenopausal woman with early stage breast CA either node - or + &, estrogen receptors (ER) + or -	14750	28000	Smith et al., 1993 (23)
Tamoxifen VERSUS no treatment IN 45 yo premenopausal woman with early stage breast CA either node - or + &, estrogen receptors (ER) + or -	4330	8300	Smith et al., 1993 (23)
Chemotherapy (cyclophosphamide, methotrexate and fluorouracil for 6 months) VERSUS Tamoxifen IN 45 yo premenopausal woman with early stage breast CA either node - or + &, estrogen receptors (ER) + or -	4890	9300	Smith et al., 1993 (23)
Combined (chemotherapy & tamoxifen) VERSUS Chemotherapy (cyclophosphamide, methotrexate and fluorouracil for 6 months) IN 45 yo premenopausal woman with early stage breast CA either node - or + &, estrogen receptors (ER) + or -	80700	150000	Smith et al., 1993 (23)
chemotherapy VERSUS no chemotherapy IN 60 yo with breast CA	28200	54000	Desch et al., 1993 (24)
chemotherapy VERSUS no chemotherapy IN 65 yo with breast CA	31300	60000	Desch et al., 1993 (24)
chemotherapy VERSUS no chemotherapy IN 70 yo with breast CA	36300	69000	Desch et al., 1993 (24)
chemotherapy VERSUS no chemotherapy IN 75 yo with breast CA	44400	85000	Desch et al., 1993 (24)
chemotherapy VERSUS no chemotherapy IN 80 yo with breast CA	57100	110000	Desch et al., 1993 (24)
Immediate biopsy VERSUS 6-month observation IN 50-yo woman with abnormal, suspicious findings on mammogram	2257	3700	Velanovich et al., 1995 (25)
Breast cancer screening every 2 yrs. VERSUS No breast cancer screening past age 69 IN 70-75 yo women	14986	27000	Boer et al., 1995 (26)

Breast cancer screening every 2 yrs. VERSUS No breast cancer screening past age 75 IN 75-79 yo women	64228	120000	Boer et al., 1995 (26)
Second-line treatment with docetaxel VERSUS Second-line treatment with paclitaxel IN Patients with recurrent widely disseminated metastatic breast cancer who are failing on standard treatments	3724	5900	Hutton et al., 1996 (27)
Paclitaxel VERSUS Vinorelbine IN Metastatic Breast Disease	-642	Cost- Saving	Launois et al., 1996 (28)
Docetaxel VERSUS Paclitaxel IN Metastatic Breast Disease	-117	Cost- Saving	Launois et al., 1996 (28)
universal screening program VERSUS no screening program IN Nordic population	4515	6800	Hristova et al., 1997 (29)
Breast conserving surgery VERSUS Modified radical mastectomy IN Women with breast cancer stage I & II	20508	31000	Norum et al., 1997 (30)
Postoperative radiotherapy (XRT) VERSUS Surgery alone without postoperative radiotherapy IN Women <80yoa with unifocal breast CA that 1) is <=20mm size on pre-op mammogram; 2) has negative tumor margins 20mm from primary tumor border; 3) have negative axillary nodes; and 4) had no tumor transection during surgery.	18610	30000	Liljegren et al., 1997 (31)
Postoperative radiotherapy (XRT) VERSUS Surgery alone without postoperative radiotherapy IN Women <80yoa with unifocal breast CA that 1) is <=20mm size on pre-op mammogram; 2) has negative tumor margins 20mm from primary tumor border; 3) have negative axillary nodes; and 4) had no tumor transection during surgery.	9011	15000	Liljegren et al., 1997 (31)
Routine postoperative radiotherapy (XRT) after sector resection and axillary dissection VERSUS Standardized sector resection and axillary dissection IN All breast cancer stage I patients (<80 yo with unifocal breast cancer & maximum tumor diameter of 20 mm on preoperative mammogram)	144745	240000	Liljegren et al., 1997 (31)

Routine postoperative radiotherapy (XRT) after sector resection and axillary dissection VERSUS Standardized sector resection and axillary dissection IN Breast cancer stage I patients (<80 yo with unifocal breast cancer & maximum tumor diameter of 20 mm on preoperative mammogram) at intermediate/high-risk of local recurrence in 5 yrs.	68483	110000	Liljegren et al., 1997 (31)
Routine postoperative radiotherapy (XRT) after sector resection and axillary dissection VERSUS Standardized sector resection and axillary dissection IN Breast cancer stage I patients (<80 yo with unifocal breast cancer & maximum tumor diameter of 20 mm on preoperative mammogram) at low-risk of local recurrence in 5 yrs.	-430449	Increases Costs, Decreases Health	Liljegren et al., 1997 (31)
Prophylactic oophorectomy and mastectomy VERSUS Frequent screening and close surveillance IN 30 year-old women from Ashkenazi Jewish or other high-risk families with BRCA1 or BRCA2 gene mutations, with 56% breast cancer risk and 16% ovarian cancer risk over 40 years	-4652	Increases Costs, Decreases Health	Grann et al., 1998 (32)
Breast conserving surgery with radiation therapy (XRT) VERSUS Breast conserving surgery alone IN 60yo female undergoing breast conserving surgery (lumpectomy) and axillary dissection for early stage breast cancer (Stage I or II)	28000	43000	Hayman et al., 1998 (33)
Docetaxel 100mg/m2 VERSUS Paclitaxel 200mg/m2 IN Women with advanced metastatic breast cancer who have failed previous chemotherapy	8615	13000	Brown et al., 1998 (34)
Prophylactic promidronate infusions VERSUS No prophylactic treatment for skeletal related events (placebo) IN Metastatic breast cancer patients receiving either 1st- or 2nd-line chemotherapy, with at least one osteolytic bone lesion	13506	20000	Dranitsaris et al., 1999 (35)
Axillary lymph node dissection (ALND) VERSUS Watchful waiting IN Postmenopausal women with estrogen receptor -positive breast cancer and clinically negative axillary nodes	36700	54000	Orr et al., 1999 (36)

Axillary lymph node dissection (ALND) VERSUS Watchful waiting IN Postmenopausal women with estrogen receptor -positive breast cancer and clinically negative axillary nodes	270000	400000	Orr et al., 1999 (36)
Vinorelbine VERSUS Docetaxel IN Patients with anthracycline-resistant metastatic breat cancer		Cost- Saving	Leung et al., 1999 (37)
Vinorelbine VERSUS Paclitaxel IN Patients with anthracycline-resistant metastatic breat cancer		Cost- Saving	Leung et al., 1999 (37)
Paclitaxel VERSUS Docetaxel IN Patients with anthracycline-resistant metastatic breat cancer		Cost- Saving	Leung et al., 1999 (37)
Excisional biopsy VERSUS Magnetic Resonance Imaging IN Women with suspicious breast lesions	576258	900000	Hrung et al., 1999 (38)
Excisional biopsy VERSUS Core-needle biopsy IN Women with suspicious breast lesions	253540	390000	Hrung et al., 1999 (38)
Magnetic Resonance Imaging VERSUS Core-needle biopsy IN Women with suspicious breast lesions	69446	110000	Hrung et al., 1999 (38)
Combination testing for BRCA1 and BRCA2 genes, then oophorectomy if positive VERSUS No intervention IN 30 year old women with average population risk for BRCA1 or BRCA2 gene mutation	1420500	2100000	Tengs et al., 2000 (39)
Combination testing for BRCA1 and BRCA2 genes, then oophorectomy if positive VERSUS No intervention IN 30 year old women with slight increased risk for BRCA1 or BRCA2 gene mutation (at least one case of ovarian and/or early breast cancer in family)	37657	55000	Tengs et al., 2000 (39)
Combination testing for BRCA1 and BRCA2 genes, then oophorectomy if positive VERSUS No intervention IN 30 year old women with moderate increased risk for BRCA1 or BRCA2 gene mutation (at least a few cases of ovarian and/or early breast cancer in family)	15000	22000	Tengs et al., 2000 (39)
Combination testing for BRCA1 and BRCA2 genes, then oophorectomy if positive VERSUS No intervention IN 30 year old women with high increased risk for BRCA1 gene mutation (p=0.25) and BRCA2 gene mutation (p=0.25)	4300	6200	Tengs et al., 2000 (39)

Combination testing for BRCA1 and BRCA2 genes, then oophorectomy if positive VERSUS No intervention IN 30 year old women with high increased risk for BRCA1 gene mutation (p=0.50) and BRCA2 gene mutation (p=0.0)	3500	5100	Tengs et al., 2000 (39)
Combination testing for BRCA1 and BRCA2 genes, then oophorectomy if positive VERSUS No intervention IN 30 year old women with high increased risk for BRCA2 gene mutation (p=0.50) and BRCA1 gene mutation (p=0.0)	4900	7100	Tengs et al., 2000 (39)
Pamidronate VERSUS Placebo IN Women undergoing chemotherapy for metastatic breast cancer with one or more osteolytic lesions >1cm in diameter and an expected survival of greater than 9 months.	108200	160000	Hillner et al., 2000 (40)
Pamidronate VERSUS Placebo IN Women undergoing hormonal therapy for metastatic breast cancer with one or more osteolytic lesions >1cm in diameter and an expected survival of greater than 9 months.	305300	440000	Hillner et al., 2000 (40)
Tangenital radiation VERSUS Treatment without electron-beam boost IN Patients after conservative surgery for early stage breast cancer	308923	480000	Hayman et al., 2000 (41)
Prophylactic surgery (oophorectomy, mastectomy, or both) VERSUS Surveillance IN 30 year-old women with high-risk breast cancer 1/2 (BRCA 1 or 2) mutations		Cost- Saving	Grann et al., 2000 (42)
Chemoprevention with tamoxifen VERSUS Surveillance IN 30 year-old women with high-risk breast cancer 1/2 (BRCA 1 or 2) mutations	898	1300	Grann et al., 2000 (42)
Chemoprevention with raloxifene VERSUS Surveillance IN 30 year-old women with high-risk breast cancer 1/2 (BRCA 1 or 2) mutations		Cost- Saving	Grann et al., 2000 (42)
Chemoprevention with oral contraceptives VERSUS Surveillance IN 30 year-old women with high-risk breast cancer 1/2 (BRCA 1 or 2) mutations		Cost- Saving	Grann et al., 2000 (42)

Chemoprevention with oral contraceptives VERSUS Surveillance IN 40 year-old women with high-risk breast cancer 1/2 (BRCA 1 or 2) mutations		Cost- Saving	Grann et al., 2000 (42)
Chemoprevention with raloxifene VERSUS Surveillance IN 40 year-old women with high-risk breast cancer 1/2 (BRCA 1 or 2) mutations		Cost- Saving	Grann et al., 2000 (42)
Chemoprevention with tamoxifen VERSUS Surveillance IN 40 year-old women with high-risk breast cancer 1/2 (BRCA 1 or 2) mutations	1639	2400	Grann et al., 2000 (42)
Prophylactic surgery (oophorectomy, mastectomy, or both) VERSUS Surveillance IN 40 year-old women with high-risk breast cancer 1/2 (BRCA 1 or 2) mutations		Cost- Saving	Grann et al., 2000 (42)
Prophylactic surgery (oophorectomy or mastectomy) VERSUS Surveillance IN 50 year-old women with high-risk breast cancer 1/2 (BRCA 1 or 2) mutations		Cost- Saving	Grann et al., 2000 (42)
Chemoprevention with oral contraceptives VERSUS Surveillance IN 50 year-old women with high-risk breast cancer 1/2 (BRCA 1 or 2) mutations		Cost- Saving	Grann et al., 2000 (42)
Chemoprevention with raloxifene VERSUS Surveillance IN 50 year-old women with high-risk breast cancer 1/2 (BRCA 1 or 2) mutations		Cost- Saving	Grann et al., 2000 (42)
Chemoprevention with tamoxifen VERSUS Surveillance IN 50 year-old women with high-risk breast cancer 1/2 (BRCA 1 or 2) mutations	3249	4700	Grann et al., 2000 (42)
Tamoxifen chemoprevention (10 mg orally, twice daily) VERSUS Surveillance IN 35 year-old women at high risk for breast cancer (at least equivalent to that of an average 60 year-old woman)	76318	110000	Grann et al., 2000 (43)
Tamoxifen chemoprevention (10 mg orally, twice daily) VERSUS Surveillance IN 50 year-old women at high risk for breast cancer (at least equivalent to that of an average 60 year-old woman)	130660	190000	Grann et al., 2000 (43)

Tamoxifen chemoprevention (10 mg orally, twice daily) VERSUS Surveillance IN 60 year-old women at high risk for breast cancer	142227	210000	Grann et al., 2000 (43)
Anastrozole VERSUS Megestrol acetate IN Postmenopausal women with hormone sensitive (ER/PR+) advanced breast cancer, who are anthracycline naive and have failed first-line hormonal therapy with tamoxifen	7020	10000	Dranitsaris et al., 2000 (44)
Letrozole VERSUS Megestrol acetate IN Postmenopausal women with hormone sensitive (ER/PR+) advanced breast cancer, who are anthracycline naive and have failed first-line hormonal therapy with tamoxifen	1044	1500	Dranitsaris et al., 2000 (44)
Locoregional radiotherapy adjuvant to surgery and chemotherapy VERSUS Surgery and chemotherapy IN Premenopausal node-positive breast cancer patients	11267	17000	Dunscombe et al., 2000 (45)
Second-line chemotherapy with paclitaxel VERSUS Combination therapy with vinorelbine plus mitomycin C IN Female patient (aged 18-70) histologically diagnosed with metastatic breast cancer and progressive disease after 1st-line chemotherapy	-164450	Increases Costs, Decreases Health	Li et al., 2001 (46)
Second-line chemotherapy with docetaxel VERSUS Combination therapy with vinorelbine plus mitomycin C IN Female patient (aged 18-70) histologically diagnosed with metastatic breast cancer and progressive disease after 1st-line chemotherapy	-362500	Increases Costs, Decreases Health	Li et al., 2001 (46)
Combination therapy with vinorelbine plus mitomycin C VERSUS Mitomycin plus vinblastine (standard 2nd-line chemotherapy) IN Female patient (aged 18-70) histologically diagnosed with metastatic breast cancer and progressive disease after 1st-line chemotherapy	23046	33000	Li et al., 2001 (46)

Docetaxel as 2nd-line chemotherapy VERSUS Paclitaxel (6 courses at 3- week intervals) as 2nd-line chemotherapy IN Patient diagnosed with advanced breast cancer with disease progression and metastases following 1st-line chemotherapy with anthracyclines	3431	5000	Brown et al., 2001 (47)
Docetaxel as 2nd-line chemotherapy VERSUS Vinorelbine (12 weekly courses) as 2nd-line chemotherapy IN Patient diagnosed with advanced breast cancer with disease progression and metastases following 1st-line chemotherapy with anthracyclines	24529	36000	Brown et al., 2001 (47)
Hormone replacement therapy -long term therapy VERSUS No intervention IN Healthy 50-year old post-menopausal women	2173	3000	Armstrong et al., 2001 (48)
Hormone replacement therapy -5 year therapy VERSUS No intervention IN Healthy 50-year old post-menopausal women	5020	6900	Armstrong et al., 2001 (48)
Hormone replacement therapy -10 year therapy VERSUS No intervention IN Healthy 50-year old post-menopausal women	4260	5900	Armstrong et al., 2001 (48)
Raloxifene therapy-long term VERSUS No intervention IN Healthy 50- year old post-menopausal women	9824	14000	Armstrong et al., 2001 (48)
Raloxifene therapy-5 years VERSUS No intervention IN Healthy 50-year old post-menopausal women	9328	13000	Armstrong et al., 2001 (48)
Raloxifene therapy-10 years VERSUS No intervention IN Healthy 50-year old post-menopausal women	7886	11000	Armstrong et al., 2001 (48)
Raloxifene therapy-5 years VERSUS Hormone replacement therapy-5 years IN Healthy 50-year old post-menopausal women	37029	51000	Armstrong et al., 2001 (48)
Raloxifene therapy-10 years VERSUS Hormone replacement therapy-10 years IN Healthy 50-year old post-menopausal women	32992	45000	Armstrong et al., 2001 (48)
Tamoxifen for primary prevention VERSUS No Tamoxifen IN Women at very high risk of breast cancer (Gail model RR>1.6) - age 35	79320	120000	Hershman et al., 2002 (49)
Tamoxifen for primary prevention VERSUS No Tamoxifen IN Women at very high risk of breast cancer (Gail model RR>1.6) - age 50	122519	180000	Hershman et al., 2002 (49)
Tamoxifen for primary prevention VERSUS No Tamoxifen IN Women at very high risk of breast cancer (Gail model RR>1.6) - age 60	137753	200000	Hershman et al., 2002 (49)

Tamoxifen for primary prevention VERSUS No Tamoxifen IN Women at very high risk of breast cancer (atypical hyperplasia) - age 35	9777	14000	Hershman et al., 2002 (49)
Tamoxifen for primary prevention VERSUS No Tamoxifen IN Women at very high risk of breast cancer (atypical hyperplasia) - age 50	26990	39000	Hershman et al., 2002 (49)
Tamoxifen for primary prevention VERSUS No Tamoxifen IN Women at very high risk of breast cancer (atypical hyperplasia) - age 60	53765	78000	Hershman et al., 2002 (49)
Tamoxifen for primary prevention VERSUS No Tamoxifen IN Women at very high risk of breast cancer (5-year Gail model risk>5%) - age 35	10818	16000	Hershman et al., 2002 (49)
Tamoxifen for primary prevention VERSUS No Tamoxifen IN Women at very high risk of breast cancer (5-year Gail model risk>5%) - age 50	27901	41000	Hershman et al., 2002 (49)
Tamoxifen for primary prevention VERSUS No Tamoxifen IN Women at very high risk of breast cancer (5-year Gail model risk>5%) - age 60	54884	80000	Hershman et al., 2002 (49)
Tamoxifen for primary prevention VERSUS No Tamoxifen IN Women at very high risk of breast cancer (lobular carcinoma-in-situ) - age 35	16232	24000	Hershman et al., 2002 (49)
Tamoxifen for primary prevention VERSUS No Tamoxifen IN Women at very high risk of breast cancer (lobular carcinoma-in-situ) - age 50	37351	54000	Hershman et al., 2002 (49)
Tamoxifen for primary prevention VERSUS No Tamoxifen IN Women at very high risk of breast cancer (lobular carcinoma in-situ) - age 60	68334	99000	Hershman et al., 2002 (49)
Tamoxifen for primary prevention VERSUS No Tamoxifen IN Women at very high risk of breast cancer (two or more first-degree relatives affected) - age 35	40990	60000	Hershman et al., 2002 (49)
Tamoxifen for primary prevention VERSUS No Tamoxifen IN Women at very high risk of breast cancer (two or more first-degree relatives affected) - age 50	80869	120000	Hershman et al., 2002 (49)

Tamoxifen for primary prevention VERSUS No Tamoxifen IN Women at very high risk of breast cancer (two or more first-degree relatives affected) - age 60	127750	190000	Hershman et al., 2002 (49)
Tamoxifen and chemotherapy VERSUS Tamoxifen alone IN Postmenopausal women with node-positive early breast cancer	5279	7300	Karnon et al., 2002 (50)
Mastectomy, chemotherapy, and postmastectomy radiation therapy VERSUS Mastectomy and chemotherapy IN Premenopausal women who have undergone mastectomy and are lymph-node positive status - age 45	22600	31000	Lee et al., 2002 (51)
Adjuvant chemotherapy (AC) plus surgery VERSUS Surgery alone IN Women with estrogen-receptor positive breast cancer and negative lymph nodes (early stage:confined to the breast or spread only to lymph nodes under the arm) - age 45	3278	4700	Malin et al., 2002 (52)
Adjuvant chemotherapy (AC) and tamoxifen plus surgery VERSUS Adjuvant chemotherapy (AC) plus surgery IN Women with estrogen- receptor positive breast cancer and negative lymph nodes (early stage:confined to the breast or spread only to lymph nodes under the arm) - age 45	5428	7700	Malin et al., 2002 (52)
Adjuvant chemotherapy (AC) plus surgery VERSUS Surgery alone IN Women with estrogen-receptor positive breast cancer and negative lymph nodes (early stage:confined to the breast or spread only to lymph nodes under the arm) - age 45	3278	4700	Malin et al., 2002 (52)
Tamoxifen plus surgery VERSUS Surgery alone IN Women with estrogen-receptor positive breast cancer and negative lymph nodes (early stage:confined to the breast or spread only to lymph nodes under the arm) - age 60	6176	8800	Malin et al., 2002 (52)

Adjuvant chemotherapy (AC) plus surgery VERSUS Tamoxifen plus surgery IN Women with estrogen-receptor positive breast cancer and negative lymph nodes (early stage:confined to the breast or spread only to lymph nodes under the arm) - age 60	13050	19000	Malin et al., 2002 (52)
Adjuvant chemotherapy (AC) plus surgery VERSUS Surgery alone IN Women with estrogen-receptor positive breast cancer and negative lymph nodes (early stage:confined to the breast or spread only to lymph nodes under the arm) - age 60	9866	14000	Malin et al., 2002 (52)
Adjuvant chemotherapy (AC) and tamoxifen plus surgery VERSUS Surgery alone IN Women with estrogen-receptor positive breast cancer and negative lymph nodes (early stage:confined to the breast or spread only to lymph nodes under the arm) - age 60	7375	10000	Malin et al., 2002 (52)
Tamoxifen plus surgery VERSUS Surgery alone IN Women with estrogen-receptor positive breast cancer and negative lymph nodes (early stage:confined to the breast or spread only to lymph nodes under the arm) - age 60	4335	6200	Malin et al., 2002 (52)
Adjuvant chemotherapy (AC) and tamoxifen plus surgery VERSUS Tamoxifen plus surgery IN Women with estrogen-receptor positive breast cancer and negative lymph nodes (early stage:confined to the breast or spread only to lymph nodes under the arm) - age 60	8385	12000	Malin et al., 2002 (52)
Adjuvant chemotherapy (AC) and tamoxifen plus surgery VERSUS Adjuvant chemotherapy (AC) plus surgery IN Women with estrogen- receptor positive breast cancer and negative lymph nodes (early stage:confined to the breast or spread only to lymph nodes under the arm) - age 45	3577	5100	Malin et al., 2002 (52)

Adjuvant chemotherapy (AC) plus surgery VERSUS Surgery alone IN Women with estrogen-receptor positive breast cancer and negative lymph nodes (early stage:confined to the breast or spread only to lymph nodes under the arm) - age 45	2636	3700	Malin et al., 2002 (52)
Adjuvant chemotherapy (AC) plus surgery VERSUS Surgery alone IN Women with estrogen-receptor positive breast cancer and negative lymph nodes (early stage:confined to the breast or spread only to lymph nodes under the arm) - age 45	2636	3700	Malin et al., 2002 (52)
Breast conservation surgery with radiation VERSUS Mastectomy IN Female Medicare recipients with Stage I or II breast cancer with no previous cancer diagnosis - age 67+	219594	290000	Polsky et al., 2003 (53)
Patient choice between breast conservation surgery with radiation treatment (BCSRT) or mastectomy VERSUS Mastectomy IN Female Medicare recipients with Stage I or II breast cancer with no previous cancer diagnosis - age 67+	80440	110000	Polsky et al., 2003 (53)
Letrozole (2.5 mg/day) as first-line hormonal therapy VERSUS Tamoxifen (20 mg/day) as first-line hormonal therapy IN Postmenopausal women with advanced breast cancer that is estrogen receptor and/or progesterone receptor positive or of unknown receptor status	5226	7200	Karnon et al., 2003 (54)
Letrozole - 2.5 mg daily VERSUS Tamoxifen - 20mg daily IN Postmenopausal women with advanced hormone-sensitive breast cancer who have not received first-line hormonal therapy in the advanced setting	8949	12000	Dranitsaris et al., 2003 (55)
Anastrozole - 1 mg daily VERSUS Tamoxifen - 20mg daily IN Postmenopausal women with advanced hormone-sensitive breast cancer who have not received first-line hormonal therapy in the advanced setting	14032	18000	Dranitsaris et al., 2003 (55)

Use of free transverse rectus abdominis myocutaneous (TRAM) flap VERSUS Use of unipedicled TRAM flap IN Postmastectomy reconstruction patients	3303	4400	Thoma et al., 2003 (56)
Treatment with first-line letrozole (with the option of second-line tamoxifen) VERSUS Treatment with first-line tamoxifen (with the option of second-line letrozole) IN Postmenopausal women with advanced breast cancer	121976	160000	Karnon et al., 2003 (57)
Tamoxifen administration for five years modelled to represent 5 years total of breast cancer prevention VERSUS Placebo administration for five years IN Hypothetical cohort of initially healthy women in Australia at high risk for breast cancer	28461	42000	Eckermann et al., 2003 (58)
Tamoxifen administration for five years modelled to represent 10 years total of breast cancer prevention VERSUS Placebo administration for five years IN Hypothetical cohort of initially healthy women in Australia at high risk for breast cancer	14393	21000	Eckermann et al., 2003 (58)
Tamoxifen administration for five years modelled to represent no reduced incidence at 10 years ("delayed") VERSUS Placebo administration for five years IN Hypothetical cohort of initially healthy women in Australia at high risk for breast cancer	148103	220000	Eckermann et al., 2003 (58)
VERSUS IN Women newly diagnosed with metastatic breast cancer - age 65	125100	160000	Elkin et al., 2004 (59)
VERSUS IN Women newly diagnosed with metastatic breast cancer - age 65		Increases Costs, Decreases Health	Elkin et al., 2004 (59)
VERSUS IN Women newly diagnosed with metastatic breast cancer - age 65		Increases Costs, Decreases Health	Elkin et al., 2004 (59)
VERSUS IN Women newly diagnosed with metastatic breast cancer - age 65	103600	140000	Elkin et al., 2004 (59)
VERSUS IN Women newly diagnosed with metastatic breast cancer - age 65		Increases Costs, Decreases Health	Elkin et al., 2004 (59)

VERSUS IN Women newly diagnosed with metastatic breast cancer - age 65	131950	Increases Costs, Decreases Health	Elkin et al., 2004 (59)
Tamoxifen for 5 years VERSUS No treatment IN Women with assumed 5- year breast cancer risk of 3.4% - age 50	43300	57000	Cykert et al., 2004 (60)
Anastrozole (5 years) plus 4 years follow-up VERSUS Tamoxifen (5 years) plus 4 years follow-up IN Women with estrogen-receptor positive breast cancer who have undergone primary surgery and/or completed chemotherapy - age 64	533000	700000	Hillner et al., 2004 (61)
Anastrozole (5 years) plus 8 years follow-up VERSUS Tamoxifen (5 years) plus 8 years follow-up IN Women with estrogen-receptor positive breast cancer who have undergone primary surgery and/or completed chemotherapy - age 64	201800	270000	Hillner et al., 2004 (61)
Anastrozole (5 years) plus 12 years follow-up VERSUS Tamoxifen (5 years) plus 12 years follow-up IN Women with estrogen-receptor positive breast cancer who have undergone primary surgery and/or completed chemotherapy - age 64	111300	150000	Hillner et al., 2004 (61)
Anastrozole followed by tamoxifen, then megestrol VERSUS Tamoxifen followed by anastrozole, then megestrol IN Postmenopausal women with estrogen receptor positive (ER+) metastatic breast cancer in Italy	12221	16000	Marchetti et al., 2004 (62)
Letrozole followed by tamoxifen, then megestrol VERSUS Tamoxifen followed by anastrozole, then megestrol IN Postmenopausal women with estrogen receptor positive (ER+) metastatic breast cancer in Italy	19116	25000	Marchetti et al., 2004 (62)
Cyclophosphamide, methotrexate and fluorouracil 5FU (CMF) chemotherapy VERSUS No treatment IN Women with node negative early breast cancer - age 65 and 75	30451	41000	Naeim et al., 2005 (63)
Doxorubicin and cyclophosphamide (AC) chemotherapy VERSUS Cyclophosphamide, methotrexate and fluorouracil 5FU (CMF) chemotherapy IN Women with node negative early breast cancer - age 65 and 75	46572	62000	Naeim et al., 2005 (63)

Breast conserving surgery plus radiation VERSUS Breast conserving surgery alone IN Women with diagnosis of ductul carcinoma in situ of the breast - age 55	36700	48000	Suh et al., 2005 (64)
Oral ibandronate VERSUS Generic IV pamidronate IN Female breast cancer patients with metastatic bone disease undergoing IV chemotherapy	-18308	Cost- Saving	De Cock et al., 2005 (65)
Oral ibandronate VERSUS Zoledronic Acid IN Female breast cancer patients with metastatic bone disease undergoing IV chemotherapy	-33209	Cost- Saving	De Cock et al., 2005 (65)
Proton radiation VERSUS Conventional radiation IN Women with left- sided breast cancer - age 55	63341	83000	Lundkvist et al., 2005 (66)
Oral capacitabine plus docetaxel VERSUS Docetaxel alone IN Patients with advanced breast carcinima - anthracycline pretreated metastatic breast carcinoma (MBC)	13558	18000	Verma et al., 2005 (67)
Targeting chemotherapy with RT-PCR VERSUS Treatment without RT- PCR IN Patients with lymph-node-negative, estrogen-receptor-positive, early stage breast cancer, classified as intermediate/high risk	31452	39000	Hornberger et al., 2005 (68)
Targeting chemotherapy with RT-PCR VERSUS Treatment without RT- PCR IN Patients with lymph-node-negative, estrogen-receptor-positive, early stage breast cancer, classified as low risk	-59647	Cost- Saving	Hornberger et al., 2005 (68)
Oral ibandronate VERSUS IV zoledronic acid IN Women with breat cancer and metastatic bone disease who were assumed to be receiving oral hormonal therapy	-27971	Cost- Saving	De Cock et al., 2005 (69)
Oral ibandronate VERSUS IV Pamidronate IN Women with breat cancer and metastatic bone disease who were assumed to be receiving oral hormonal therapy	-13593	Cost- Saving	De Cock et al., 2005 (69)

Lymph node radiation therapy VERSUS No radiation therapy IN Women after undergoing surgery (mastectomy or tumorectomy with axillary clearance) for breast cancer stage I-III	-40669	Cost- Saving	Lievens et al., 2005 (70)
Tamoxifen (5 years) VERSUS Tamoxifen plus cyclophosphamide, methotrexate and 5-flurouracil IN Women with node positive early breast cancer - age 65 and older	12890	17000	Naeim et al., 2005 (71)
Home-based physiotherapy intervention VERSUS No intervention IN Breast cancer survivors in Australia	1127	1400	Gordon et al., 2005 (72)
Group-based exercise and psycosocial intervention VERSUS No intervention IN Breast cancer survivors in Australia	10663	13000	Gordon et al., 2005 (72)
Proton therapy VERSUS Conventional radiation therapy IN Patients with breast cancer	32417	43000	Lundkvist et al., 2005 (73)
Proton therapy VERSUS Conventional radiation therapy IN Patients with prostate cancer	25314	33000	Lundkvist et al., 2005 (73)
Proton therapy VERSUS Conventional radiation therapy IN Patients with head and neck cancer	3603	4700	Lundkvist et al., 2005 (73)
Proton therapy VERSUS Conventional radiation therapy IN Patients with head and neck cancer	-32731	Cost- Saving	Lundkvist et al., 2005 (73)
Anastrozole (5 years) VERSUS Tamoxifen alone (5 years) IN Post menopausal women with early breast cancer with lymph node negative - age 65	46991	59000	Lønning et al., 2006 (74)
Tamoxifen (5 years) and letrozole (5 years) VERSUS Tamoxifen alone (5 years) IN Post menopausal women with early breast cancer with lymph node negative - age 65	57203	72000	Lønning et al., 2006 (74)
Tamoxifen (2 years) and lexemestane (3 years) VERSUS Tamoxifen alone (5 years) IN Post menopausal women with early breast cancer with lymph node negative - age 65	29584	37000	Lønning et al., 2006 (74)
Tamoxifen (3 years) and lexemestane (2 years) VERSUS Tamoxifen alone (5 years) IN Post menopausal women with early breast cancer with lymph node negative - age 65	19780	25000	Lønning et al., 2006 (74)

Anastrozole (5 years) VERSUS Tamoxifen alone (5 years) IN Post menopausal women with early breast cancer with lymph node positive - age 65	44435	56000	Lønning et al., 2006 (74)
Tamoxifen (5 years) and letrozole (5 years) VERSUS Tamoxifen alone (5 years) IN Post menopausal women with early breast cancer with lymph node positive - age 65	47125	59000	Lønning et al., 2006 (74)
Tamoxifen (2 years) and exemestane (3 years) VERSUS Tamoxifen alone (5 years) IN Post menopausal women with early breast cancer with lymph node positive - age 65	26333	33000	Lønning et al., 2006 (74)
Tamoxifen (3 years) and exemestane (2 years) VERSUS Tamoxifen alone (5 years) IN Post menopausal women with early breast cancer with lymph node positive - age 65	17663	22000	Lønning et al., 2006 (74)
VERSUS IN Postmenopausal women with early Breast cancer- strogen receptors positive	18950	24000	Karnon et al., 2006 (75)
VERSUS IN Post-menopausal, hormone receptor positive HR+ early breast cancer patients	21550	27000	Rocchi et al., 2006 (76)
VERSUS IN Breast cancer patients with bone metastases and receiving chemotherapy or hormone therapy	1070	1300	Botteman et al., 2006 (77)
VERSUS IN Breast cancer patients with bone metastases and receiving chemotherapy or hormone therapy	4344	5400	Botteman et al., 2006 (77)
VERSUS IN Breast cancer patients with bone metastases and receiving chemotherapy or hormone therapy	-20385	Cost- Saving	Botteman et al., 2006 (77)
VERSUS IN Breast cancer patients with bone metastases and receiving chemotherapy or hormone therapy	-19779	Cost- Saving	Botteman et al., 2006 (77)

VERSUS IN Patients with BRCA2 Mutation Carriers aged 30-69	101000	120000	Plevritis et al., 2006 (78)
VERSUS IN Patients with BRCA1 Mutation Carriers aged 25-69	18592	23000	Plevritis et al., 2006 (78)
VERSUS IN Patients with BRCA2 Mutation Carriers aged 25-69	28421	34000	Plevritis et al., 2006 (78)
VERSUS IN Patients with BRCA1 Mutation Carriers aged 30-69	52675	64000	Plevritis et al., 2006 (78)
VERSUS IN Premenopausal early breast cancer women who had axillary lymph nodes positive	18339	23000	Limwattananon et al., 2006 (79)
VERSUS IN Women 40 years old or older	35000	48000	Stout et al., 2006 (80)
VERSUS IN Women 40 years old or older	28000	38000	Stout et al., 2006 (80)
VERSUS IN Women 40 years old or older	35000	48000	Stout et al., 2006 (80)
VERSUS IN Women 40 years old or older	34000	47000	Stout et al., 2006 (80)
VERSUS IN Women 40 years old or older	47000	65000	Stout et al., 2006 (80)
VERSUS IN Women 40 years old or older	49000	67000	Stout et al., 2006 (80)
VERSUS IN Women 40 years old or older	46667	64000	Stout et al., 2006 (80)
VERSUS IN Women 40 years old or older	27000	37000	Stout et al., 2006 (80)
VERSUS IN Spanish postmenopausal women diagnosed with strogen receptor positive OBC- (20 years time horizon)	61519	77000	Gil et al., 2006 (81)

VERSUS IN Spanish postmenopausal women diagnosed with strogen receptor positive OBC- (study: IES 2005)(20 years time horizon)	43995	55000	Gil et al., 2006 (81)
VERSUS IN Spanish postmenopausal women diagnosed with strogen receptor positive OBC- (20 years time horizon)	77710	97000	Gil et al., 2006 (81)
VERSUS IN Spanish postmenopausal women diagnosed with strogen receptor positive OBC- (based on IES 2004)(20 years time horizon)	35883	45000	Gil et al., 2006 (81)
VERSUS IN Breast cancer patient in adjuvant chemotherapy	386301	480000	Fagnoni et al., 2006 (82)
VERSUS IN Post-menopausal women with early breast cancer and estrogen or progesterone receptor positive tumor who had completed 5 years of tamoxifen	28728	36000	Delea et al., 2006 (83)
VERSUS IN Patients with hormone receptor positive (HR1) early breast cancer (EBC).	4923	6200	Moeremans et al., 2006 (84)
VERSUS IN Patients with clinically node-negative breast cancer undergoing sentinel lymph node biopsy - tumor stage 2	5600	6800	Jeruss et al., 2006 (85)
VERSUS IN Patients with clinically node-negative breast cancer undergoing sentinel lymph node biopsy - tumor stage 3	-1500	Cost- Saving	Jeruss et al., 2006 (85)
VERSUS IN Patients with clinically node-negative breast cancer undergoing sentinel lymph node biopsy - tumor stage 4	-4450	Cost- Saving	Jeruss et al., 2006 (85)

VERSUS IN Patients with clinically node-negative breast cancer undergoing sentinel lymph node biopsy - tumor stage 1	10967	13000	Jeruss et al., 2006 (85)
VERSUS IN 62 year old women with early breast cancer with 100% node-positive	29642	37000	El Ouagari et al., 2007 (86)
VERSUS IN 62 year old women with early breast cancer with 100% node-negative	35441	44000	El Ouagari et al., 2007 (86)
VERSUS IN 62 year old women with early breast cancer with 50% node- positive, 50% node-negative	35734	45000	El Ouagari et al., 2007 (86)
VERSUS IN Post menopausal women with early stage breast cancer	22814	28000	Skedgel et al., 2007 (87)
VERSUS IN Post menopausal women with early stage breast cancer	-235829	Increases Costs, Decreases Health	Skedgel et al., 2007 (87)
VERSUS IN Post menopausal women with early stage breast cancer	6346	7700	Skedgel et al., 2007 (87)
VERSUS IN Postmenopausal women age 64 years who had received 2- 3 years of tamoxifen therapy following primary treatment of early-stage breast cancer	25343	31000	Lundkvist et al., 2007 (88)
Upfront Anastrazole 1mg daily for 5 years VERSUS Tamoxifen alone 20mg daily for 5 years IN Post-menopausal women with early breast cancer in Belgium	24875	30000	Skedgel et al., 2007 (89)
Sequential Tamoxifen- AI (Exemestane 25mg daily) for 2.5 years each VERSUS Tamoxifen alone 20mg daily for 5 years IN Post-menopausal women with early breast cancer in Belgium	6194	7500	Skedgel et al., 2007 (89)
Tamoxifen daily for 5 years followed by Letrozole 2.5mg daily for 3 years. VERSUS Tamoxifen alone 20mg daily for 5 years IN Post-menopausal women with early breast cancer in Belgium	13108	16000	Skedgel et al., 2007 (89)
Upfront Anastrazole 1mg daily for 5 years VERSUS Tamoxifen daily for 5 years followed by Letrozole 2.5mg daily for 3 years IN Post-menopausal	46450	56000	Skedgel et al., 2007 (89)

women with early breast cancer in Belgium			
Sequential Tamoxifen- AI (Exemestane 25mg daily) for 2.5 years each VERSUS Tamoxifen daily for 5 years followed by Letrozole 2.5mg daily for 3 years IN Post-menopausal women with early breast cancer in Belgium	-39491	Cost- Saving	Skedgel et al., 2007 (89)
Upfront Anastrazole 1 mg /daily VERSUS Sequential Tamoxifen- Al (Exemestane 25mg daily) for 2.5 years each IN Post-menopausal women with early breast cancer in Belgium	-2095048	Increases Costs, Decreases Health	Skedgel et al., 2007 (89)
Five years treatment with anastrozole VERSUS Five years treatment with tamoxifen IN Postmenopausal women age 64 with early (invasive, operable) breast cancer who had completed primary therapy (surgery and/or radiotherapy and/or chemotherapy) and who were eligible for adjuvant hormonal therapy	20246	25000	Locker et al., 2007 (90)
Adjuvant chemotherapy plus trastuzumab VERSUS Chemotherapy alone IN Patients with HER2-positive early breast cancer, from Italian health care system	14861	18000	Liberato et al., 2007 (91)
Adjuvant chemotherapy plus trastuzumab VERSUS Chemotherapy alone IN Patients with HER2-positive early breast cancer, from the United States health care system	18970	23000	Liberato et al., 2007 (91)
Anthracycline-based adjuvant trastuzumab therapy (AAT) VERSUS Nontrastuzumab (NT) therapy IN 49-year-old women with HER2/neu- positive early-stage breast cancer	39892	48000	Kurian et al., 2007 (92)
Nonanthracycline-based adjuvant trastuzumab therapy (NAT) VERSUS Nontrastuzumab (NT) therapy IN 49-year-old women with HER2/neu- positive early-stage breast cancer	58041	70000	Kurian et al., 2007 (92)
Nonanthracycline-based adjuvant trastuzumab therapy (NAT) VERSUS Anthracycline-based adjuvant trastuzumab therapy (AAT) IN 49-year-old women with HER2/neu-positive early-stage breast cancer	-102931	Increases Costs, Decreases Health	Kurian et al., 2007 (92)

Mammogram VERSUS No screening IN British women aged 30-49 with BRCA1 mutation	9659	11000	Norman et al., 2007 (93)
MRI VERSUS Mammogram IN British women aged 30-49 with BRCA1 mutation	24652	29000	Norman et al., 2007 (93)
MRI and mammography VERSUS MRI IN British women aged 30-49 with BRCA1 mutation	27896	33000	Norman et al., 2007 (93)
MRI and mammography VERSUS MRI IN British women aged 40 - 49 with BRCA1 mutation	12187	14000	Norman et al., 2007 (93)
MRI VERSUS Mammography IN British women aged 40 - 49 with BRCA1 mutation	15070	18000	Norman et al., 2007 (93)
Mammography VERSUS No screening IN British women aged 40 - 49 with BRCA1 mutation	5370	6300	Norman et al., 2007 (93)
FEC100 regimen, six cycles, 3-weekly basis, followed by trastuzumab 3- weekly, 17 cycles. VERSUS FEC100 regimen, six cycles, 3-weekly basis IN Patients with early breast cancer patients that overexpress HER2	47566	56000	Norum et al., 2007 (94)
Adjuvant chemotherapy with trastuzumab, 52 week course VERSUS Usual care IN 50-year-old patients with human epidermal growth factor receptor 2 protein (HER2)-positive breast cancer	17384	21000	Millar et al., 2007 (95)
Adjuvant chemotherapy with trastuzumab, 9 week course VERSUS Usual care IN 50-year-old patients with human epidermal growth factor receptor 2 protein (HER2)-positive breast cancer	1297	1600	Millar et al., 2007 (95)
Initial adjuvant treatment with Letrozole VERSUS Initial adjuvant treatment with Tamoxifen IN Postmenopausal women with hormone receptor-positive early breast cancer	23743	29000	Delea et al., 2007 (96)
Adjuvant exemestane for 2.5 years after 2.5 years of tamoxifen treatment VERSUS Continued tamoxifen for 5 years IN 64 years old Canadian postmenopausal women with ER positive primary breast cancer or unknown ER status	18614	23000	Risebrough et al., 2007 (97)
Doxorubicin and cyclophosphamide chemotherapy with adjuvant trastuzumab monotherapy VERSUS Doxorubicin and cyclophosphamide chemotherapy alone followed by paclitaxel IN 50 year old US women with early stage HER2-Positive breast cancer	27637	34000	Garrison et al., 2007 (98)

Biennial mammography screening VERSUS No mammography screening IN Hong Kong Women aged 50-69 Years old		Increases Costs, Decreases Health	Wong et al., 2007 (99)
Biennial mammography screening VERSUS No mammography screening IN Hong Kong Women aged 50-79 Years old		Increases Costs, Decreases Health	Wong et al., 2007 (99)
Biennial mammography screening VERSUS No mammography screening IN Hong Kong Women aged 40-69 Years old	61600	75000	Wong et al., 2007 (99)
Biennial mammography screening VERSUS No mammography screening IN Hong Kong Women aged 40-79 Years old	178800	220000	Wong et al., 2007 (99)
Anastrozole VERSUS Tamoxifen IN Postmenopausal women with early (invasive, operable) breast cancer	32363	41000	Mansel et al., 2007 (100)
Switching to exemestane after 2 to 3 years tamoxifen therapy VERSUS IN US post-menopausal women with early stage breast cancer; estrogen-receptor positive and estrogen receptor status unknown	20100	25000	Thompson et al., 2007 (101)
Switching to exemestane after 2 to 3 years tamoxifen therapy VERSUS Exclusively tamoxifen therapy IN US aged 60-70 post-menopausal women with early stage breast cancer; estrogen-receptor positive and estrogen receptor status known	16600	21000	Thompson et al., 2007 (101)
Ajuvant 5-flurouracil, epirubicin and cyclophosphamide-docetaxel VERSUS Ajuvant 5-flurouracil, epirubicin at 100 mg/m2 and cyclophosphamide IN Women who underwent adjuvant chemotherapy following surgical treatment of non-positive breast cancer	12889	15000	Younis et al., 2007 (102)
VERSUS IN Patients with lymph node negative, estrogen receptor positive early-stage breast cancer	11276	14000	Kondo et al., 2007 (103)
VERSUS IN Patients with lymph node negative, estrogen receptor positive early-stage breast cancer	27278	33000	Kondo et al., 2007 (103)

Adjuvant treatment with Letrozole VERSUS Adjuvant treatment with Tamoxifen IN Estrogen-receptor positive postmenopausal women with early invasive breast cancer who have undergone primary surgery and are starting adjuvant therapy	18894	23000	Karnon et al., 2008 (104)
Adjuvant treatment with Anastrozole VERSUS Adjuvant treatment with Tamoxifen IN Estrogen-receptor positive postmenopausal women with early invasive breast cancer who have undergone primary surgery and are starting adjuvant therapy	20803	25000	Karnon et al., 2008 (104)
Adjuvant therapy with letrozole VERSUS Adjuvant therapy with tamoxifen IN Postmenopausal women with HR+ early breast cancer aged 60 years at initiation of therapy	19544	24000	Delea et al., 2008 (105)
Immunohistochemical (IHC) test: 1-year adjuvant trastuzumab for IHC +3 patients; standard care for all other patients VERSUS Standard care IN 55 year old female with early breast cancer completely excised and after 4 cycles of chemotherapy	47572	58000	Lidgren et al., 2008 (106)
Immunohistochemical (IHC) test: 1-year adjuvant trastuzumab for IHC +2 and +3 patients; standard care for all other patients VERSUS Standard care IN Early breast cancer patients	66951	81000	Lidgren et al., 2008 (106)
Immunohistochemical (IHC) test, FISH confirmation for IHC +2 and +3 patients: 1-year adjuvant trastuzumab for FISH+ patients; standard care for all other patients VERSUS Standard care for all patients IN 55 year old female with early breast cancer completely excised and after 4 cycles of chemotherapy	44784	54000	Lidgren et al., 2008 (106)
FISH test: 1-year adjuvant trastuzumab for FISH+ patients; standard care for all other patients VERSUS Immunohistochemical (IHC) test, FISH confirmation for IHC +2 and +3 patients: 1-year adjuvant trastuzumab for FISH+ patients; standard care for all other patients IN 55 year old female with early breast cancer completely excised and after 4 cycles of chemotherapy	51626	63000	Lidgren et al., 2008 (106)

All-digital mammography screening VERSUS All film mammography screening IN United States women age 40 years or older	331000	400000	Tosteson et al., 2008 (107)
All-digital mammography screening, Age-targeted digital VERSUS Film imaging IN United States women age 40 years or older	26500	32000	Tosteson et al., 2008 (107)
All-digital mammography screening VERSUS Film imagine for breast cancer IN United States women age 40 years or older	830000	1000000	Tosteson et al., 2008 (107)
All-digital mammography screening VERSUS All film screening IN United States women age 65 years or older		Increases Costs, Decreases Health	Tosteson et al., 2008 (107)
Density-targeted mammography screening VERSUS Film imaging for breast cancer IN United States women age 65 years or older	97000	120000	Tosteson et al., 2008 (107)
Density-targeted screening VERSUS All film screening IN United States women age 65 years or older, alternative case scenario	62000	75000	Tosteson et al., 2008 (107)
All-digital mammography screening VERSUS All film screening IN United States women age 65 years or older, alternative case scenario	-66000	Increases Costs, Decreases Health	Tosteson et al., 2008 (107)
Docetaxel, doxorubicin, cyclophosphamide(TAC) VERSUS Fluorouracil, doxorubicin, cyclophosphamide(FAC) IN women with node-positive earlyl breast cancer(EBC) in the United Kingdom, treated for the first time with chemotherapy	33109	40000	Wolowacz et al., 2008 (108)
Breast cancer screening 3 times a year in women aged 40-80 years VERSUS Breast cancer creening 3 times a year in women aged 40-75 years IN 40- year-old Slovenian women	52011	65000	Rojnik et al., 2008 (109)
High dose chemotherapy VERSUS Standard chemotherapy IN Nonmetastatic breast cancer women with more than 7 involved axillary lymph nodes, younger than 60 years of age and a World Health Organization performance status <= 2	20307	29000	Marino et al., 2008 (110)

50mg doxorubicin/m ² of body-surface area, 500mg cyclophosphamide/m ² , 75mg docetaxel/m ² VERSUS 50mg doxorubicin/m ² of body-surface area, 500mg cyclophosphamide/m ² , 500mg flourouracil/m ² IN Women with node positive breast cancer in Korea, following primary surgery	8682	11000	Lee et al., 2008 (111)
Docetaxel, doxorubicin, and cyclophosphamide (TAC) adjuvant chemotherapy VERSUS 5-fluorouracil, doxorubicin, and cyclophosphamide (FAC) adjuvant chemotherapy IN Node-positive breast cancer women	11787	16000	Au et al., 2008 (112)
IHC test, with FISH confirmation for 2+ and 3+ patients, trastuzumab and chemotherapy for FISH+ patients; chemotherapy alone for all other patients VERSUS Chemotherapy alone for all patients IN 65-year old Swedish metastatic breast cancer patients	65133	79000	Lidgren et al., 2008 (113)
FISH test, with trastuzumab and chemotherapy for FISH+ patients; chemotherapy alone for all other patients VERSUS IHC test, with FISH confirmation for 2+ and 3+ patients, trastuzumab and chemotherapy for FISH+ patients; chemotherapy alone for all other patients IN 65-year old Swedish metastatic breast cancer patients	75361	91000	Lidgren et al., 2008 (113)
IHC test, with FISH confirmation for 2+ and 3+ patients, trastuzumab and chemotherapy for FISH+ patients; chemotherapy alone for all other patients VERSUS IHC test, trastuzumab and chemotherapy for IHC 2+ and 3+ patients; chemotherapy alone for all other patients IN 65-year old Swedish metastatic breast cancer patients	- 29135708	Cost- Saving	Lidgren et al., 2008 (113)
Testing for BRCA 1/2 mutation VERSUS No testing, usual care IN US women aged at least 35 years old with an associated family risk of breast and/or ovarian cancer or whom are concerned about having a BRCA 1/2 mutation.	5000	5900	Holland et al., 2008 (114)

Primary prophylaxis with pegfilgrastim VERSUS Secondary prophylaxis with pegfilgrastim IN US women 30-80 years old with early (stage I-II) breast cancer receiving myelosuppresive chemotherapy with at least a 20% risk of febrile neutropenia	116000	140000	Ramsey et al., 2008 (115)
Tamoxifen VERSUS No tamoxifen IN Women aged 50 and above without a uterus	72531	85000	Melnikow et al., 2008 (116)
Tamoxifen VERSUS No tamoxifen IN Women aged 50 and over with estimated 5-year breast cancer risk>= 1.67 %	-227320	Increases Costs, Decreases Health	Melnikow et al., 2008 (116)
Tamoxifen VERSUS No tamoxifen IN Women aged 50 and over with estimated 5-year breast cancer risk>= 1.67 %	300030	350000	Melnikow et al., 2008 (116)
Tamoxifen VERSUS No tamoxifen IN Women aged 50 and over with estimated 5-year breast cancer risk>= 1.67 %	-5712	Increases Costs, Decreases Health	Melnikow et al., 2008 (116)
Tamoxifen VERSUS No tamoxifen IN Women aged 50 and over with estimated 5-year breast cancer risk>= 1.67 %	-5771	Increases Costs, Decreases Health	Melnikow et al., 2008 (116)
Tamoxifen VERSUS No tamoxifen IN Women aged 50 and over with estimated 5-year breast cancer risk>= 3 %	57935	68000	Melnikow et al., 2008 (116)
Tamoxifen VERSUS No tamoxifen IN Women aged 50 and over with estimated 5-year breast cancer risk>= 3 %	37365	44000	Melnikow et al., 2008 (116)
Tamoxifen VERSUS No tamoxifen IN Women aged 50 and over with estimated 5-year breast cancer risk>= 3 %	167718	200000	Melnikow et al., 2008 (116)

Tamoxifen VERSUS No tamoxifen IN Women aged 50 and over with estimated 5-year breast cancer risk>= 3 %	68262	80000	Melnikow et al., 2008 (116)
Tamoxifen VERSUS No tamoxifen IN Women aged 50 and over with estimated 5-year breast cancer risk>= 3 %	-5599	Increases Costs, Decreases Health	Melnikow et al., 2008 (116)
Tamoxifen VERSUS No tamoxifen IN Women aged 50 and over with estimated 5-year breast cancer risk>= 3 %	-5658	Increases Costs, Decreases Health	Melnikow et al., 2008 (116)
Tamoxifen VERSUS No tamoxifen IN Women aged 50 and above with a uterus	190850	220000	Melnikow et al., 2008 (116)
Magnetic resonance (MR) lymphangiography VERSUS No treatment IN 61 year old women with clinically node negative early breast cancer who chose breast conserving surgery with radiation therapy; cancer is: 1-2 cm, grade I, estrogen and progesterone receptor positive, and HER2/neu negative	37244	44000	Pandharipande et al., 2008 (117)
Magnetic resonance lymphangiography and sentinel lymph node biopsy VERSUS Sentinel lymph node biopsy IN 61 year old women with clinically node negative early breast cancer who chose breast conserving surgery with radiation therapy; cancer is: 1-2 cm, grade I, estrogen and progesterone receptor positive, and HER2/neu negative	93333	110000	Pandharipande et al., 2008 (117)
External beam partial breast irradiation (EB-PBI) VERSUS Whole breast radiation therapy (WBRT) IN 55 year old United States postmenopausal women with stage I breast cancer that is estrogen receptor positive	630000	790000	Sher et al., 2008 (118)

MammoSite partial breast irradiation (MS-PBI) VERSUS Whole breast radiation therapy (WBRT) IN 55 year old United States postmenopausal women with stage I breast cancer that is estrogen receptor positive		Increases Costs, Decreases Health	Sher et al., 2008 (118)
Hormone therapy for advanced breast cancer: anastrozole/letrozole, fulvestrant, exemestane, docetaxel, capecitabine, and best supportive care VERSUS Hormone therapy for advanced breast cancer: anastrozole, exemestane, docetaxel, capecitabine, and best supportive care IN United Kingdom women with hormone receptor positive advanced breast cancer, previously treated with adjuvant Tamoxifen	13289	16000	Cameron et al., 2008 (119)
Hormone therapy for advanced breast cancer: anastrozole/letrozole, fulvestrant, exemestane, docetaxel, capecitabine, and best supportive care VERSUS Hormone therapy for advanced breast cancer: anastrozole, exemestane, docetaxel, capecitabine, and best supportive care IN United Kingdom women with hormone receptor positive advanced breast cancer previously treated with adjuvant Tamoxifen	-18709	Cost- Saving	Cameron et al., 2008 (119)
Nab-paclitaxel (260 mg/m ² q3wk) VERSUS Paclitaxel (175 mg/m ² q3wk) IN Patients with metastatic breast cancer in Canada	50101	59000	Dranitsaris et al., 2008 (120)
Docetaxel (100 mg/m ² q3wk) VERSUS Paclitaxel (175 mg/m ² q3wk) IN Patients with metastatic breast cancer in Canada	652365	770000	Dranitsaris et al., 2008 (120)
Superficial inferior epigastric artery (SIEA) flap in postmastectomy reconstruction VERSUS Deep inferior epigastric perforator (DIEP) flap in postmastectomy reconstruction IN Adult women undergoing postmastectomy reconstruction for breast cancer in Canada	68	80	Thoma et al., 2008 (121)
Lapatinib + Capecitabine (150-mg capecitabine tablet Capecitabine + 250-mg lapatinib tablet) VERSUS Capecitabine (150-mg tablet) IN HER-2 positive women within the US healthcare system diagnosed with advanced breast cancer	163583	190000	Le et al., 2009 (122)
Fulvestrant as an adjuvant therapy for advanced breast cancer VERSUS Usual care chemotherapy to treat advanced breast cancer IN Women with advanced breast cancer within the German healthcare system.	-36823	Cost- Saving	Lux et al., 2009 (123)

MRI (Magnetic Resonance Imaging) screening for malignant breast tumors VERSUS Mammography screening for malignant breast tumors IN Women within the United States healthcare system with a high-risk for breast cancer. Women at increased risk of breast cancer include those with (i) a history of thoracic or mantle irradiation, (ii) a strong family history or genetic predisposition, (iii) lobular carcinoma in situ or atypical hyperplasia, (iv) a prior history of breast cancer, and/or (v) those over 35 years of age with a 5-year risk of invasive breast cancer = 1.7% according to the modified Gail Model.	134070	160000	Moore et al., 2009 (124)
Bevacizumab,10 mg/kg body weight + Paclitaxel,90 mg/m2 body surface- area VERSUS Paclitaxel,90 mg/m2 body surface-area IN Women positively diagnosed with metastatic breast cancer; HER-2 negative genotype	278943	310000	Dedes et al., 2009 (125)
TAC: Docetaxel 75 mg/m2 + doxorubicin 50 mg/m2 + cyclophosphamide 500 mg/m2 (as one administration per cycle for 6 cycles of 21 days) VERSUS FAC: 5-FU 500 mg/m2 + doxorubicin 50 mg/m2 + cyclophosphamide 500 mg/m2 (as one administration per cycle for 6 cycles of 21 days) IN Spanish women with operable, positive-node, breast cancer and no relapse	3275	4000	Martín- Jiménez et al., 2009 (126)
Magnetic resonance imaging of breast tissue with adjuvant x-ray mammograph VERSUS X-ray mammograph IN US Women with BRCA 1/2 at high risk for breast cancer	25277	31000	Taneja et al., 2009 (127)
Biennial mammography and annual Clinical breast exam from ages 40 to 79 years VERSUS Mammography, with or without clinical breast exam, 2 years for women ages 40 years and older IN US women aged 40 to 79 years old	90100	110000	Ahern et al., 2009 (128)

Annual mammography for women aged 40-59, biannual mammography for women aged 60-76, annual clinical breast exam for women aged 40- 79 VERSUS Biennial mammography and annual clinical breast exam from ages 40 to 79 years IN US women aged 40 to 79 years old	169500	210000	Ahern et al., 2009 (128)
Annual mammography and clinical breast exam for women aged 40-79 VERSUS Annual mammography for women aged 40-59, biannual mammography for women aged 60-76, annual clinical breast exam for women aged 40-79, with usual care for breast cancer following positive diagnosis IN US women aged 40 to 79 years old	428571	540000	Ahern et al., 2009 (128)
Annual mammography and clinical breast exam for women aged 40-79, triannual clinical breast exam for women aged 20-39 VERSUS Annual mammography and clinical breast exam for women aged 40-79 IN US women aged 40 to 79 years old	6111111	7700000	Ahern et al., 2009 (128)
Mammography, with or without clinical breast exam, 2 years for women ages 40 years and older VERSUS No screening, usual care for breast cancer following positive diagnosis IN US women aged 40 to 79 years old	28011	35000	Ahern et al., 2009 (128)
Annual breast cancer screening comprising mammography and clinical examination VERSUS No annual screening IN UK women with a family history of breast cancer or presence of BRCA1 or BRCA2 genes average age 48	9610	11000	Reis et al., 2009 (129)
Ixabepilone plus capecitabine: 40 mg/m2 on day 1 plus capecitabine 2,000mg/m2 per day for the first 14 days of each 21-day cycle VERSUS Capecitabine alone: 2,500 mg/m2 per day for the first 14 days of each 21- day cycle IN Metastatic breast cancer patients previously determined to be taxane-resistant and previously treated with or resistant to an anthracycline	359000	390000	Reed et al., 2009 (130)
Trastuzumab adjuvant therapy VERSUS No Trastuzumab adjuvant therapy IN Women (age 50-59) with metastatic human epidermal growth factor receptor 2 (HER2) positive breast cancer	10411	13000	Van Vlaenderen et al., 2009 (131)

Trastuzumab adjuvant therapy VERSUS No Trastuzumab adjuvant therapy IN Women (age 60-69) with metastatic human epidermal growth factor receptor 2 (HER2) positive breast cancer	15365	19000	Van Vlaenderen et al., 2009 (131)
Trastuzumab adjuvant therapy VERSUS No Trastuzumab adjuvant therapy IN Women (age 70-79) with metastatic human epidermal growth factor receptor 2 (HER2) positive breast cancer	31118	38000	Van Vlaenderen et al., 2009 (131)
Trastuzumab adjuvant therapy VERSUS No Trastuzumab adjuvant therapy IN Women (age >80) with metastatic human epidermal growth factor receptor 2 (HER2) positive breast cancer	119694	150000	Van Vlaenderen et al., 2009 (131)
Trastuzumab adjuvant therapy VERSUS No Trastuzumab adjuvant therapy IN Women (age <50) with metastatic human epidermal growth factor receptor 2 (HER2) positive breast cancer	8117	9800	Van Vlaenderen et al., 2009 (131)
Adjuvant Trastuzumab treatment (5-year) after chemotherapy treatment for breast-cancer VERSUS Usual Care, observation alone after chemotherapy IN US women with Her2/Neu-Positive Breast Cancer	65790	75000	Skedgel et al., 2009 (132)
Pegfilgrastim VERSUS 6-day regiment of filgrastim IN Women with early- stage breast cancer receiving chemotherapy in the United States	31511	37000	Lyman et al., 2009 (133)
Pegfilgrastim VERSUS 11-day regiment of filgrastim IN Women with early-stage breast cancer receiving chemotherapy in the United States	-300091	Cost- Saving	Lyman et al., 2009 (133)
Pegfilgrastim VERSUS Filgrastim (6-days) IN Women with early stage breast cancer receiving adjuvant chemotherapy associated with >20% febrile neutropenia risk	539	630	Danova et al., 2009 (134)
Treatment with trastuzumab VERSUS Treatment without trastuzumab IN United States patients with HER-2 positive early breast cancer	26417	38000	Garrison Jr et al., 2009 (135)

Treatment with trastuzumab VERSUS Treatment without trastuzumab IN United States patients with HER-2 positive metastatic breast cancer	85676	120000	Garrison Jr et al., 2009 (135)
Treatment with trastuzumab VERSUS Treatment without trastuzumab IN United States patients with HER-2 positive early and metastatic breast cancer	35600	52000	Garrison Jr et al., 2009 (135)
Pegfilgrastim VERSUS Filgrastim IN UK patients with breast cancer (additional differential impact on chemotherapy relative dose intensity (RDI) with long-term survival effects)	7670	9000	Liu et al., 2009 (136)
Pegfilgrastim VERSUS Filgrastim IN UK patients with breast cancer (additional differential impact on febrile neutropenia (FN)-related mortality)	15722	18000	Liu et al., 2009 (136)
Docetaxel (100 mg/m2, 1-hour intravenous (IV) infusion every 21 days) (Doc) VERSUS Paclitaxel (90mg/m2 every 7 days) (Pac1w) IN UK patients with metastatic breast cancer	8448	9900	Benedict et al., 2009 (137)
Docetaxel (100 mg/m2, 1-hour intravenous (IV) infusion every 21 days) (Doc) VERSUS Nano albumin-bound form of paclitaxel (260mg/m2 every 21 days) (Nab-P) IN UK patients with metastatic breast cancer	27086	32000	Benedict et al., 2009 (137)
Docetaxel (100 mg/m2, 1-hour intravenous (IV) infusion every 21 days) (Doc) VERSUS Paclitaxel (175 mg/m2, 3-hour IV infusion every 21 days) (Pac3w). IN UK patients with metastatic breast cancer	22677	27000	Benedict et al., 2009 (137)
Docetaxel/ cyclophosphamide (TC) VERSUS Doxorubicin/ cyclophosphamide (AC) IN Patients with breast cancer in China	3500	3800	Liubao et al., 2009 (138)
Breast cancer screening from ages 47-49 VERSUS No breast cancer screening ages 47-49 IN Women aged 47-49 years in the UK	54855	63000	Madan et al., 2009 (139)
Recurrence score derived from each patient's gene tumor expression profile (21 gene assay), to guide adjuvant treatment VERSUS Tamoxifen only IN Lymph node negative, estrogen receptor positive women with early-stage breast cancer		Cost- Saving	Cosler et al., 2009 (140)

	1105	1000	<u> </u>
Recurrence score derived from each patient's gene tumor expression profile (21 gene assay), to guide adjuvant treatment VERSUS Chemotherapy + tamoxifen IN Lymph node negative, estrogen receptor positive women with early-stage breast cancer	4432	4900	Cosler et al., 2009 (140)
Delayed zoledronic acid VERSUS No zoledronic acid IN Dutch women with early stage breast cancer receiving letrozole	32170	37000	Logman et al., 2009 (141)
Upfront zoledronic acid VERSUS No zoledronic acid IN Dutch women with early stage breast cancer receiving letrozole	43990	50000	Logman et al., 2009 (141)
Upfront zoledronic acid VERSUS Delayed zoledronic acid IN Dutch women with early stage breast cancer receiving letrozole	49786	57000	Logman et al., 2009 (141)
Anthracycline plus docetaxel (Taxotere; FEC-D) VERSUS Anthracyclines alone (FEC-100) IN United States adult women with node-positive breast cancer	9665	11000	Marino et al., 2009 (142)
1-year adjuvant treatment with trastuzumab VERSUS Standard adjuvant chemotherapy IN Patients with early HER2 positive breast cancer receiving adjuvant treatment in Shanghai, China	8049	9200	Chen et al., 2009 (143)
1-year adjuvant treatment with trastuzumab VERSUS Standard adjuvant chemotherapy IN Patients with early HER2 positive breast cancer receiving adjuvant treatment in Guangzhou, China	8046	9200	Chen et al., 2009 (143)
1-year adjuvant treatment with trastuzumab VERSUS Standard adjuvant chemotherapy IN Patients with early HER2 positive breast cancer receiving adjuvant treatment in Beijing, China	7676	8800	Chen et al., 2009 (143)
Adjuvant trastuzumab given for 1 year upon presentation with early breast cancer VERSUS No adjuvant treatment IN Dutch women diagnosed with early breast cancer and genotyped as HER-2 positive	-6	Cost- Saving	Essers et al., 2010 (144)
Annual MR imaging VERSUS Annual screen-film mammography IN United States women with BRCA1 mutations	203384	230000	Lee et al., 2010 (145)
Annual combined screening VERSUS Annual screen-film mammography IN United States women with BRCA1 mutations	69125	79000	Lee et al., 2010 (145)
Annual screen-film mammography VERSUS Clinical surveillance IN United States women with BRCA1 mutations	16751	19000	Lee et al., 2010 (145)

TAC regimen: given on day 1 every 3 weeks for 6 cycles VERSUS FAC regimen: given on day 1 every 3 weeks for 6 cycles IN Breast cancer in Canadian women with operable, axillary lymph node-positive breast cancer aged 18-70.	6040	7100	Mittmann et al., 2010 (146)
TAC & G-CSF regimen: given on day 1 every 3 weeks for 6 cycles VERSUS FAC regimen: given on day 1 every 3 weeks for 6 cycles IN Breast cancer in Canadian women with operable, axillary lymph node- positive breast cancer aged 18-70.	11506	14000	Mittmann et al., 2010 (146)
Dose-dense (DD) AC-T q2wk with prophylactic granulocyte colony- stimulating factor VERSUS Doxorubicin, cyclophosphamide, and paclitaxel (AC-T) q3wk IN Patients with high-risk early breast cancer in Japan, beginning treatment at age 35	2677	3100	Author et al., 2010 (147)
Dose-dense (DD) AC-T q2wk with prophylactic granulocyte colony- stimulating factor VERSUS Doxorubicin, cyclophosphamide, and paclitaxel (AC-T) q3wk IN Patients with high-risk early breast cancer in Japan, beginning treatment at age 45	3269	3800	Author et al., 2010 (147)
Dose-dense (DD) AC-T q2wk with prophylactic granulocyte colony- stimulating factor VERSUS Doxorubicin, cyclophosphamide, and paclitaxel (AC-T) q3wk IN Patients with high-risk early breast cancer in Japan, beginning treatment at age 55	3438	4000	Author et al., 2010 (147)
Docetaxel, doxorubicin, and cyclophosphamide (TAC) with prophylactic granulocyte colonystimulating factor VERSUS Fluorouracil, doxorubicin, and cyclophosphamide (FAC) IN Patients with high-risk early breast cancer in Japan, beginning treatment at age 35	7908	9300	Author et al., 2010 (147)
Docetaxel, doxorubicin, and cyclophosphamide (TAC) with prophylactic granulocyte colonystimulating factor VERSUS Fluorouracil, doxorubicin, and cyclophosphamide (FAC) IN Patients with high-risk early breast cancer in Japan, beginning treatment at age 45	9280	11000	Author et al., 2010 (147)
Docetaxel, doxorubicin, and cyclophosphamide (TAC) with prophylactic granulocyte colonystimulating factor VERSUS Fluorouracil, doxorubicin, and cyclophosphamide (FAC) IN Patients with high-risk early breast cancer in Japan, beginning treatment at age 55	10535	12000	Author et al., 2010 (147)

70-gene signature VERSUS Currently used clinical guidelines, Adjuvant Online IN 1000 patients in hypothetical cohort, aged 50 years with early, operable node-negative, estrogen receptor (ER) positive breast cancer	5744	7000	Retel et al., 2010 (148)
70-gene signature VERSUS Currently used clinical guidelines, Sankt Gallen IN 1000 patients in hypothetical cohort, aged 50 years with early, operable node-negative, estrogen receptor (ER) positive breast cancer	-7708	Cost- Saving	Retel et al., 2010 (148)
Fluorescence in situ hybridisation (FISH) VERSUS No trastuzumab IN Female breast cancer patients (aged 50 years), with an assumption of 20% to be HER-2-positive	17064	19000	Blank et al., 2010 (149)
munohistochemistry (IHC) VERSUS Fluorescence in situ hybridisation (FISH) IN Female breast cancer patients (aged 50 years), with an assumption of 20% to be HER-2-positive	-69517	Increases Costs, Decreases Health	Blank et al., 2010 (149)
Parallel immunohistochemistry (IHC) and fluorescence in situ hybridisation (FISH) VERSUS Fluorescence in situ hybridisation (FISH) IN Female breast cancer patients (aged 50 years), with an assumption of 20% to be HER-2-positive	557633	620000	Blank et al., 2010 (149)
No test VERSUS Fluorescence in situ hybridisation (FISH) IN Female breast cancer patients (aged 50 years), with an assumption of 20% to be HER-2-positive	18752375	21000000	Blank et al., 2010 (149)
Immunohistochemistry (IHC) first, flourescence in situ hybridism (FISH) only for IHC2+ VERSUS No trastuzumab IN Female breast cancer patients (aged 50 years), with an assumption of 20% to be HER-2- positive	18739	21000	Blank et al., 2010 (149)
Treatment for stage I breast cancer VERSUS No treatment IN Dutch women aged less than 75 years old.	8849	10000	Baeten et al., 2010 (150)
Treatment for stage IV breast cancer VERSUS No treatment IN Dutch women aged less than 75 years old.	22011	25000	Baeten et al., 2010 (150)
Treatment for stage II breast cancer VERSUS No treatment IN Dutch women aged less than 75 years old.	8852	10000	Baeten et al., 2010 (150)

Treatment for stage III breast cancer VERSUS No treatment IN Dutch women aged less than 75 years old.	6188	7100	Baeten et al., 2010 (150)
Treatment for all stage breast cancer VERSUS No treatment IN Dutch women aged less than 75 years old.	7346	8400	Baeten et al., 2010 (150)
Treatment for all stage breast cancer & preventive screening for breast cancer VERSUS No treatment or screening IN Dutch women aged less than 75 years old.	3339	3800	Baeten et al., 2010 (150)
Treatment for stage I breast cancer VERSUS No treatment or screening IN Dutch women aged older than 75 years old.	33939	39000	Baeten et al., 2010 (150)
Treatment for stage II breast cancer VERSUS No treatment or screening IN Dutch women aged older than 75 years old.	35495	41000	Baeten et al., 2010 (150)
Treatment for stage III breast cancer VERSUS No treatment or screening IN Dutch women aged older than 75 years old.	25415	29000	Baeten et al., 2010 (150)
Treatment for stage IV breast cancer VERSUS No treatment or screening IN Dutch women aged older than 75 years old.	95547	110000	Baeten et al., 2010 (150)
Treatment for all stages of breast cancer VERSUS No treatment or screening IN Dutch women aged older than 75 years old.	30019	34000	Baeten et al., 2010 (150)
Treatment for all stages of breast cancer and preventive screening VERSUS No treatment or screening IN Dutch women aged older than 75 years old.	16132	18000	Baeten et al., 2010 (150)
Anastrazole (Arimidex) VERSUS Tamoxifen IN Post-menopausal German women with early stage, horomone receptor positive breast cancer	31025	34000	Lux et al., 2010 (151)
Short stay program-Admission, surgery and discharge for breast cancer surgery within a 24 hour period VERSUS Usual care-Longer than 24 hours for admission, surgery and discharge for breast cancer IN Breast cancer surgery patients (societal perspective)		Cost- Saving	de Kok et al., 2010 (152)
Short stay program-Admission, surgery and discharge for breast cancer surgery within a 24 hour period VERSUS Usual care-Longer than 24 hours for admission, surgery and discharge for breast cancer IN Breast cancer surgery patients (patient perspective)		Cost- Saving	de Kok et al., 2010 (152)

Short stay program-Admission, surgery and discharge for breast cancer surgery within a 24 hour period VERSUS Usual care-Longer than 24 hours for admission, surgery and discharge for breast cancer IN Breast cancer surgery patients (health care perspective)		Cost- Saving	de Kok et al., 2010 (152)
Short stay program-Admission, surgery and discharge for breast cancer surgery within a 24 hour period VERSUS Usual care-Longer than 24 hours for admission, surgery and discharge for breast cancer IN Breast cancer surgery patients (health care perspective)		Cost- Saving	de Kok et al., 2010 (152)
Oncotype DX assay and recommendations for adjuvant treatment VERSUS Standard care IN Israeli women with estrogen receptor positive, lymph node negative, early stage breast cancer	10770	12000	Klang et al., 2010 (153)
Recurrence score (RS) guided treatment using 21-gene assay VERSUS Adjuvant! Online program (AOL) IN 50 year old women with lymph node- negative, hormone receptor-positive, early stage breast cancer	59542	65000	Tsoi et al., 2010 (154)
Capecitabine + continuation with trastuzumab VERSUS Capecitabine IN Swiss patients diagnosed with HER2+ breast cancer	137026	150000	Matter-Walstra et al., 2010 (155)
Prophylactic oophorectomy (tested positive to BRCA2) VERSUS Both prophylactic surgeries IN Women with new primary breast and ovarian cancers, aged 30-65 who tested positive for BRCA1 or BRCA2 mutations	4587	5100	Grann et al., 2010 (156)
Prophylactic oophorectomy (tested positive to BRCA1) VERSUS Both prophylactic surgeries IN Women with new primary breast and ovarian cancers, aged 30-65 who tested positive for BRCA1 or BRCA2 mutations	1741	1900	Grann et al., 2010 (156)
Raloxifene (for up to 5 years) VERSUS None IN US Caucasian women age 55 years old	22152	24000	lvergård et al., 2010 (157)
Adjuvant endocrine therapy plus 4 mg of zoledronic acid every 6 months for up to 3 years VERSUS Adjuvant endocrine therapy with goserlin and tamoxifen or anatrazole for up to 3 years IN US premenopausal women with hormone-responsive positive early breast cancer	-1844	Cost- Saving	Delea et al., 2010 (158)

Letrozole VERSUS Anastrozole IN Postmenopausal women with hormone receptor positive (HR+) early stage breast cancer who are treatment naïve (have 5 years of endocrine therapy remaining) in the United States	25846	29000	Lipsitz et al., 2010 (159)
Testing only women with medullary breast cancer VERSUS None IN Women diagnosed with breast cancer are younger than 50 years of age, did not have a previous history of ovarian cancer, nor had they had a previous bilateral salpingo-oophorectomy (BSO)	10250	11000	Kwon et al., 2010 (160)
Testing women with triple-negative breast cancers, aged <50 VERSUS Testing all women aged <40 IN Women diagnosed with breast cancer are younger than 50 years of age, did not have a previous history of ovarian cancer, nor had they had a previous bilateral salpingo-oophorectomy (BSO)	1750	1900	Kwon et al., 2010 (160)
Testing women with triple-negative breast cancers, aged <40 VERSUS None IN Women diagnosed with breast cancer are younger than 50 years of age, did not have a previous history of ovarian cancer, nor had they had a previous bilateral salpingo-oophorectomy (BSO)	8906	9800	Kwon et al., 2010 (160)
Testing women with triple-negative breast cancers, aged <50 VERSUS Testing women with triple-negative breast cancers, aged <40 IN Women diagnosed with breast cancer are younger than 50 years of age, did not have a previous history of ovarian cancer, nor had they had a previous bilateral salpingo-oophorectomy (BSO)	9084	10000	Kwon et al., 2010 (160)
Testing all women aged <50 VERSUS Testing women with triple-negative breast cancers, aged <50 IN Women diagnosed with breast cancer are younger than 50 years of age, did not have a previous history of ovarian cancer, nor had they had a previous bilateral salpingo-oophorectomy (BSO)	112908	120000	Kwon et al., 2010 (160)

Testing all women aged <40 VERSUS Testing women with triple-negative breast cancers, aged <40 IN Women diagnosed with breast cancer are younger than 50 years of age, did not have a previous history of ovarian cancer, nor had they had a previous bilateral salpingo-oophorectomy (BSO)	10988	12000	Kwon et al., 2010 (160)
Testing women with triple-negative breast cancers, aged <40 VERSUS Testing only women with medullary breast cancer IN Women diagnosed with breast cancer are younger than 50 years of age, did not have a previous history of ovarian cancer, nor had they had a previous bilateral salpingo-oophorectomy (BSO)	7860	8700	Kwon et al., 2010 (160)
Multimedia, multimodal physical activity program comprising of strength, balance, and endurance training elements VERSUS None IN Women undergoing adjuvant therapy following surgery for breast cancer in Australia	-20344	Increases Costs, Decreases Health	Haines et al., 2010 (161)
Polychemotherapy VERSUS None IN Women with node negative breast cancer	41155	45000	Chang et al., 2010 (162)
100mg per square-meter intravenous infusion of docetaxel (Doc) administered every 21 days VERSUS 80mg per square-meter intravenous infusion of paclitaxel administered once weekly (Pac-1w) IN Metastatic breast cancer patients with disease progression after anthracycline-containing chemotherapy regimen	411	450	Frías et al., 2010 (163)
Recurrence Score (RS) criteria-guided treatment based on the 21-gene reverse transcriptase-polymerase chain reaction assay with a patented algorithm (Oncotype DX Breast Cancer Assay) VERSUS St Gallen 2009 criteria-guided treatment IN Lymph node-negative (LN-), estrogen receptor-positive (ER+), early stage breast cancer (ESBC) patients at the age of 55	3733	4100	Kondo et al., 2010 (164)

Recurrence Score (RS) criteria-guided treatment based on the 21-gene reverse transcriptase-polymerase chain reaction assay with a patented algorithm (Oncotype DX Breast Cancer Assay) VERSUS St Gallen 2009 criteria-guided treatment IN Lymph node-negative LN- and Lymph node- positive LN+, estrogen receptor-positive (ER+), early stage breast cancer (ESBC) patients at the age of 55	5514	6100	Kondo et al., 2010 (164)
Positron emission tomography (PET) to identify axillary lymph node metases and control spread VERSUS Sentinel lymph node biopsy (SLNB) IN Newly diagnosed early stage breast cancer patients in the UK	-248820	Cost- Saving	Meng et al., 2011 (165)
Magentic resonance imaging (MRI) to identify axillary lymph node metases and control spread before SLNB VERSUS Sentinel lymph node biopsy (SLNB) IN Newly diagnosed early stage breast cancer patients in the UK	4805	5500	Meng et al., 2011 (165)
Positron emission tomography (PET) to identify axillary lymph node metases and control spread before SLNB VERSUS Sentinel lymph node biopsy (SLNB) IN Newly diagnosed early stage breast cancer patients in the UK	211211	240000	Meng et al., 2011 (165)
Magentic resonance imaging (MRI) to identify axillary lymph node metases and control spread VERSUS Sentinel lymph node biopsy (SLNB) IN Newly diagnosed early stage breast cancer patients in the UK	-31450	Cost- Saving	Meng et al., 2011 (165)
Low-fat diet VERSUS None IN Women aged 55 years consuming more than 36.8% of energy from fat at baseline: societal perspective	16560	18000	B?s et al., 2011 (166)
Low-fat diet VERSUS None IN Women aged 60 years consuming more than 36.8% of energy from fat at baseline: societal perspective	20349	22000	B?s et al., 2011 (166)
Low-fat diet VERSUS None IN Women aged 65 years consuming more than 36.8% of energy from fat at baseline: societal perspective	26146	29000	B?s et al., 2011 (166)
Low-fat diet VERSUS None IN Women aged 70 years consuming more than 36.8% of energy from fat at baseline: societal perspective	41085	45000	B?s et al., 2011 (166)

Low-fat diet VERSUS None IN Women aged 55 years consuming more than 36.8% of energy from fat at baseline: health care payer perspective	199505	220000	B?s et al., 2011 (166)
Low-fat diet VERSUS None IN Women aged 50 years at high risk for breast cancer with >= 32% of energy from fat: societal perspective	19199	21000	B?s et al., 2011 (166)
Low-fat diet VERSUS None IN Women aged 55 years at high risk for breast cancer with >= 32% of energy from fat: societal perspective	21394	24000	B?s et al., 2011 (166)
Low-fat diet VERSUS None IN Women aged 60 years at high risk for breast cancer with >= 32% of energy from fat: societal perspective	24059	26000	B?s et al., 2011 (166)
Low-fat diet VERSUS None IN Women aged 65 years at high risk for breast cancer with >= 32% of energy from fat: societal perspective	28442	31000	B?s et al., 2011 (166)
Low-fat diet VERSUS None IN Women aged 70 years at high risk for breast cancer with >= 32% of energy from fat: societal perspective	40769	45000	B?s et al., 2011 (166)
Low-fat diet VERSUS None IN Women aged 50 years consuming more than 36.8% of energy from fat at baseline: health care payer perspective	66059	73000	B?s et al., 2011 (166)
Low-fat diet VERSUS None IN Women aged 65 years consuming more than 36.8% of energy from fat at baseline: health care payer perspective	15051	17000	B?s et al., 2011 (166)
Low-fat diet VERSUS None IN Women aged 70 years consuming more than 36.8% of energy from fat at baseline: health care payer perspective	22390	25000	B?s et al., 2011 (166)
Low-fat diet VERSUS None IN Women aged 50 years with high risk for breast cancer with >= 32% of energy from fat: health care payer perspective	51698	57000	B?s et al., 2011 (166)

Low-fat diet VERSUS None IN Women aged 55 years with high risk for breast cancer with >= 32% of energy from fat: health care payer perspective	153460	170000	B?s et al., 2011 (166)
Low-fat diet VERSUS None IN Women aged 65 years with high risk for breast cancer with >= 32% of energy from fat: health care payer perspective	15786	17000	B?s et al., 2011 (166)
Low-fat diet VERSUS None IN Women aged 70 years with high risk for breast cancer with >= 32% of energy from fat: health care payer perspective	21659	24000	B?s et al., 2011 (166)
Low-fat diet VERSUS None IN Women aged 50 years consuming more than 36.8% of energy from fat at baseline: societal perspective	13773	15000	B?s et al., 2011 (166)
Nurse-led telephone follow up and educational group program VERSUS Nurse-led telephone follow up IN Dutch women who had recently completed breast cancer treatment requiring follow up	-344088	Cost- Saving	Kimman et al., 2011 (167)
Hospital follow-up VERSUS Nurse-led telephone follow up and educational group program IN Dutch women who had recently completed breast cancer treatment requiring follow up	347156	380000	Kimman et al., 2011 (167)
Nurse-led telephone follow up VERSUS Hospital follow-up IN Dutch women who had recently completed breast cancer treatment requiring follow up	16934	19000	Kimman et al., 2011 (167)
9 week trastuzumab treatment VERSUS Treatment without trastuzumab IN Finnish women with HER2 positive early breast cancer	17671	19000	Purmonen et al., 2011 (168)
Tamoxifen therapy for 5 years but discontinued at the occurrence of an adverse event VERSUS None IN US postmenopausal women aged <55 years	51200	56000	Noah- Vanhoucke et al., 2011 (169)
Trastuzumab VERSUS None IN British women with HER-2 positive early breast cancer	47851	53000	Hall et al., 2011 (170)

Docetaxel 75 mg/sq. m and cyclophosphamide 600 mg/sq. m (TC) VERSUS Doxorubicin 60 mg/sq. m and cyclophosphamide 600 mg/sq. m (AC) IN Women with resected node-positive or high-risk node-negative operable breast cancer eligible for adjuvant chemotherapy	7790	8600	Bernard et al., 2011 (171)
Biennial mammography screening from age 45-69 years VERSUS Biennial mammography screening from age 50-69 years IN Women aged 40-79 years in Spain	12068	15000	Carles et al., 2011 (172)
Biennial mammography screening from age 45-74 years VERSUS Biennial mammography screening from age 45-69 years IN Women aged 40-79 years in Spain	15726	19000	Carles et al., 2011 (172)
Annual mammography screening from age 45-69 years VERSUS Biennial mammography screening from age 45-74 years IN Women aged 40-79 years in Spain	20430	25000	Carles et al., 2011 (172)
Annual mammography screening from age 40-69 years VERSUS Annual mammography screening from age 45-69 years IN Women aged 40-79 years in Spain	31091	38000	Carles et al., 2011 (172)
Annual mammography screening from age 40-74 years VERSUS Annual mammography screening from age 40-69 years IN Women aged 40-79 years in Spain	33263	40000	Carles et al., 2011 (172)
Biennial mammography screening from age 50-69 years VERSUS None IN Women aged 40-79 years in Spain	5563	6700	Carles et al., 2011 (172)
Primary prophylaxis with pegfilgrastim VERSUS Secondary prophylaxis with pegfilgrastim IN UK female patients aged 52 years diagnosed with stage 2 breast cancer receiving Epirubicin-docetaxel (ET75) chemotherapy with 31% febrile neutropenia (FN) risk level	38839	43000	Whyte et al., 2011 (173)
Secondary prophylaxis with filgrastim for 6 days VERSUS Secondary prophylaxis with lenograstim for 6 days IN UK female patients aged 52 years diagnosed with stage 2 breast cancer receiving TAC chemotherapy (chemotherapy regimens of docetaxel, doxorubicin, and cyclophsophamide) with 24% febrile neutropenia (FN) risk level	-94115	Cost- Saving	Whyte et al., 2011 (173)

		-	
Secondary prophylaxis with pegfilgrastim VERSUS Secondary prophylaxis with filgrastim for 6 days IN UK female patients aged 52 years diagnosed with stage 2 breast cancer receiving TAC chemotherapy (chemotherapy regimens of docetaxel, doxorubicin, and cyclophsophamide) with 24% febrile neutropenia (FN) risk level	-9373	Cost- Saving	Whyte et al., 2011 (173)
Primary prophylaxis with lenograstim for 11 days VERSUS Secondary prophylaxis with pegfilgrastim IN UK female patients aged 52 years diagnosed with stage 2 breast cancer receiving TAC chemotherapy (chemotherapy regimens of docetaxel, doxorubicin, and cyclophsophamide) with 24% febrile neutropenia (FN) risk level	353250	390000	Whyte et al., 2011 (173)
Primary prophylaxis with lenograstim for 6 days VERSUS Secondary prophylaxis with pegfilgrastim IN UK female patients aged 52 years diagnosed with stage 2 breast cancer receiving TAC chemotherapy (chemotherapy regimens of docetaxel, doxorubicin, and cyclophsophamide) with 24% febrile neutropenia (FN) risk level	179060	200000	Whyte et al., 2011 (173)
Primary prophylaxis with filgrastim for 11 days VERSUS Primary prophylaxis with lenograstim for 6 days IN UK female patients aged 52 years diagnosed with stage 2 breast cancer receiving TAC chemotherapy (chemotherapy regimens of docetaxel, doxorubicin, and cyclophsophamide) with 24% febrile neutropenia (FN) risk level	2228360	2500000	Whyte et al., 2011 (173)

Secondary prophylaxis with lenograstim for 11 days VERSUS No granulocyte colony-stimulating factor (G-CSF) prophylaxis IN UK female patients aged 52 years diagnosed with stage 2 breast cancer receiving TAC chemotherapy (chemotherapy regimens of docetaxel, doxorubicin, and cyclophsophamide) with 24% febrile neutropenia (FN) risk level	60939	67000	Whyte et al., 2011 (173)
Primary prophylaxis with filgrastim for 6 days VERSUS Primary prophylaxis with lenograstim for 6 days IN UK female patients aged 52 years diagnosed with stage 2 breast cancer receiving TAC chemotherapy (chemotherapy regimens of docetaxel, doxorubicin, and cyclophsophamide) with 24% febrile neutropenia (FN) risk level	-354742	Cost- Saving	Whyte et al., 2011 (173)
Primary prophylaxis with pegfilgrastim VERSUS Primary prophylaxis with filgrastim for 6 days IN UK female patients aged 52 years diagnosed with stage 2 breast cancer receiving TAC chemotherapy (chemotherapy regimens of docetaxel, doxorubicin, and cyclophsophamide) with 24% febrile neutropenia (FN) risk level	-8861	Cost- Saving	Whyte et al., 2011 (173)
Secondary prophylaxis with pegfilgrastim VERSUS No granulocyte colony-stimulating factor (G-CSF) prophylaxis IN UK female patients aged 52 years diagnosed with stage 2 breast cancer receiving TAC chemotherapy (chemotherapy regimens of docetaxel, doxorubicin, and cyclophsophamide) with 31% febrile neutropenia (FN) risk level	5286	5800	Whyte et al., 2011 (173)

Secondary prophylaxis with lenograstim for 6 days VERSUS No granulocyte colony-stimulating factor (G-CSF) prophylaxis IN UK female patients aged 52 years diagnosed with stage 2 breast cancer receiving TAC chemotherapy (chemotherapy regimens of docetaxel, doxorubicin, and cyclophsophamide) with 31% febrile neutropenia (FN) risk level	29084	32000	Whyte et al., 2011 (173)
Secondary prophylaxis with filgrastim for 11 days VERSUS Secondary prophylaxis with lenograstim for 6 days IN UK female patients aged 52 years diagnosed with stage 2 breast cancer receiving TAC chemotherapy (chemotherapy regimens of docetaxel, doxorubicin, and cyclophsophamide) with 24% febrile neutropenia (FN) risk level	564692	620000	Whyte et al., 2011 (173)
Unilateral mastectomy followed by contralateral prophylactic mastectomy (CPM) VERSUS Standard of care: unilateral mastectomy followed by surveillance IN US 45 year old women with early-stage, node negative, unilateral breast cancer	4869	5600	Zendejas et al., 2011 (174)
Lapatinib + capecitabine (L+C) VERSUS Trastuzumab + capcitabine (T+C) IN British women with HER2+ metastatic breast cancer (MBC) previously treated with trastuzumab	-6401	Cost- Saving	Delea et al., 2011 (175)
Lapatinib + capecitabine (L+C) VERSUS Capecitabine monotherapy (C- only) IN British women with HER2+ metastatic breast cancer (MBC) previously treated with trastuzumab	144636	160000	Delea et al., 2011 (175)
Mammography every 2 years VERSUS Mammography every 3 to 4 years IN US women aged 40 to 49 years with low breast density (Breast Imaging Reporting and Data System (BI-RADS) category 1) & mammography starting at age 40 years	36699	40000	Schousboe et al., 2011 (176)

Mammography every 3 to 4 years VERSUS None IN US women aged 40 to 49 years with low breast density (Breast Imaging Reporting and Data System (BI-RADS) category 2) & mammography starting at age 40 years	120113	130000	Schousboe et al., 2011 (176)
Mammography every 2 years VERSUS Mammography every 3 to 4 years IN US women aged 40 to 49 years with low breast density (Breast Imaging Reporting and Data System (BI-RADS) category 2) & mammography starting at age 40 years	140048	150000	Schousboe et al., 2011 (176)
Mammography every 2 years VERSUS Mammography every 3 to 4 years IN US women aged 40 to 49 years with high breast density (Breast Imaging Reporting and Data System (BI-RADS) category 3) & mammography starting at age 40 years	87769	97000	Schousboe et al., 2011 (176)
Mammography every 3 to 4 years VERSUS None IN US women aged 40 to 49 years with high breast density (Breast Imaging Reporting and Data System (BI-RADS) category 4) & mammography starting at age 40 years	83899	92000	Schousboe et al., 2011 (176)
Mammography every 2 years VERSUS None IN US women aged 40 to 49 years with high breast density (Breast Imaging Reporting and Data System (BI-RADS) category 4) & mammography starting at age 40 years	74482	82000	Schousboe et al., 2011 (176)
Mammography every 3 to 4 years VERSUS None IN US women aged 50 to 59 years with low breast density (Breast Imaging Reporting and Data System (BI-RADS) category 1) & mammography starting at age 40 years	72184	79000	Schousboe et al., 2011 (176)

Mammography every 2 years VERSUS Mammography every 3 to 4 years IN US women aged 50 to 59 years with low breast density (Breast Imaging Reporting and Data System (BI-RADS) category 1) & mammography starting at age 40 years	208748	230000	Schousboe et al., 2011 (176)
Mammography every 3 to 4 years VERSUS None IN US women aged 50 to 59 years with low breast density (Breast Imaging Reporting and Data System (BI-RADS) category 2) & mammography starting at age 40 years	36212	40000	Schousboe et al., 2011 (176)
Mammography every 2 years VERSUS Mammography every 3 to 4 years IN US women aged 50 to 59 years with low breast density (Breast Imaging Reporting and Data System (BI-RADS) category 2) & mammography starting at age 40 years	89189	98000	Schousboe et al., 2011 (176)
Mammography every 3 to 4 years VERSUS None IN US women aged 50 to 59 years with high breast density (Breast Imaging Reporting and Data System (BI-RADS) category 3) & mammography starting at age 40 years	22878	25000	Schousboe et al., 2011 (176)
Mammography every 2 years VERSUS Mammography every 3 to 4 years IN US women aged 50 to 59 years with high breast density (Breast Imaging Reporting and Data System (BI-RADS) category 3) & mammography starting at age 40 years	46629	51000	Schousboe et al., 2011 (176)
Mammography every 3 to 4 years VERSUS None IN US women aged 50 to 59 years with high breast density (Breast Imaging Reporting and Data System (BI-RADS) category 4) & mammography starting at age 40 years	17131	19000	Schousboe et al., 2011 (176)

Mammography every 2 years VERSUS Mammography every 3 to 4 years IN US women aged 50 to 59 years with high breast density (Breast Imaging Reporting and Data System (BI-RADS) category 4) & mammography starting at age 40 years	23962	26000	Schousboe et al., 2011 (176)
Mammography every 3 to 4 years VERSUS None IN US women aged 60 to 69 years with high breast density (Breast Imaging Reporting and Data System (BI-RADS) category 3) & mammography starting at age 40 years	30976	34000	Schousboe et al., 2011 (176)
Mammography every 2 years VERSUS Mammography every 3 to 4 years IN US women aged 60 to 69 years with low breast density (Breast Imaging Reporting and Data System (BI-RADS) category 1) & mammography starting at age 40 years	129117	140000	Schousboe et al., 2011 (176)
Mammography every 3 to 4 years VERSUS None IN US women aged 60 to 69 years with low breast density (Breast Imaging Reporting and Data System (BI-RADS) category 2) & mammography starting at age 40 years	16724	18000	Schousboe et al., 2011 (176)
Mammography every 2 years VERSUS Mammography every 3 to 4 years IN US women aged 60 to 69 years with low breast density (Breast Imaging Reporting and Data System (BI-RADS) category 2) & mammography starting at age 40 years	63707	70000	Schousboe et al., 2011 (176)
Mammography every 3 to 4 years VERSUS None IN US women aged 60 to 69 years with high breast density (Breast Imaging Reporting and Data System (BI-RADS) category 3) & mammography starting at age 40 years	12163	13000	Schousboe et al., 2011 (176)

Mammography every 2 years VERSUS Mammography every 3 to 4 years IN US women aged 60 to 69 years with high breast density (Breast Imaging Reporting and Data System (BI-RADS) category 3) & mammography starting at age 40 years	30948	34000	Schousboe et al., 2011 (176)
Mammography every 3 to 4 years VERSUS None IN US women aged 60 to 69 years with high breast density (Breast Imaging Reporting and Data System (BI-RADS) category 4) & mammography starting at age 40 years	8385	9200	Schousboe et al., 2011 (176)
Mammography every 2 years VERSUS Mammography every 3 to 4 years IN US women aged 60 to 69 years with high breast density (Breast Imaging Reporting and Data System (BI-RADS) category 4) & mammography starting at age 40 years	21425	24000	Schousboe et al., 2011 (176)
Mammography every 3 to 4 years VERSUS None IN US women aged 70 to 79 years with low breast density (Breast Imaging Reporting and Data System (BI-RADS) category 1) & mammography starting at age 40 years	18223	20000	Schousboe et al., 2011 (176)
Mammography every 2 years VERSUS Mammography every 3 to 4 years IN US women aged 70 to 79 years with low breast density (Breast Imaging Reporting and Data System (BI-RADS) category 1) & mammography starting at age 40 years	150568	170000	Schousboe et al., 2011 (176)
Mammography every 3 to 4 years VERSUS None IN US women aged 70 to 79 years with low breast density (Breast Imaging Reporting and Data System (BI-RADS) category 2) & mammography starting at age 40 years	13574	15000	Schousboe et al., 2011 (176)

Mammography every 2 years VERSUS Mammography every 3 to 4 years IN US women aged 70 to 79 years with low breast density (Breast Imaging Reporting and Data System (BI-RADS) category 2) & mammography starting at age 40 years	96004	110000	Schousboe et al., 2011 (176)
Mammography every 3 to 4 years VERSUS None IN US women aged 70 to 79 years with high breast density (Breast Imaging Reporting and Data System (BI-RADS) category 3) & mammography starting at age 40 years	5214	5700	Schousboe et al., 2011 (176)
Mammography every 2 years VERSUS Mammography every 3 to 4 years IN US women aged 70 to 79 years with high breast density (Breast Imaging Reporting and Data System (BI-RADS) category 3) & mammography starting at age 40 years	50982	56000	Schousboe et al., 2011 (176)
Mammography every 3 to 4 years VERSUS None IN US women aged 70 to 79 years with high breast density (Breast Imaging Reporting and Data System (BI-RADS) category 4) & mammography starting at age 40 years	5400	5900	Schousboe et al., 2011 (176)
Mammography every 2 years VERSUS Mammography every 3 to 4 years IN US women aged 70 to 79 years with high breast density (Breast Imaging Reporting and Data System (BI-RADS) category 4) & mammography starting at age 40 years	40540	45000	Schousboe et al., 2011 (176)
Mammography every 3 to 4 years VERSUS None IN US women aged 40 to 49 years with low breast density (Breast Imaging Reporting and Data System (BI-RADS) category 1) & mammography starting at age 40 years	228427	250000	Schousboe et al., 2011 (176)

Second generation chemotherapy with eight cycles of fluorouracil, epirubicin, cyclophosphamide (FEC60) or four cycles of epirubicin followed by four cycles of cyclophosphamide, methotrexate, fluorouracil (E-CMF) VERSUS First generation chemotherapy with six cycles of cyclophosphamide, methotrexate, fluorouracil (CMF) IN UK women aged 40 years with ER negative early breast cancer and average risk of recurrence	873	960	Campbell et al., 2011 (177)
Third generation chemotherapy with four cycles of fluorouracil, epirubicin, cyclophosphamide (FEC60) followed by four cycles of docetaxel (FEC-D) VERSUS Second generation chemotherapy with eight cycles of fluorouracil, epirubicin, cyclophosphamide (FEC60) or four cycles of epirubicin followed by four cycles of cyclophosphamide, methotrexate, fluorouracil (E-CMF) IN UK women aged 60 years with ER negative early breast cancer and average risk of recurrence	26859	30000	Campbell et al., 2011 (177)
Third generation chemotherapy with four cycles of fluorouracil, epirubicin, cyclophosphamide (FEC60) followed by four cycles of docetaxel (FEC-D) VERSUS Second generation chemotherapy with eight cycles of fluorouracil, epirubicin, cyclophosphamide (FEC60) or four cycles of epirubicin followed by four cycles of cyclophosphamide, methotrexate, fluorouracil (E-CMF) IN UK women aged 40 years with ER negative early breast cancer and average risk of recurrence	19842	22000	Campbell et al., 2011 (177)
Third generation chemotherapy with four cycles of fluorouracil, epirubicin, cyclophosphamide (FEC60) followed by four cycles of docetaxel (FEC-D) VERSUS Second generation chemotherapy with eight cycles of fluorouracil, epirubicin, cyclophosphamide (FEC60) or four cycles of epirubicin followed by four cycles of cyclophosphamide, methotrexate, fluorouracil (E-CMF) IN UK women aged 40 years with ER positive early breast cancer and average risk of recurrence	34905	39000	Campbell et al., 2011 (177)
Third generation chemotherapy with four cycles of fluorouracil, epirubicin, cyclophosphamide (FEC60) followed by four cycles of docetaxel (FEC-D) VERSUS Second generation chemotherapy with eight cycles of fluorouracil, epirubicin, cyclophosphamide (FEC60) or four cycles of epirubicin followed by four cycles of cyclophosphamide, methotrexate, fluorouracil (E-CMF) IN UK women aged 60 years with ER positive early breast cancer and average risk of recurrence	66486	73000	Campbell et al., 2011 (177)

Third generation chemotherapy with four cycles of fluorouracil, epirubicin, cyclophosphamide (FEC60) followed by four cycles of docetaxel (FEC-D) VERSUS Second generation chemotherapy with eight cycles of fluorouracil, epirubicin, cyclophosphamide (FEC60) or four cycles of epirubicin followed by four cycles of cyclophosphamide, methotrexate, fluorouracil (E-CMF) IN UK women aged 40 years with ER negative early breast cancer and high risk of recurrence	12698	14000	Campbell et al., 2011 (177)
Third generation chemotherapy with four cycles of fluorouracil, epirubicin, cyclophosphamide (FEC60) followed by four cycles of docetaxel (FEC-D) VERSUS Second generation chemotherapy with eight cycles of fluorouracil, epirubicin, cyclophosphamide (FEC60) or four cycles of epirubicin followed by four cycles of cyclophosphamide, methotrexate, fluorouracil (E-CMF) IN UK women aged 60 years with ER negative early breast cancer and high risk of recurrence	3355	3700	Campbell et al., 2011 (177)
Third generation chemotherapy with four cycles of fluorouracil, epirubicin, cyclophosphamide (FEC60) followed by four cycles of docetaxel (FEC-D) VERSUS Second generation chemotherapy with eight cycles of fluorouracil, epirubicin, cyclophosphamide (FEC60) or four cycles of epirubicin followed by four cycles of cyclophosphamide, methotrexate, fluorouracil (E-CMF) IN UK women aged 40 years with ER positive early breast cancer and low risk of recurrence	101523	110000	Campbell et al., 2011 (177)
Third generation chemotherapy with four cycles of fluorouracil, epirubicin, cyclophosphamide (FEC60) followed by four cycles of docetaxel (FEC-D) VERSUS Second generation chemotherapy with eight cycles of fluorouracil, epirubicin, cyclophosphamide (FEC60) or four cycles of epirubicin followed by four cycles of cyclophosphamide, methotrexate, fluorouracil (E-CMF) IN UK women aged 60 years with ER positive early breast cancer and low risk of recurrence	781114	860000	Campbell et al., 2011 (177)
Second generation chemotherapy with eight cycles of fluorouracil, epirubicin, cyclophosphamide (FEC60) or four cycles of epirubicin followed by four cycles of cyclophosphamide, methotrexate, fluorouracil (E-CMF) VERSUS First generation chemotherapy with six cycles of cyclophosphamide, methotrexate, fluorouracil (CMF) IN UK women aged 60 years with ER negative early breast cancer and average risk of recurrence	6041	6700	Campbell et al., 2011 (177)

Second generation chemotherapy with eight cycles of fluorouracil, epirubicin, cyclophosphamide (FEC60) or four cycles of epirubicin followed by four cycles of cyclophosphamide, methotrexate, fluorouracil (E-CMF) VERSUS First generation chemotherapy with six cycles of cyclophosphamide, methotrexate, fluorouracil (CMF) IN UK women aged 40 years with ER positive early breast cancer and average risk of recurrence	2505	2800	Campbell et al., 2011 (177)
Second generation chemotherapy with eight cycles of fluorouracil, epirubicin, cyclophosphamide (FEC60) or four cycles of epirubicin followed by four cycles of cyclophosphamide, methotrexate, fluorouracil (E-CMF) VERSUS First generation chemotherapy with six cycles of cyclophosphamide, methotrexate, fluorouracil (CMF) IN UK women aged 60 years with ER positive early breast cancer and average risk of recurrence	20740	23000	Campbell et al., 2011 (177)
Second generation chemotherapy with eight cycles of fluorouracil, epirubicin, cyclophosphamide (FEC60) or four cycles of epirubicin followed by four cycles of cyclophosphamide, methotrexate, fluorouracil (E-CMF) VERSUS First generation chemotherapy with six cycles of cyclophosphamide, methotrexate, fluorouracil (CMF) IN UK women aged 40 years with ER negative early breast cancer and high risk of recurrence	361	400	Campbell et al., 2011 (177)
Second generation chemotherapy with eight cycles of fluorouracil, epirubicin, cyclophosphamide (FEC60) or four cycles of epirubicin followed by four cycles of cyclophosphamide, methotrexate, fluorouracil (E-CMF) VERSUS First generation chemotherapy with six cycles of cyclophosphamide, methotrexate, fluorouracil (CMF) IN UK women aged 60 years with ER negative early breast cancer and high risk of recurrence	3355	3700	Campbell et al., 2011 (177)
Second generation chemotherapy with eight cycles of fluorouracil, epirubicin, cyclophosphamide (FEC60) or four cycles of epirubicin followed by four cycles of cyclophosphamide, methotrexate, fluorouracil (E-CMF) VERSUS First generation chemotherapy with six cycles of cyclophosphamide, methotrexate, fluorouracil (CMF) IN UK women aged 40 years with ER positive early breast cancer and low risk of recurrence	10354	11000	Campbell et al., 2011 (177)

Second generation chemotherapy with eight cycles of fluorouracil, epirubicin, cyclophosphamide (FEC60) or four cycles of epirubicin followed by four cycles of cyclophosphamide, methotrexate, fluorouracil (E-CMF) VERSUS First generation chemotherapy with six cycles of cyclophosphamide, methotrexate, fluorouracil (CMF) IN UK women aged 60 years with ER positive early breast cancer and low risk of recurrence		Increases Costs, Decreases Health	Campbell et al., 2011 (177)
First generation chemotherapy with six cycles of cyclophosphamide, methotrexate, fluorouracil (CMF) VERSUS None IN UK women aged 40 years with ER negative early breast cancer and average risk of recurrence	889	980	Campbell et al., 2011 (177)
Oncotype DX: 21-gene assay in treatment decisions VERSUS Standard care IN US women with node positive (N+(1-3) and estrogen receptor positive (ER+) and herceptin 2 negative (HER2-) early-stage breast cancer	-86	Cost- Saving	Vanderlaan et al., 2011 (178)
Adjuvant TC (docetaxel 75 mg/m2 and cyclophosphamide 600 mg/m2 every 3 weeks for 4 cycles) VERSUS Adjuvant AC (doxorubicin 60 mg/m2 and cyclophosphamide 600 mg/m2 every 3 weeks for 4 cycles) IN US women with breast cancer undergoing adjuvent chemotherapy	15818	17000	Younis et al., 2011 (179)
Paclitaxel/Bezacizumab VERSUS Paclitaxel alone IN US patients with advanced breast cancer	608265	660000	Montero et al., 2011 (180)
Letrozole VERSUS Tamoxifen IN Postmenopausal women patients with hormone receptor positive breast carcinoma in Germany	38876	42000	Lux et al., 2011 (181)
Anastrozole VERSUS Tamoxifen IN Postmenopausal women patients with hormone receptor positive breast carcinoma in Germany	178109	190000	Lux et al., 2011 (181)
70-gene signature assay for guiding adjuvant chemotherapy decisions VERSUS 21-gene assay IN Patients with early, node-negative breast cancer in Netherlands (sensitivity and specificity of test based on Fan- series)	-16825	Cost- Saving	Ret?l et al., 2012 (182)

21-gene assay for guiding adjuvant chemotherapy decisions VERSUS Adjuvant Online (AO) IN Patients with early, node-negative breast cancer in Netherlands (sensitivity and specificity of test based on Fan-series)	2117499	Increases Costs, Decreases Health	Ret?l et al., 2012 (182)
70-gene signature assay for guiding adjuvant chemotherapy decisions VERSUS St. Gallen guidelines (2003) IN Patients with early, node- negative breast cancer in Netherlands (sensitivity and specificity of test based on Thomassen-series)	-5081	Cost- Saving	Ret?l et al., 2012 (182)
70-gene signature assay for guiding adjuvant chemotherapy decisions VERSUS 21-gene assay IN Patients with early, node-negative breast cancer in Netherlands (sensitivity and specificity of test based on Thomassen-series)	-24401	Cost- Saving	Ret?l et al., 2012 (182)
Genomic test-directed chemotherapy using Oncotype DX-21 gene assay with chemotherapy VERSUS Standard of care (chemotherapy for all patients) IN Patients with lymph node-positive, estrogen receptor-positive early-stage breast cancer	8870	9300	Hall et al., 2012 (183)
Goserelin (3.6 mg) subcutaneous depot injection into abdominal wall every 4 weeks VERSUS 6 cycles of combined therapy of cyclophosphamide, methotrexate and 5-Fuorouracil (CMF) IN Premenopausal women with breast cancer in Taiwan	1891	2100	Cheng et al., 2012 (184)
Goserelin (3.6 mg) subcutaneous depot injection into abdominal wall every 4 weeks VERSUS 6 cycles of combined therapy of docetaxel, epirubicin, cyclophosphamide (TEC) IN Premenopausal women with breast cancer in Taiwan	-3528	Cost- Saving	Cheng et al., 2012 (184)
Goserelin (3.6 mg) subcutaneous depot injection into abdominal wall every 4 weeks VERSUS 6 cycles of combined therapy of 5-fluoruracil, epirubicin, cyclophosphamide (FEC) IN Premenopausal women with breast cancer in Taiwan	974	1100	Cheng et al., 2012 (184)
Goserelin (3.6 mg) subcutaneous depot injection into abdominal wall every 4 weeks VERSUS 6 cycles of docetaxel, epirubicin (TE) IN Premenopausal women with breast cancer in Taiwan	-3511	Cost- Saving	Cheng et al., 2012 (184)

Goserelin (3.6 mg) subcutaneous depot injection into abdominal wall every 4 weeks VERSUS 6 cycles of docetaxel, epirubicin (TE) IN Premenopausal women with breast cancer in Taiwan	-4168	Cost- Saving	Cheng et al., 2012 (184)
Goserelin (3.6 mg) subcutaneous depot injection into abdominal wall every 4 weeks VERSUS 6 cycles of combined therapy of cyclophosphamide, methotrexate and 5-Fuorouracil (CMF) IN Premenopausal women with breast cancer in Taiwan	1887	2000	Cheng et al., 2012 (184)
Goserelin (3.6 mg) subcutaneous depot injection into abdominal wall every 4 weeks VERSUS 6 cycles of combined therapy of docetaxel, epirubicin, cyclophosphamide (TEC) IN Premenopausal women with breast cancer in Taiwan	-4201	Cost- Saving	Cheng et al., 2012 (184)
Goserelin (3.6 mg) subcutaneous depot injection into abdominal wall every 4 weeks VERSUS 6 cycles of combined therapy of 5-fluoruracil, epirubicin, cyclophosphamide (FEC) IN Premenopausal women with breast cancer in Taiwan	971	1100	Cheng et al., 2012 (184)
12-month adjuvant trastuzumab VERSUS Standard chemotherapy IN Women aged 50 years with early HER-2/neu-positive breast cancer and surgical resection of disease	12720	14000	Hedden et al., 2012 (185)
70-gene prognosis-signature-guided treatment VERSUS St. Gallen criteria-guided treatment (without multigene assays or 70-gene prognosis- signature-guided treatment) IN Patients aged 55 years with hormone receptor-positive, lymph node-negative, human epidermal growth factor receptor type 2-negative early stage breast cancer in Japan	44226	48000	Kondo et al., 2012 (186)
Trastuzumab as first-line treatment VERSUS Standard chemotherapy IN Adult patients with human epidermal growth factor receptor 2-poisitive (HER2) advanced gastric or gastroesophageal junction cancer in China	251667	270000	Wu et al., 2012 (187)
70-gene profile microarray assay (Mammaprint) VERSUS 21-gene profile assay using real-time (RT) polymerase chain reaction (Oncotype DX) IN US patients with lymph node-negative, estrogen receptor positive breast cancer	-64784	Cost- Saving	Yang et al., 2012 (188)

Biennial mass mammography screening in women aged 40-79 years VERSUS Biennial mass mammography screening in women aged 40-69 years IN Chinese women aged 40 years in Hong Kong	204444	220000	Wong et al., 2012 (189)
Shortening waiting time to radiotherapy from breast-conserving surgery in early breast cancer by 15% VERSUS Standard of care IN Chinese women aged 40 years in Hong Kong	7500	8100	Wong et al., 2012 (189)
Shortening waiting time to radiotherapy from breast-conserving surgery in early breast cancer by 25% VERSUS Shortening waiting time to radiotherapy from breast-conserving surgery in early breast cancer by 15% IN Chinese women aged 40 years in Hong Kong	2500	2700	Wong et al., 2012 (189)
Adjuvant aromatase inhibitor (AI) therapy for 2 to 3 years followed by tamoxifen in postmenopausal women with estrogen receptor-positive cancer VERSUS Standard of care IN Chinese women aged 40 years in Hong Kong	17636	19000	Wong et al., 2012 (189)
Upfront 5-year adjuvant aromatase therapy (AI) in postmenopausal women with estrogen receptor-positive cancer VERSUS Adjuvant aromatase inhibitor (AI) therapy for 2 to 3 years followed by tamoxifen in postmenopausal women with estrogen receptor-positive cancer IN Chinese women aged 40 years in Hong Kong	-61500	Increases Costs, Decreases Health	Wong et al., 2012 (189)
Enhanced home based palliative care VERSUS Standard of care IN Chinese women aged 40 years in Hong Kong	6750	7300	Wong et al., 2012 (189)
Enhanced inpatient palliative care VERSUS Enhanced home based palliative care IN Chinese women aged 40 years in Hong Kong	-15000	Increases Costs, Decreases Health	Wong et al., 2012 (189)
Biennial mass mammography screening in women aged 40-69 years VERSUS Standard of care IN Chinese women aged 40 years in Hong Kong	72534	79000	Wong et al., 2012 (189)
21 gene recurrence score assay (Oncotype DX RS) VERSUS Standard of care IN Patients with endocrine sensitive node positive breast cancer	15024	16000	Lamond et al., 2012 (190)
21 gene recurrence score assay (Oncotype DX RS) VERSUS Standard of care IN Patients with endocrine sensitive node negative breast cancer	9707	10000	Lamond et al., 2012 (190)

Annual bone mineral density screening and selective bisphosphonates for osteoporosis VERSUS One time bone mineral density screening and selective bisphosphonates for osteoporosis IN Post-menopausal women aged 60 years with HR-positive stage I, II, or IIIA breast cancer receiving aromatase inhibitors	61786	67000	lto et al., 2012 (191)
One-time bone mineral density screening and selective bisphosphonates for osteopenia VERSUS Annual bone mineral density screening and selective bisphosphonates for osteoporosis IN Post-menopausal women aged 60 years with HR-positive stage I, II, or IIIA breast cancer receiving aromatase inhibitors	-12121	Increases Costs, Decreases Health	lto et al., 2012 (191)
Annual bone mineral density screening and selective bisphosphonates for osteopenia VERSUS Annual bone mineral density screening and selective bisphosphonates for osteoporosis IN Post-menopausal women aged 60 years with HR-positive stage I, II, or IIIA breast cancer receiving aromatase inhibitors	129300	140000	lto et al., 2012 (191)
Universal bisphosphonates VERSUS Annual bone mineral density screening and selective bisphosphonates for osteopenia IN Post- menopausal women aged 60 years with HR-positive stage I, II, or IIIA breast cancer receiving aromatase inhibitors	283600	310000	lto et al., 2012 (191)
One-time bone mineral density screening and selective bisphosphonates for osteoporosis VERSUS None IN Post-menopausal women aged 60 years with HR-positive stage I, II, or IIIA breast cancer receiving aromatase inhibitors	117826	130000	lto et al., 2012 (191)
Sentinal lymph node biopsy VERSUS Axillary node dissection IN Patients with early breast cancer tumor grade 2 with risk of node-positive disease in Australia	-98732	Cost- Saving	Verry et al., 2012 (192)
Denosumab VERSUS Zoledronic acid IN Patients with bone metastases secondary to breast cancer	697499	760000	Snedecor et al., 2012 (193)
21-gene recurrence score assay in guiding chemotherapy VERSUS Non- recurrence score-guided treatment with risk classication based on clinicopathologic characteristics IN Patients with early stage node- negative estrogen receptor-positive breast cancer: healthcare perspective	16677	18000	Reed et al., 2012 (194)

21-gene recurrence score assay in guiding chemotherapy VERSUS Non- recurrence score-guided treatment with risk classication based on clinicopathologic characteristics IN Patients with early stage estrogen receptor-positive breast cancer: societal perspective	10788	11000	Reed et al., 2012 (194)
On-time whole breast radiotherapy (WBRT) VERSUS Brachytherapy IN Women aged >60 years with stage I breast cancer and no evidence of local disease (NED) after breast-conserving surgery (BCS)	- 11691999	Cost- Saving	Gold et al., 2012 (195)
Accelerated partial breast radiotherapy aka 3-dimensional conformal radiotherapy (3DCRT) VERSUS 8+ week-delay whole breast radiotherapy (WBRT) IN Women aged >60 years with stage I breast cancer and no evidence of local disease (NED) after breast-conserving surgery (BCS)		Cost- Saving	Gold et al., 2012 (195)
Accelerated partial breast radiotherapy aka 3-dimensional conformal radiotherapy (3DCRT) VERSUS 12+ week-delay whole breast radiotherapy (WBRT) IN Women aged >60 years with stage I breast cancer and no evidence of local disease (NED) after breast-conserving surgery (BCS)	-989000	Cost- Saving	Gold et al., 2012 (195)
Lapatinib + letrozole (aromatase inhibitor) VERSUS Letrozole (aromatase inhibitor) IN Patients with metatstatic hormone-receptor-positive breast cancer that overexpresses HER2	114240	120000	Doss et al., 2012 (196)
Trastuzumab + anastrozole (aromatase inhibitor) VERSUS Anastrozole (aromatase inhibitor) alone IN Patients with metatstatic hormone- receptor-positive breast cancer that overexpresses HER2	78733	85000	Doss et al., 2012 (196)
21-gene recurrence score (RS) assay VERSUS Current Canadian clinical practice (CCP) IN Pre-menopausal women with early-stage estrogen- or progesterone-receptor positive, axillary lymph-node negative breast cancer (ER+ / PR+ LN- ESBC) in Canada	-971	Cost- Saving	Hannouf et al., 2012 (197)

21-gene recurrence score (RS) assay VERSUS Current Canadian clinical practice (CCP) IN Post-menopausal women with early-stage estrogen- or progesterone-receptor positive, axillary lymph-node negative breast cancer (ER+ / PR+ LN- ESBC) in Canada	58284	63000	Hannouf et al., 2012 (197)
Radiotherapy after lumpectomy VERSUS None IN Women with early stage node-negative or node-positive breast cancer after lumpectomy (breast-conserving surgery)	-419	Cost- Saving	Bai et al., 2012 (198)
Radiotherapy after lumpectomy VERSUS None IN Women with early stage node-negative breast cancer after lumpectomy (breast-conserving surgery)	-578	Cost- Saving	Bai et al., 2012 (198)
Radiotherapy after lumpectomy VERSUS None IN Women with early stage node-positive breast cancer after lumpectomy (breast-conserving surgery)	-329	Cost- Saving	Bai et al., 2012 (198)
Therapy based on 21-gene assay recurrence score (RS) {Oncotype DX Breast Cancer Test} VERSUS Standard/Usual care IN Specific disease- early-stage estrogen receptor positive (ER+) and human epidermal growth factor receptor negative (HER2-); Age- Adult; Gender- Female; Country- Germany.	-11153	Cost- Saving	Blohmer et al., 2013 (199)
Systemic chemotherapy eribulin VERSUS Three most commonly utilized drugs: vinorelbine, gemcitabine and capecitabine (X) IN Specific disease- advanced breast cancer (metastatic); Age- Adult; Gender- Female; Country- United States; Other- height of 165 cm and a weight of 70 kg, and therefore a BSA of 1.79 m2 (using Mosteller.	213742	220000	Lopes et al., 2013 (200)

Quetomic shows the menu onibulin \/EDQUQ Que onitable a the Que ""	407000	470000	
Systemic chemotherapy eribulin VERSUS Capecitabine IN Specific disease- advanced breast cancer (metastatic); Age- Adult; Gender-Female; Country- United States; Other- height of 165 cm and a weight of 70 kg, and therefore a BSA of 1.79 m2 (using Mosteller).	167268	170000	Lopes et al., 2013 (200)
Systemic chemotherapy eribulin VERSUS Nab-paclitaxel IN Specific disease- advanced breast cancer (metastatic); Age- Adult; Gender-Female; Country- United States.	129774	130000	Lopes et al., 2013 (200)
Systemic chemotherapy eribulin VERSUS Liposomal doxorubicin IN Specific disease- advanced breast cancer (metastatic); Age- Adult; Gender- Female; Country- United States.	109283	110000	Lopes et al., 2013 (200)
Systemic chemotherapy eribulin VERSUS Ixabepilone IN Specific disease- advanced breast cancer (metastatic); Age- Adult; Gender-Female; Country- United States.	76823	79000	Lopes et al., 2013 (200)
Digital mammography beginning at age 30 years (DM30) VERSUS Clinical surveillance IN Healthy; Age- Adult; Gender- Female; Country- United States; Other- BRCA1 carriers.	15300	17000	Cott Chubiz et al., 2013 (201)
Alternating magnetic resonance imaging and digital mammography every 6 months beginning at age 30 years (Alt30) VERSUS Digital mammography beginning at age 25 years (DM25) IN Healthy; Age- Adult; Gender- Female; Country- United States; Other- BRCA1 carriers.	74200	81000	Cott Chubiz et al., 2013 (201)
Annual magnetic resonance imaging beginning at age 25 years with alternating digital mammography every 6 months added at age 30 years (MRI25/Alt30) VERSUS Alternating magnetic resonance imaging and digital mammography every 6 months beginning at age 30 years (Alt30) IN Healthy; Age- Adult; Gender- Female; Country- United States; Other- BRCA1 carriers.	185000	200000	Cott Chubiz et al., 2013 (201)

Alternating magnetic resonance imaging and digital mammography every 6 months beginning at age 25 years (Alt25) VERSUS Annual magnetic resonance imaging beginning at age 25 years with alternating digital mammography every 6 months added at age 30 years (MRI25/Alt30) IN Healthy; Age- Adult; Gender- Female; Country- United States; Other- BRCA1 carriers.	1400000	1500000	Cott Chubiz et al., 2013 (201)
Alternating magnetic resonance imaging and digital mammography every 6 months beginning at age 25 years (Alt25) VERSUS Annual magnetic resonance imaging beginning at age 25 years with alternating digital mammography every 6 months added at age 30 years (MRI25/Alt30) IN Healthy; Age- Adult; Gender- Female; Country- United States; Other- BRCA2 carriers.	-140000	Increases Costs, Decreases Health	Cott Chubiz et al., 2013 (201)
Annual magnetic resonance imaging beginning at age 25 years with alternating digital mammography every 6 months added at age 30 years (MRI25/Alt30) VERSUS Alternating magnetic resonance imaging and digital mammography every 6 months beginning at age30 years (Alt30) IN Healthy; Age- Adult; Gender- Female; Country- United States; Other- BRCA2 carriers.	380000	410000	Cott Chubiz et al., 2013 (201)
Alternating magnetic resonance imaging and digital mammography every 6 months beginning at age30 years (Alt30) VERSUS Digital mammography beginning at age 25 years (DM 25) IN Healthy; Age- Adult; Gender- Female; Country- United States; Other- BRCA2 carriers.	190000	210000	Cott Chubiz et al., 2013 (201)
Digital mammography beginning at age 30 years (DM 30) VERSUS Clinical surveillance IN Healthy; Age- Adult; Gender- Female; Country- United States; Other- BRCA2 carriers.	16900	18000	Cott Chubiz et al., 2013 (201)
Digital mammography beginning at age 25 years (DM25) VERSUS Digital mammography beginning at age 30 years (DM30) IN Healthy; Age- Adult; Gender- Female; Country- United States; Other- BRCA1 carriers.	130000	140000	Cott Chubiz et al., 2013 (201)
Digital mammography beginning at age 25 years (DM25) VERSUS Digital mammography beginning at age 30 years (DM30) IN Healthy; Age- Adult; Gender- Female; Country- United States; Other- BRCA2 carriers.		Increases Costs, Decreases Health	Cott Chubiz et al., 2013 (201)

Whole breast irradiation delivered utilizing intensity-modulated radiation therapy (WBI IMRT) VERSUS Accelerated partial-breast irradiation techniques, 3-dimensional conformal radiotherapy (APBI 3-D CRT) IN Specific disease- breast cancer; Age- Adult; Gender- Female; Country- United States.	11716	12000	Shah et al., 2013 (202)
Whole breast irradiation delivered utilizing intensity-modulated radiation therapy (WBI IMRT) VERSUS Accelerated partial-breast irradiation techniques, intensity-modulated radiation therapy (APBI IMRT) IN Specific disease- breast cancer; Age- Adult; Gender- Female; Country- United States.	8408	8800	Shah et al., 2013 (202)
Whole breast irradiation delivered utilizing intensity-modulated radiation therapy (WBI IMRT) VERSUS Accelerated partial-breast irradiation techniques, single-lumen (APBI single-lumen) IN Specific disease- breast cancer; Age- Adult; Gender- Female; Country- United States.	6696	7000	Shah et al., 2013 (202)
Whole breast irradiation delivered utilizing intensity-modulated radiation therapy (WBI IMRT) VERSUS Accelerated partial-breast irradiation techniques, multi-lumen (APBI multi-lumen) IN Specific disease- breast cancer; Age- Adult; Gender- Female; Country- United States.	3498	3700	Shah et al., 2013 (202)
Whole breast irradiation delivered utilizing intensity-modulated radiation therapy (WBI IMRT) VERSUS Accelerated partial-breast irradiation techniques, interstitia (APBI interstitial) IN Specific disease- breast cancer; Age- Adult; Gender- Female; Country- United States.	7393	7800	Shah et al., 2013 (202)
Whole breast irradiation delivered utilizing intensity-modulated radiation therapy (WBI IMRT) VERSUS Accelerated partial-breast irradiation techniques, 3-dimensional conformal radiotherapy (APBI 3-D CRT) IN Specific disease- breast cancer; Age- Adult; Gender- Female; Country- United States.	4290	4500	Shah et al., 2013 (202)
Whole breast irradiation delivered utilizing 3-dimensional conformal radiotherapy (WBI 3D-CRT) VERSUS Accelerated partial-breast irradiation techniques, intensity-modulated radiation therapy (APBI IMRT) IN Specific disease- breast cancer; Age- Adult; Gender- Female; Country- United States.	983	1000	Shah et al., 2013 (202)
Accelerated partial-breast irradiation techniques, single-lumen (APBI single-lumen) VERSUS Accelerated partial-breast irradiation delivered utilizing 3-dimensional conformal radiotherapy (APBI 3D-CRT) IN Specific disease- breast cancer; Age- Adult; Gender- Female; Country- United	12273	13000	Shah et al., 2013 (202)

States.

Accelerated partial-breast irradiation techniques,multi-lumen (APBI multi- lumen) VERSUS Accelerated partial-breast irradiation delivered utilizing 3-dimensional conformal radiotherapy (APBI 3D-CRT) IN Specific disease- breast cancer; Age- Adult; Gender- Female; Country- United States.	66032	69000	Shah et al., 2013 (202)
Accelerated partial-breast irradiation techniques, interstitial VERSUS Accelerated partial-breast irradiation delivered utilizing 3-dimensional conformal radiotherapy (APBI 3D-CRT) IN Specific disease- breast cancer; Age- Adult; Gender- Female; Country- United States.	546	570	Shah et al., 2013 (202)
Paclitaxel based chemotherapy for first line therapy VERSUS Bevacizumab plus paclitaxel based chemotherapy for first line therapy IN Specific disease- Metastatic HER2- neu negative breast cancer; Age- Unknown; Gender- Female; Country- United States; Other- Treatment naïve patients.	232721	250000	Refaat et al., 2013 (203)
Fulvestrant 500mg VERSUS Letrozole IN Specific disease- advanced breast cancer; Age- Adult; Gender- Female; Country- United Kingdom; Other- postmenopausal women.	53304	58000	Das et al., 2013 (204)
Fulvestrant 500mg VERSUS Anastrozole IN Specific disease- advanced breast cancer; Age- Adult; Gender- Female; Country- United Kingdom; Other- postmenopausal women.	48580	53000	Das et al., 2013 (204)
Anastrozole VERSUS Letrozole IN Specific disease- advanced breast cancer; Age- Adult; Gender- Female; Country- United Kingdom; Other-postmenopausal women.	64626	70000	Das et al., 2013 (204)

Nanoparticle albumin-bound paclitaxel administered every 3 weeks VERSUS polyethylated castor oil-based standard paclitaxel administered every 3 weeks IN Specific disease- breast cancer; Age- Adult; Gender- Female; Country- Spain; Other- failed first-line antitumor treatment.	24781	26000	Alba et al., 2013 (205)
Paclitaxel albumin VERSUS Conventional paclitaxel IN Specific disease- Metastatic breast cancer; Age- Adult; Gender- Female; Country- Italy.	21137	22000	Lazzaro et al., 2013 (206)
Oncotype Dx assay informed arm (received the assay) VERSUS Assay naïve IN Specific disease- Oestrogen receptor positive node negative breast cancer; Age- 19 to 40 years, 41 to 64 years, >=65 years; Gender- Female; Country- Canada.	6441	7000	Davidson et al., 2013 (207)
Single-stage, implant-based immediate breast reconstruction using acellular dermal matrix VERSUS Single-stage, implant-based immediate breast reconstruction using autologous dermal flap IN Specific disease- mastectomy; Age- Adult; Gender- Female; Country- United States.	261720	270000	Krishnan et al., 2013 (208)
Laser-assisted indocyanine green angiography (LAIGA) in free autologous breast reconstruction after mastectomy. VERSUS Without LAIGA in free autologous breast reconstruction after mastectomy. IN Specific disease- after mastectomy; Age- Adult; Gender- Female; Country- United States.	3517	3700	Chatterjee et al., 2013 (209)
Breast screening mammography VERSUS None IN Healthy; Age- Adult; Gender- Female; Country- United Kingdom.	33369	35000	Pharoah et al., 2013 (210)
Oncotype DX testing VERSUS None IN Specific disease- Early breast cancer; Age- Adult; Gender- Female; Country- United Kingdom.	9621	10000	Holt et al., 2013 (211)
Medicare full prescription coverage VERSUS Standard/Usual Care- usual Medicare Part D prescription coverage : Medicare covered 67% of the drug cost of aromatase inhibitors (ie, \$40 per month), and patients paid 33% of the drug cost (ie, \$20 per month) IN Specific disease- stage I or II breast cancer; Age- >=65 years; Gender- Female; Country- United States; Other- postmenopausal women with hormone receptor-positive, stage I or II breast cancer.	-9167	Cost- Saving	Ito et al., 2013 (212)

Medicare full prescription coverage VERSUS Standard/Usual Care- usual Medicare Part D prescription coverage : Medicare covered 67% of the drug cost of aromatase inhibitors (ie, \$40 per month), and patients paid 33% of the drug cost (ie, \$20 per month) IN Specific disease- stage I or II breast cancer; Age- >=65 years; Gender- Female; Country- United States; Other- postmenopausal women with hormone receptor-positive, stage I or II breast cancer.	17267	18000	Ito et al., 2013 (212)
Expanded reflex testing VERSUS Standard/Usual Care- standard HER2 testing involved retesting only IHC21 specimens using FISH in line with National Comprehensive Cancer Network (NCCN) guidelines IN Specific disease- early stage breast cancer; Age- Unknown; Gender- Female; Country- United States.	39745	43000	Garrison et al., 2013 (213)
3-week whole-breast external-beam radiation therapy VERSUS Intraoperative radiation therapy (IORT) IN Specific disease- Breast cancer; Age- Adult; Gender- Female; Country- United States.	-64907	Increases Costs, Decreases Health	Alvarado et al., 2013 (214)
6-week whole-breast external-beam radiation therapy VERSUS Intraoperative radiation therapy (IORT) IN Specific disease- Breast cancer; Age- Adult; Gender- Female; Country- United States.	- 19965384	Increases Costs, Decreases Health	Alvarado et al., 2013 (214)
Annual mammography plus MRI screening VERSUS Annual mammography IN Healthy; Age- 41 to 64 years, >=65 years; Gender-Both; Country- Canada.	48058	53000	Pataky et al., 2013 (215)
21-gene assay for patients with low Adjuvant Online! Risk VERSUS None IN Specific disease- early breast cancer; Age- Adult; Gender- Female; Country- Canada; Other- lymphnode-negative, estrogen receptor- and/or progesterone receptor-positive, human epidermal growth factor receptor 2/neu-negative early breast cancer.	22456	23000	Paulden et al., 2013 (216)

21-gene assay for patients with intermediate Adjuvant Online! Risk VERSUS None IN Specific disease- early breast cancer; Age- Adult; Gender- Female; Country- Canada; Other- lymphnode-negative, estrogen receptor- and/or progesterone receptor-positive, human epidermal growth factor receptor 2/neu-negative early breast cancer.	2528	2600	Paulden et al., 2013 (216)
21-gene assay for patients with high Adjuvant Online! Risk VERSUS None IN Specific disease- early breast cancer; Age- Adult; Gender- Female; Country- Canada; Other- lymphnode-negative, estrogen receptor- and/or progesterone receptor-positive, human epidermal growth factor receptor 2/neu-negative early breast cancer.	1112	1100	Paulden et al., 2013 (216)
Chemotherpay for patients with low 21-gene assay Adjuvant Online! Risk VERSUS None IN Specific disease- early breast cancer; Age- Adult; Gender- Female; Country- Canada; Other- lymphnode-negative, estrogen receptor- and/or progesterone receptor-positive, human epidermal growth factor receptor 2/neu-negative early breast cancer.	44120	45000	Paulden et al., 2013 (216)

Chemotherapy for patients with intermediate 21-gene assay Adjuvant Online! Risk VERSUS None IN Specific disease- early breast cancer; Age- Adult; Gender- Female; Country- Canada; Other- lymphnode- negative, estrogen receptor- and/or progesterone receptor-positive, human epidermal growth factor receptor 2/neu-negative early breast cancer.	1777	1800	Paulden et al., 2013 (216)
Chemotherpay for patients with high 21-gene assay Adjuvant Online! Risk VERSUS None IN Specific disease- early breast cancer; Age- Adult; Gender- Female; Country- Canada; Other- lymphnode-negative, estrogen receptor- and/or progesterone receptor-positive, human epidermal growth factor receptor 2/neu-negative early breast cancer.	1779	1800	Paulden et al., 2013 (216)
High adherence (>80%) to tamoxifen VERSUS Low adherence (<80%) to tamoxifen IN Specific disease- breast cancer; Age- 41 to 64 years, >=65 years; Gender- Female; Country- United Kingdom.	-8552	Cost- Saving	McCowan et al., 2013 (217)
Aprepitant for prevention of chemotherapy-induced nausea and vomiting VERSUS UK comparator regimen IN Specific disease- Breast cancer; Age- Adult; Gender- Female; Country- United Kingdom.	16745	18000	Humphreys et al., 2013 (218)
Screen-film mammography (SFM) annually VERSUS Standard/Usual Care IN Healthy; Age- 41 to 64 years; Gender- Female; Country- Brazil.	7467	8100	Souza et al., 2013 (219)
Screen-film mammography (SFM) every 2 years VERSUS Standard/Usual Care IN Healthy; Age- 41 to 64 years; Gender- Female; Country- Brazil.	858	930	Souza et al., 2013 (219)
Full-field digital mammography (FFDM) annually until 49 years & screen- film mammography (SFM) annually from 50 to 69 years VERSUS Standard/Usual Care IN Healthy; Age- 41 to 64 years; Gender- Female; Country- Brazil.	17356	19000	Souza et al., 2013 (219)

70-gene signature (70-GS) genomic profiling VERSUS Adjuvant! Online (AO) IN Specific disease- breast cancer; Age-; Gender- Female; Country-Netherlands.	-4821	Cost- Saving	Retèl et al., 2013 (220)
Lapatinib (250mg tablet)-letrozole (2.5mg tablet) [LAP-LET] VERSUS Letrozole (2.5mg tablet) [LET] IN Specific disease- Hormone receptor- positive metastatic breast cancer; Age- Adult; Gender- Female; Country- Canada; Other- Postmenopausal women.	142381	150000	Delea et al., 2013 (221)
Lapatinib (250mg tablet)-letrozole (2.5mg tablet) [LAP-LET] VERSUS Trastuzumab (440mg vial)- anastrozole (1mg tablet) [TRZ-ANA] IN Specific disease- Hormone receptor-positive metastatic breast cancer; Age- Adult; Gender- Female; Country- Canada; Other- Postmenopausal women.	10390	11000	Delea et al., 2013 (221)
Lapatinib (250mg tablet)-letrozole (2.5mg tablet) [LAP-LET] VERSUS Anastrozole (1mg tablet) [ANA] IN Specific disease- Hormone receptor- positive metastatic breast cancer; Age- Adult; Gender- Female; Country- Canada; Other- Postmenopausal women.	108504	110000	Delea et al., 2013 (221)
Breast reconstruction surgery: Immediate Implant Placement VERSUS None IN Specific disease- Mastectomy; Age- Adult; Gender- Female; Country- United States; Other- Without radiation therapy.	161858	170000	Grover et al., 2013 (222)
Breast reconstruction surgery: Latissimus dorsi with implant VERSUS None IN Specific disease- Mastectomy; Age- Adult; Gender- Female; Country- United States; Other- Without radiation therapy.	233653	250000	Grover et al., 2013 (222)
Breast reconstruction surgery: Autologous flaps with pedicled tissue VERSUS None IN Specific disease- Mastectomy; Age- Adult; Gender- Female; Country- United States; Other- Without radiation therapy.	61322	65000	Grover et al., 2013 (222)

Breast reconstruction surgery: Autologous flaps with free tissue VERSUS None IN Specific disease- Mastectomy; Age- Adult; Gender- Female; Country- United States; Other- Without radiation therapy.	66843	70000	Grover et al., 2013 (222)
Breast reconstruction surgery: Expander-implant VERSUS None IN Specific disease- Mastectomy; Age- Adult; Gender- Female; Country- United States; Other- Without radiation therapy.	526673	550000	Grover et al., 2013 (222)
Breast reconstruction surgery: Expander-implant VERSUS None IN Specific disease- Mastectomy; Age- Adult; Gender- Female; Country- United States; Other- With radiation therapy.	1506884	1600000	Grover et al., 2013 (222)
Breast reconstruction surgery: Autologous flaps with free tissue VERSUS None IN Specific disease- Mastectomy; Age- Adult; Gender- Female; Country- United States; Other- With radiation therapy.	56745	60000	Grover et al., 2013 (222)
Breast reconstruction surgery: Autologous flaps with pedicled tissue VERSUS None IN Specific disease- Mastectomy; Age- Adult; Gender-Female; Country- United States; Other- With radiation therapy.	52845	56000	Grover et al., 2013 (222)
Breast reconstruction surgery: Latissimus dorsi with implant VERSUS None IN Specific disease- Mastectomy; Age- Adult; Gender- Female; Country- United States; Other- With radiation therapy.	123885	130000	Grover et al., 2013 (222)
Breast reconstruction surgery: Immediate Implant Placement VERSUS None IN Specific disease- Mastectomy; Age- Adult; Gender- Female; Country- United States; Other- With radiation therapy.	302220	320000	Grover et al., 2013 (222)
Gail risk test VERSUS Mammogram IN Healthy; Age- 19 to 40 years, 41 to 64 years; Gender- Female; Country- United States.	141415	150000	Folse et al., 2013 (223)

7SNP test, 18-26 VERSUS Gail risk test IN Healthy; Age- 19 to 40 years, 41 to 64 years; Gender- Female; Country- United States.	162840	170000	Folse et al., 2013 (223)
7SNP test, 16-28 VERSUS 7SNP, 18-26 IN Healthy; Age- 19 to 40 years, 41 to 64 years; Gender- Female; Country- United States.	163988	170000	Folse et al., 2013 (223)
7SNP test, 14-32 VERSUS 7SNP, 16-28 IN Healthy; Age- 19 to 40 years, 41 to 64 years; Gender- Female; Country- United States.	4108048	4200000	Folse et al., 2013 (223)
7SNP test,12-36 VERSUS 7SNP, 14-32 IN Healthy; Age- 19 to 40 years, 41 to 64 years; Gender- Female; Country- United States.	357649	370000	Folse et al., 2013 (223)
7SNP test, 10-38 VERSUS 7SNP test, 12-36 IN Healthy; Age- 19 to 40 years, 41 to 64 years; Gender- Female; Country- United States.	634133	650000	Folse et al., 2013 (223)
Lapatinib + letrozole (LAP + LET) VERSUS lentrozole (LET) IN Specific disease- hormone receptor-and HER2-positive metastic breast cancer; Age- Adult; Gender- Female; Country- United Kingdom; Other- post menopausal women.	119437	130000	Delea et al., 2013 (224)
Lapatinib + letrozole (LAP + LET) VERSUS trastuzumab and anastrozole (TZ + ANA) IN Specific disease- hormone receptor-and HER2-positive metastic breast cancer; Age- Adult; Gender- Female; Country- United Kingdom; Other- post menopausal women.	35032	37000	Delea et al., 2013 (224)
Adjuvant trastuzumab (52 weeks) + standard anthracycline/taxane-based chemotherapy VERSUS Standard/Usual Care- standard anthracycline/taxane-based chemotherapy IN Specific disease- early HER2-positive breast cancer; Age- 41 to 64 years; Gender- Female; Country- Colombia.	71491	78000	Buendía et al., 2013 (225)

Cervical Cancer

Description	Original US\$/QALY	2014US\$/QALY	Reference
One-time Pap smear screening program VERSUS No screening program IN Low-income 70 yo black women seeking medical care from a municipal hospital outpatient clinic		Cost-Saving	van Ineveld et al., 1990 (226)
Aggressive targeted screening: Human Papillomavirus Test using Polymerase Chain Reaction VERSUS No screening IN HIV-infected women with CD4 of 200-500/mm^3 on highly active antiretroviral therapy	11400	16000	Goldie et al., 2001 (227)
Aggressive targeted screening: Human Papillomavirus Test using Polymerase Chain Reaction VERSUS No screening IN HIV-infected women with CD4 of <200/mm^3 on highly active antiretroviral therapy	13111	19000	Goldie et al., 2001 (227)
Aggressive targeted screening: Human Papillomavirus Test using Polymerase Chain Reaction VERSUS No screening IN HIV-infected women with CD4 of <200/mm^3	20300	29000	Goldie et al., 2001 (227)
Aggressive targeted screening: Human Papillomavirus Test using Hybrid Capture II VERSUS No screening IN HIV-infected women with CD4 of 200-500/mm^3 on highly active antiretroviral therapy	11300	16000	Goldie et al., 2001 (227)
Aggressive targeted screening: Human Papillomavirus Test using Hybrid Capture II VERSUS No screening IN HIV-infected women with CD4 of <200/mm^3 on highly active antiretroviral therapy	12700	18000	Goldie et al., 2001 (227)
Aggressive targeted screening: Human Papillomavirus Test using Hybrid Capture II VERSUS No screening IN HIV-infected women with CD4 of <200/mm^3	20000	28000	Goldie et al., 2001 (227)
Pap test every 3 years until the age of 75 VERSUS Pap test every 3 years until the age of 65 IN Hypothetical cohort of U.S. women - age 20	11830	16000	Mandelblatt et al., 2002 (228)
Pap test every 2 years until the age of 75 VERSUS Pap test every 3 years until the age of 75 IN Hypothetical cohort of U.S. women - age 20	29781	41000	Mandelblatt et al., 2002 (228)

Pap test every 2 years until the age of 100 VERSUS Pap test every 2 years until the age of 75 IN Hypothetical cohort of U.S. women - age 20	56440	78000	Mandelblatt et al., 2002 (228)
Pap test and HPV test every 2 years until the age of 75 VERSUS Pap test every 2 years until the age of 100 IN Hypothetical cohort of U.S. women - age 20	70347	97000	Mandelblatt et al., 2002 (228)
Biennial cervical screening using liquid-based cytology where a result of ASC-US is ignored VERSUS No screening IN Women diagnosed as having atypical squamous cells of undetermined significance (ASC-US)	12300	17000	Kim et al., 2002 (229)
Biennial cervical screening using conventional cytology where a result of ASC-US is ignored VERSUS No screening IN Women diagnosed as having atypical squamous cells of undetermined significance (ASC-US)	10800	15000	Kim et al., 2002 (229)
Biennial cervical screening using conventional cytology (where results reflect the unstratified category of ASC) where a result of ASC is ignored VERSUS No screening IN Women diagnosed as having atypical squamous cells of undetermined significance (ASC-US)	11000	15000	Kim et al., 2002 (229)
Biennial cervical screening using conventional cytology with 2- visit HPV DNA testing VERSUS Biennial cervical screening using conventional cytology with HPV DNA testing IN Women diagnosed as having atypical squamous cells of undetermined significance (ASC-US)		Increases Costs, Decreases Health	Kim et al., 2002 (229)
Biennial cervical screening using conventional cytology (where results reflect the unstratified category of ASC) with HPV DNA testing VERSUS Biennial cervical screening using conventional cytology (where results reflect the unstratified category of ASC) where a result of ASC is ignored IN Women diagnosed as having atypical squamous cells of undetermined significance (ASC-US)	20400	28000	Kim et al., 2002 (229)
Biennial cervical screening using conventional cytology with HPV DNA testing VERSUS Biennial cervical screening using conventional cytology where a result of ASC-US is ignored IN Women diagnosed as having atypical squamous cells of undetermined significance (ASC-US)	28200	39000	Kim et al., 2002 (229)
Biennial cervical screening using liquid based cytology with HPV DNA testing VERSUS Biennial cervical screening using liquid based cytology where a result of ASC-US is ignored IN Women diagnosed as having atypical squamous cells of undetermined significance (ASC-US)	36100	50000	Kim et al., 2002 (229)

Biennial cervical screening using liquid based cytology with repeat cytology VERSUS Biennial cervical screening using liquid based cytology with HPV DNA testing IN Women diagnosed as having atypical squamous cells of undetermined significance (ASC-US)		Increases Costs, Decreases Health	Kim et al., 2002 (229)
Biennial cervical screening using conventional cytology with repeat cytology VERSUS Biennial cervical screening using conventional cytology with HPV DNA testing IN Women diagnosed as having atypical squamous cells of undetermined significance (ASC-US)		Increases Costs, Decreases Health	Kim et al., 2002 (229)
Biennial cervical screening using conventional cytology with immediate colposcopy VERSUS Biennial cervical screening using conventional cytology with HPV DNA testing IN Women diagnosed as having atypical squamous cells of undetermined significance (ASC-US)	433800	600000	Kim et al., 2002 (229)
Biennial cervical screening using liquid based cytology with immediate colposcopy VERSUS Biennial cervical screening using liquid based cytology with reflex HPV DNA testing IN Women diagnosed as having atypical squamous cells of undetermined significance (ASC-US)	667300	920000	Kim et al., 2002 (229)
Universal vaccination against high-risk human papillomavirus (HPV) infection VERSUS No vaccination IN Hypothetical cohort of 12 year old girls in the US	22755	30000	Sanders et al., 2003 (230)
HPV vaccines and screening every 5 years starting at age 30 VERSUS No vaccination, conventional screening every 5 years starting at age 25 IN Adolescent girls	17300	23000	Goldie et al., 2004 (231)
HPV vaccines at age 12, triennial screening starting at age 25 VERSUS Vaccination and screening every 5 years starting at age 21 IN Adolescent girls - age 12+	58500	77000	Goldie et al., 2004 (231)
Screening and quadrivalent HPV vaccine VERSUS HPV screening only IN Women aged 25-64 years in United Kingdom	38335	46000	Kulasingam et al., 2008 (232)
Triennial cytology with HPV test triage VERSUS Next best strategy IN Unvaccinated women for HPV-16,18	78000	98000	Goldhaber- Fiebert et al., 2008 (233)
Triennial cytology with HPV test triage VERSUS Next best strategy IN Girls vaccinated before age 12 years	41000	51000	Goldhaber- Fiebert et al., 2008 (233)
Triennial cytology with HPV test triage VERSUS Next best strategy IN Girls vaccinated before age 12 years	188000	240000	Goldhaber- Fiebert et al., 2008 (233)

Referral of women to colposcopy following a single mildly dyskaryotic smear in a setting in which screening is performed every 3 years VERSUS Previous national recommendation was to rescreen 6 months after the initial screen in the primary care center IN Women with a mildly abnormal cervical smear result (mild dyskaryosis)	35788	46000	Hadwin et al., 2008 (234)
Referral of women to colposcopy following a single mildly dyskaryotic smear in a setting in which screening is performed every 5 years VERSUS Previous national recommendation was to rescreen 6 months after the initial screen in the primary care center IN Women with a mildly abnormal cervical smear result (mild dyskaryosis)	10207	13000	Hadwin et al., 2008 (234)
Referral of women to colposcopy following a single mildly dyskaryotic smear in a setting in which screening is performed based on age VERSUS Previous national recommendation was to rescreen 6 months after the initial screen in the primary care center IN Women with a mildly abnormal cervical smear result (mild dyskaryosis)	22030	28000	Hadwin et al., 2008 (234)
Quadrivalent Human Papillomavirus Vaccine VERSUS No vaccination IN 12 year old girls in Taiwan	13458	16000	Dasbach et al., 2008 (235)
Quadrivalent Human Papillomavirus Vaccine + catch up program for 12- 24 females VERSUS No vaccination IN 12 year old girls in Taiwan	12630	15000	Dasbach et al., 2008 (235)
Routine quadrivalent human papillomavirus (HPV) vaccination in females aged 12 years and catch-up in females aged 12-24 years VERSUS None IN Females in Norway	9887	12000	Dasbach et al., 2008 (236)
Routine quadrivalent human papillomavirus (HPV) vaccination in females aged 12 years VERSUS None IN Females in Norway	7498	8800	Dasbach et al., 2008 (236)
Polyvalent (type-16/18) vaccination against HPV among 12-year olds (assuming 95% efficacy, 85% coverage, lifetime protection), with screening VERSUS Screening only for cervical cancer, followed by usual care if positively diagnosed IN Women aged 12 to 100 years of age within the Netherlands healthcare system.	24409	29000	Coupé et al., 2009 (237)

Polyvalent (type-16/18) vaccination against HPV among 12-year olds (assuming 98% efficacy, 85% coverage, lifetime protection), with screening VERSUS Screening only for cervical cancer, followed by usual care if positively diagnosed IN Women aged 12 to 100 years of age within the Netherlands healthcare system.	23309	27000	Coupé et al., 2009 (237)
Polyvalent (type-16/18) vaccination against HPV among 12-year olds (assuming 90% efficacy, 85% coverage, lifetime protection), with screening VERSUS Screening only for cervical cancer, followed by usual care if positively diagnosed IN Women aged 12 to 100 years of age within the Netherlands healthcare system.	26123	31000	Coupé et al., 2009 (237)
Polyvalent (type-16/18) vaccination against HPV among 12-year olds (assuming 95% efficacy, 85% coverage, Slow waning vaccination), with screening VERSUS Screening only for cervical cancer, followed by usual care if positively diagnosed IN Women aged 12 to 100 years of age within the Netherlands healthcare system.	30302	36000	Coupé et al., 2009 (237)
Polyvalent (type-16/18) vaccination against HPV among 12-year olds (assuming 95% efficacy, 85% coverage, Intermediate waning vaccination), with screening VERSUS Screening only for cervical cancer, followed by usual care if positively diagnosed IN Women aged 12 to 100 years of age within the Netherlands healthcare system.	35003	41000	Coupé et al., 2009 (237)
Polyvalent (type-16/18) vaccination against HPV among 12-year olds (assuming 95% efficacy, 85% coverage, Fast waning vaccination), with screening VERSUS Screening only for cervical cancer, followed by usual care if positively diagnosed IN Women aged 12 to 100 years of age within the Netherlands healthcare system.	44379	52000	Coupé et al., 2009 (237)
Polyvalent (type-16/18) vaccination against HPV among 12-year olds (assuming 95% efficacy, Low cross-protection vaccination (50% efficacy type 31/45), 85% coverage, lifetime coverage), with screening VERSUS Screening only for cervical cancer, followed by usual care if positively diagnosed IN Women aged 12 to 100 years of age within the Netherlands healthcare system.	22847	27000	Coupé et al., 2009 (237)

Polyvalent (type-16/18) vaccination against HPV among 12-year olds (assuming 95% efficacy, High cross-protection vaccination (90% efficacy type 31/45), 85% coverage, lifetime coverage), with screening VERSUS Screening only for cervical cancer, followed by usual care if positively diagnosed IN Women aged 12 to 100 years of age within the Netherlands healthcare system.	21944	26000	Coupé et al., 2009 (237)
Polyvalent (type-16/18) vaccination against HPV among 12-year olds (assuming 95% efficacy, 85% coverage, lifetime coverage), with screening VERSUS Screening only for cervical cancer, followed by usual care if positively diagnosed IN Women aged 12 to 100 years of age within the Netherlands healthcare system.	24583	29000	Coupé et al., 2009 (237)
Polyvalent (type-16/18) vaccination against HPV among 12-year olds (assuming 95% efficacy, 85% coverage, lifetime coverage), with screening VERSUS Screening only for cervical cancer, followed by usual care if positively diagnosed IN Women aged 12 to 100 years of age within the Netherlands healthcare system.	27042	32000	Coupé et al., 2009 (237)
Polyvalent (type-16/18) vaccination against HPV among 12-year olds (assuming 85% efficacy, 85% coverage, lifetime protection), with screening VERSUS Screening only for cervical cancer, followed by usual care if positively diagnosed IN Women aged 12 to 100 years of age within the Netherlands healthcare system.	28062	33000	Coupé et al., 2009 (237)
Conventional cytology followed by HPV for equivocal cytology results VERSUS No screening IN Women aged 30 in South Africa	1974	2300	Vijayaraghavan et al., 2009 (238)
HPV DNA testing followed by cytology for HPV-positive women VERSUS No screening IN Women aged 30 in South Africa	2717	3200	Vijayaraghavan et al., 2009 (238)
HPV DNA testing followed by colposcopy for all HPV-positive women VERSUS No screening IN Women aged 30 in South Africa	2224	2600	Vijayaraghavan et al., 2009 (238)
Simultaneous HPV DNA testing and conventional cytology co-screening VERSUS Conventional cytology IN Women aged 30 in South Africa	2320	2700	Vijayaraghavan et al., 2009 (238)
Conventional cytology followed by HPV triage for equivocal cytology results VERSUS Conventional cytology IN Women aged 30 in South Africa	-412	Cost-Saving	Vijayaraghavan et al., 2009 (238)

HPV DNA testing followed by cytology for HPV-positive women VERSUS12331400Vijayaraghavar et al., 2009 (23)Conventional cytology IN Women aged 30 in South Africa12331400Vijayaraghavar et al., 2009 (23)	
	38)
HPV DNA testing followed by colposcopy for all HPV-positive women9721100VijayaraghavaVERSUS Conventional cytology IN Women aged 30 in South Africaet al., 2009 (23)	
Simultaneous HPV DNA testing abd conventional cytology co-screening11961400VijayaraghavarVERSUS Conventional cytology IN Women aged 30 in South Africaet al., 2009 (23)	
Conventional cytology VERSUS No screening IN Women aged 30 in 6246 7300 Vijayaraghavar South Africa et al., 2009 (23	38)
Quadrivalent human papillomavirus (HPV) vaccine (versus types 6, 11,1324916000Annemans et a16, 18) and cervical cancer screening VERSUS Cervical cancer2009 (239)screening only (rates based on existing screening program in Belgium) IN2009 (239)Belgian females aged 12-85 years2009 (239)	al.,
Three doses of the HPV vaccine administered at the age of 12 years plus3614142000Thiry et al., 200one booster is given 10 years after the initial vaccination VERSUS(240)Screening strategy in Belgium, 3-yearly screening of women between 25and 64 years of age IN Belgian females aged 12 years	09
Three doses of the HPV vaccine administered at the age of 12 years with1806821000Thiry et al., 200vaccine lifelong protection VERSUS Screening strategy in Belgium, 3-(240)yearly screening of women between 25 and 64 years of age IN Belgianfemales aged 12 years	09
Vaccinating girls and women aged 12 to 24 years old VERSUS1098613000Elbasha et al.,Vaccinating girls and women aged 12 to 19 years old IN US sexually- active population2009 (241)	
Cytological screening for HPV and cervical cancer (4 times between age 3351 3900Coupé et al.,30 and 60) VERSUS No screening IN Women in the Netherlands after2009 (242)16/18 HPV vaccination2009 (242)	
Universal vaccination of all 12 year old females VERSUS Current practice 5964 7000 Colantonio et a 2009 (243)	al.,
Universal vaccination of all 12 year old females VERSUS Current practice 10181 12000 Colantonio et a IN 12 year old females in Brazil 2009 (243)	al.,
Universal vaccination of all 12 year old females VERSUS Current practice 17666 21000 Colantonio et a 2009 (243)	al.,

Universal vaccination of all 12 year old females VERSUS Current practice IN 12 year old females in Mexico	10134	12000	Colantonio et al., 2009 (243)
Universal vaccination of all 12 year old females VERSUS Current practice IN 12 year old females in Peru	4576	5400	Colantonio et al., 2009 (243)
Referral to colposcopy with immediate treatment based on colposcopic appearance VERSUS Cytological surveillance IN Women with low grade cervical abnormalities in England. This ratio is from NHS perspective with both costs and benefits discounted at 3.5%.	8333	10000	TOMBOLA Group et al., 2009 (244)
Referral to colposcopy for biopsy and recall if necessary VERSUS Referral to colposcopy with immediate treatment based on colposcopic appearance IN Women with low grade cervical abnormalities in Scotland. This ratio is from societal perspective with costs discounted at 3.5% but benefit undiscounted.	-669	Cost-Saving	TOMBOLA Group et al., 2009 (244)
Referral to colposcopy for biopsy and recall if necessary VERSUS Cytological surveillance IN Women with low grade cervical abnormalities in England. This ratio is from NHS perspective with both costs and benefits discounted at 3.5%.	3233	4100	TOMBOLA Group et al., 2009 (244)
Referral to colposcopy with immediate treatment based on colposcopic appearance VERSUS Cytological surveillance IN Women with low grade cervical abnormalities in Scotland. This ratio is from societal perspective with costs discounted at 3.5% but benefits undiscounted.	13524	17000	TOMBOLA Group et al., 2009 (244)
Referral to colposcopy for biopsy and recall if necessary VERSUS Referral to colposcopy with immediate treatment based on colposcopic appearance IN Women with low grade cervical abnormalities in England. This ratio is from NHS perspective with both costs and benefits discounted at 3.5%.	48	60	TOMBOLA Group et al., 2009 (244)

Referral to colposcopy for biopsy and recall if necessary VERSUS Cytological surveillance IN Women with low grade cervical abnormalities in Scotland. This ratio is from societal perspective with costs discounted at 3.5% but benefit undiscounted.	4350	5500	TOMBOLA Group et al., 2009 (244)
Vaccination of 12-year-old girls followed by screening using conventional cervical cytology is performed 3 times at 10-year intervals starting at age 30 VERSUS Screening using conventional cervical cytology is performed 3 times at 10-year intervals starting at age 30 IN Women screened for cervical cancer from societal perspective	1078	1200	Sinanovic et al., 2009 (245)
Vaccination of 12-year-old girls followed by screening using conventional cervical cytology is performed 3 times at 10-year intervals starting at age 30 VERSUS Screening using conventional cervical cytology is performed 3 times at 10-year intervals starting at age 30 IN Women screened for cervical cancer from health care perspective	1460	1700	Sinanovic et al., 2009 (245)
3-year PAP (Women aged 18 to 69 are routinely screened annually with PAP) + HPV (Women with ASCUS are contacted to have an HPV-DNA as a triage test for the presence of high-risk oncogenetic HPV) + PAP-age (women 30 years of age or older who have ASCUS receive a HPV-DNA triage test.) VERSUS Annual PAP-smear + Women with ASCH, AGC, or HSIL are immediately referred for colposcopy and biopsy for histologic assessment of the cervix. Women with CIN graded greater than CIN1 have the CIN removed by a conization procedure and receive a hysterectomy. Women with ASCUS or LSIL are retested with PAP in 6 months. IN Women aged 12> 80 y.o. within the Canadian healthcare system.	15048	17000	Chuck et al., 2009 (246)

1-year PAP (Women aged 18 to 69 are routinely screened annually with PAP) + HPV (Women with ASCUS are contacted to have an HPV-DNA as a triage test for the presence of high-risk oncogenetic HPV) + PAP-age (women 30 years of age or older who have ASCUS receive a HPV-DNA triage test.) VERSUS Annual PAP-smear + Women with ASCH, AGC, or HSIL are immediately referred for colposcopy and biopsy for histologic assessment of the cervix. Women with CIN graded greater than CIN1 have the CIN removed by a conization procedure and receive a hysterectomy. Women with ASCUS or LSIL are retested with PAP in 6 months. IN Women aged 12> 80 y.o. within the Canadian healthcare system.	54764	63000	Chuck et al., 2009 (246)
	80741	92000	Chuck et al., 2009 (246)

1-year LBC (Women aged 18 to 69 are routinely screened annually with LBC (liquid-based cytology)) + HPV (Women with ASCUS are contacted to have an HPV-DNA as a triage test for the presence of high-risk oncogenetic HPV) + LBC (Women with CIN graded greater than CIN1 (i.e., CIN2 or CIN3) have the CIN removed by a conization procedure and receive a hysterectomy. Women with ASCUS or LSIL are retested with LBC in 6 months. women with an unsatisfactory specimen are requested to have a repeat LBC tes VERSUS Annual PAP-smear + Women with ASCH, AGC, or HSIL are immediately referred for colposcopy and biopsy for histologic assessment of the cervix. Women with CIN graded greater than CIN1 have the CIN removed by a conization procedure and receive a hysterectomy. Women with ASCUS or LSIL are retested with PAP in 6 months. IN Women aged 12> 80 y.o. within the Canadian healthcare system.	118937	140000	Chuck et al., 2009 (246)
Human papilloma virus (HPV) vaccination of girls aged 12 + screening every 3 years VERSUS No vaccination + screening every 3 years IN United States boys and girls aged 12 years [vaccination 100% efficacy]	37940	45000	Kim et al., 2009 (247)
No HPV vaccination + screening every 2 years VERSUS HPV vaccination of girls aged 12 + screening every 3 years IN United States boys and girls aged 12 years [vaccination 100% efficacy]		Increases Costs, Decreases Health	Kim et al., 2009 (247)
Vaccination of girls aged 12 + screening every 2 years VERSUS Vaccination of girls and boys aged 12 + screening every 3 years IN United States boys and girls aged 12 years [vaccination 100% efficacy]	190780	220000	Kim et al., 2009 (247)
Vaccination of girls and boys aged 12 + screening every 2 years VERSUS Vaccination of girls aged 12 + screening every 2 years IN United States boys and girls aged 12 years [vaccination 100% efficacy]	390440	460000	Kim et al., 2009 (247)
Cytology with HPV triage every year and vaccination VERSUS Cytology with HPV triage every year and no vaccination IN Women aged 35 years in the US	198362	230000	Kim et al., 2009 (248)
Screening with combined cytology with HPV testing every year and vaccination VERSUS Screening with combined cytology with HPV testing every year and no vaccination IN Women aged 35 years in the US	433385	510000	Kim et al., 2009 (248)

Screening with combined cytology with HPV testing every 2 years and vaccination VERSUS Screening with combined cytology with HPV testing every 2 years and no vaccination IN Women aged 35 years in the US	193568	230000	Kim et al., 2009 (248)
Screening with combined cytology with HPV testing every 3 years and vaccination VERSUS Screening with combined cytology with HPV testing every 3 years and no vaccination IN Women aged 35 years in the US	131832	150000	Kim et al., 2009 (248)
Screening with combined cytology with HPV testing every 4 years and vaccination VERSUS Screening with combined cytology with HPV testing every 4 years and no vaccination IN Women aged 35 years in the US	99905	120000	Kim et al., 2009 (248)
Screening with combined cytology with HPV testing every 5 years and vaccination VERSUS Screening with combined cytology with HPV testing every 5 years and no vaccination IN Women aged 35 years in the US	78751	92000	Kim et al., 2009 (248)
Screening with combined cytology with HPV testing every 1 years and vaccination VERSUS Screening with combined cytology with HPV testing every 1 years and no vaccination IN Women aged 45 years in the US	448989	530000	Kim et al., 2009 (248)
Screening with combined cytology with HPV testing every 2 years and vaccination VERSUS Screening with combined cytology with HPV testing every 2 years and no vaccination IN Women aged 45 years in the US	269217	320000	Kim et al., 2009 (248)
Screening with combined cytology with HPV testing every 3 years and vaccination VERSUS Screening with combined cytology with HPV testing every 3 years and no vaccination IN Women aged 45 years in the US	186886	220000	Kim et al., 2009 (248)
Screening with combined cytology with HPV testing every 4 years and vaccination VERSUS Screening with combined cytology with HPV testing every 4 years and no vaccination IN Women aged 45 years in the US	140658	170000	Kim et al., 2009 (248)
Screening with combined cytology with HPV testing every 5 years and vaccination VERSUS Screening with combined cytology with HPV testing every 5 years and no vaccination IN Women aged 45 years in the US	108416	130000	Kim et al., 2009 (248)
Cytology with HPV triage every 1 year and vaccination VERSUS Cytology with HPV triage every 1 year and no vaccination IN Women aged 45 years in the US	272346	320000	Kim et al., 2009 (248)

Cytology with HPV triage every 4 years and vaccination VERSUS Cytology with HPV triage every 4 years and no vaccination IN Women aged 45 years in the US		Increases Costs, Decreases Health	Kim et al., 2009 (248)
Cytology with HPV triage every 5 years and vaccination VERSUS Cytology with HPV triage every 5 years and no vaccination IN Women aged 45 years in the US		Increases Costs, Decreases Health	Kim et al., 2009 (248)
Quadrivalent human papillomavirus (HPV) against HPV types 6, 11, 16 and 18 VERSUS No vaccination IN 12-year old Irish females	31846	37000	Dee et al., 2009 (249)
Bivalent human papillomavirus (HPV) against HPV types 16 and 18 VERSUS No vaccination IN 12-year old Irish females	38267	45000	Dee et al., 2009 (249)
Human papillomavirus (HPV) vaccine against HPV types 16, 18, with no herd immunity VERSUS No vaccination IN 12 year old Canadian females	27950	33000	Anonychuk et al., 2009 (250)
Human papillomavirus (HPV) vaccine against HPV types 16, 18, and cross protection, with no herd immunity VERSUS No vaccination IN 12 year old Canadian females	23769	28000	Anonychuk et al., 2009 (250)
Human papillomavirus (HPV) vaccine against HPV types 16, 18, with herd immunity VERSUS No vaccination IN 12 year old Canadian females	24564	29000	Anonychuk et al., 2009 (250)
Human papillomavirus (HPV) vaccine against HPV types 16, 18, and cross protection, with herd immunity VERSUS No vaccination IN 12 year old Canadian females	16470	19000	Anonychuk et al., 2009 (250)
Human papillomavirus (HPV) vaccination VERSUS None IN Population of 12-year-old girls in the Icelandic population.	23	27	Oddsson et al., 2009 (251)
Human papilloma virus vaccination against HPV-16 and HPV-18 VERSUS No vaccination IN Taiwanese girls aged 12+ years old.	13674	15000	Liu et al., 2010 (252)

Quadrivalent human paillomavirus vaccine (6/11/16/18) at age 12 VERSUS Quadrivalent human paillomavirus vaccine (6/11/16/18) at age 12 plus a temporary catch-up program for girls and women aged 12-24 IN Girls aged 12 years in Hungary	13374	16000	Dasbach et al., 2010 (253)
Quadrivalent human paillomavirus vaccine (6/11/16/18) at age 12 VERSUS No vaccination IN Girls aged 12 years in Hungary	12032	14000	Dasbach et al., 2010 (253)
HPV with cytology triage VERSUS Cytology every 5 years IN Dutch women age 30-60 years	12758	15000	Berkhof et al., 2010 (254)
Combined HPV with cytology VERSUS Cytology every 5 years IN Dutch women age 30-60 years	22352	26000	Berkhof et al., 2010 (254)
Cytology with HPV triage VERSUS Cytology every 5 years IN Dutch women age 30-60 years	5423	6200	Berkhof et al., 2010 (254)
Bivalent (HPV 16, 18) human papilloma virus vaccination, plus screening for HPV as presently performed in Italy VERSUS Screening for HPV (human papilloma virus) as presently performed in Italy IN Italian girls aged approximately 12 y.o.	26597	29000	Torre et al., 2010 (255)
Prophylactic cervical cancer vaccination VERSUS No vaccination IN Twelve-year-old girls in Japan	15567	18000	Konno et al., 2010 (256)
Annual HPV vaccination of 12-year-old girls (70% vacaination rate, 100% efficacy) VERSUS Current Danish strategy, which includes a cervical cancer screening program for women aged 23-59 years who are offered screening every 3 years IN Denish population aged 17-78 years	2628	3000	Olsen et al., 2010 (257)
Annual HPV vaccination of 12-year-old girls with catch-up to 15 years in the first vaccination year (70% vacaination rate) VERSUS Current Danish strategy, which includes a cervical cancer screening program for women aged 23-59 years who are offered screening every 3 years IN Denish population aged 17-78 years	4160	4700	Olsen et al., 2010 (257)

Annual HPV vaccination of 12-year-old girls and boys (70% vacaination rate) VERSUS Current Danish strategy, which includes a cervical cancer screening program for women aged 23-59 years who are offered screening every 3 years IN Denish population aged 17-78 years	25607	29000	Olsen et al., 2010 (257)
Current screening and vaccination against human papoillomavirus (HPV) 16/18 VERSUS Current screening: Pap smear only IN Finnish girls aged 10 years	21726	26000	Torvinen et al., 2010 (258)
Quadrivalent human papillomavirus (HPV) vaccine B- lifetime protection against HPV types 18 and low-risk HPV types 6 and 11 VERSUS Bivalent human papillomavirus (HPV) vaccine B- lifetime protection against HPV types 16 and 18 IN 12 year old girls in Ireland	-33540	Cost-Saving	Demarteau et al., 2010 (259)
Quadrivalent human papillomavirus (HPV) vaccine B- lifetime protection against HPV types 18 and low-risk HPV types 6 and 11 VERSUS Bivalent human papillomavirus (HPV) vaccine B- lifetime protection against HPV types 16 and 18 IN 12 year old girls in Italy		Cost-Saving	Demarteau et al., 2010 (259)
Quadrivalent human papillomavirus (HPV) vaccine B- lifetime protection against HPV types 18 and low-risk HPV types 6 and 11 VERSUS Bivalent human papillomavirus (HPV) vaccine B- lifetime protection against HPV types 16 and 18 IN 12 year old girls in France	-28705	Cost-Saving	Demarteau et al., 2010 (259)
Triennial Cervical Human Papillomavirus DNA testing VERSUS Triennial vaginal Human Papillomavirus screening with cytology triage IN Women aged between 18 and 50 years old, not pregnant, not chronically immunocompromised, and reported no previous treatments for cervical neoplasia.	238706	270000	Balasubramanian et al., 2010 (260)
Triennial vaginal Human Papillomavirus screening with cytology triage VERSUS Screening IN Women aged between 18 and 50 years old, not pregnant, not chronically immunocompromised, and reported no previous treatments for cervical neoplasia.	9871	11000	Balasubramanian et al., 2010 (260)

Biennial Human Papillomavirus DNA screening VERSUS Triennial Human Papplimavirus DNA screening IN Women aged between 18 and 50 years old, not pregnant, not chronically immunocompromised, and reported no previous treatments for cervical neoplasia.	70151	80000	Balasubramanian et al., 2010 (260)
Triennial cytology VERSUS No screening IN Women aged between 18 and 50 years old, not pregnant, not chronically immunocompromised, and reported no previous treatments for cervical neoplasia.	12878	15000	Balasubramanian et al., 2010 (260)
Biennial cytology VERSUS No screening IN Women aged between 18 and 50 years old, not pregnant, not chronically immunocompromised, and reported no previous treatments for cervical neoplasia.	18051	21000	Balasubramanian et al., 2010 (260)
PAP smear program to detect cervical cancer (70% coverage) VERSUS PAP smear program (40% coverage) IN Women diagnosed with cervical changes for at least six months in Malaysia	285	310	Ezat et al., 2010 (261)
Combined strategy- quadrivalent human papillomavirus (HPV) vaccine plus PAP smear for elderly women till age of 65 years VERSUS PAP smear program (70% coverage) IN Women diagnosed with cervical changes for at least six months in Malaysia	10641	12000	Ezat et al., 2010 (261)
Human Papillomavirus (HPV) vaccination with current cervical cancer screening program VERSUS Current cervical cancer screening program IN 12-year old girls in Slovenia	34131	38000	Obradovic et al., 2010 (262)
Screening using liquid-based cytology every two years, followed by HPV DNA testing for all patients with equivocal results on cytology (ASCUS) VERSUS No screening IN US adolescent and young adult women aged over 14 years potentially exposed to HPV 16/18 through sexual activity	19376	22000	Vijayaraghavan et al., 2010 (263)

Screening using a combination of simultaneous liquid-based cytology and HPV DNA testing every three years, with reflex HPV genotyping and more intensive follow-up for HPV types 16/18 VERSUS No screening IN US adolescent and young adult women aged over 14 years potentially exposed to HPV 16/18 through sexual activity	19420	22000	Vijayaraghavan et al., 2010 (263)
Screening using liquid-based cytology every two years, followed by HPV DNA testing for all patients with equivocal results on cytology (ASCUS) VERSUS Screening using liquid-based cytology every two years IN US adolescent and young adult women aged over 14 years potentially exposed to HPV 16/18 through sexual activity	21304	24000	Vijayaraghavan et al., 2010 (263)
Primary screening using HPV DNA testing every three years, followed by cytology for all women with positive result on HPV VERSUS Screening using liquid-based cytology every two years, followed by HPV DNA testing for all patients with equivocal results on cytology (ASCUS) IN US adolescent and young adult women aged over 14 years potentially exposed to HPV 16/18 through sexual activity	2618	3000	Vijayaraghavan et al., 2010 (263)
Screening using a combination of simultaneous cytology and HPV DNA testing every three years VERSUS Primary screening using HPV DNA testing every three years, followed by cytology for all women with positive result on HPV IN US adolescent and young adult women aged over 14 years potentially exposed to HPV 16/18 through sexual activity	17204	20000	Vijayaraghavan et al., 2010 (263)
Screening for HPV 16/18 using HPV DNA testing every three years, followed by reflex HPV genotyping for all HPV-positive women and more intensive follow-up for HPV types 16/18 VERSUS Screening using a combination of simultaneous cytology and HPV DNA testing every three years IN US adolescent and young adult women aged over 14 years potentially exposed to HPV 16/18 through sexual activity	34074	39000	Vijayaraghavan et al., 2010 (263)

Screening using a combination of simultaneous cytology and HPV DNA testing every three years, with reflex HPV genotyping and more intensive follow-up for HPV types 16/18 VERSUS Screening for HPV 16/18 using HPV DNA testing every three years, followed by reflex HPV genotyping for all HPV-positive women and more intensive follow-up for HPV types 16/18 IN US adolescent and young adult women aged over 14 years potentially exposed to HPV 16/18 through sexual activity	33807	39000	Vijayaraghavan et al., 2010 (263)
Liquid-based cytology every two years to screen for HPV 16/18 VERSUS No screening IN US adolescent and young adult women aged over 14 years potentially exposed to HPV 16/18 through sexual activity	19321	22000	Vijayaraghavan et al., 2010 (263)
Primary screening using HPV DNA testing every three years, followed by liquid-based cytology testing for all women with positive result on HPV VERSUS No screening IN US adolescent and young adult women aged over 14 years potentially exposed to HPV 16/18 through sexual activity	18980	22000	Vijayaraghavan et al., 2010 (263)
Screening using a combination of simultaneous liquid-based cytology testing and HPV DNA testing every three years VERSUS No screening IN US adolescent and young adult women aged over 14 years potentially exposed to HPV 16/18 through sexual activity	18903	22000	Vijayaraghavan et al., 2010 (263)
Screening Using HPV DNA testing every three years, followed by reflex HPV genotyping for all HPV-positive women and more intensive follow-up for HPV types 16/18 VERSUS No screening IN US adolescent and young adult women aged over 14 years potentially exposed to HPV 16/18 through sexual activity	19092	22000	Vijayaraghavan et al., 2010 (263)
Conventional cytology every 1-3 years with repeat screening for atypical squamous cells of undetermined significance (ASCUS) results VERSUS No screening IN Women aged 30 years or older in Canada	9510	11000	Vijayaraghavan et al., 2010 (264)
Conventional cytology with human papillomavirus (HPV) testing to triage atypical squamous cells of undetermined significance (ASCUS) and cytology every 1-3 years VERSUS No screening IN Women aged 30 years or older in Canada	9000	10000	Vijayaraghavan et al., 2010 (264)

Human papillomavirus (HPV) testing for every 3 years in high-risk patients followed by colposcopy for triage of HPV-positive women VERSUS No screening IN Women aged 30 years or older in Canada	11843	14000	Vijayaraghavan et al., 2010 (264)
Human papillomavirus (HPV) testing for every 3 years in high-risk patients with use of cytology for triage of HPV-positive women VERSUS No screening IN Women aged 30 years or older in Canada	9288	11000	Vijayaraghavan et al., 2010 (264)
Co-screening with human papillomavirus (HPV) testing and cytology every 3 years VERSUS No screening IN Women aged 30 years or older in Canada	9985	11000	Vijayaraghavan et al., 2010 (264)
Conventional cytology with human papillomavirus (HPV) testing to triage atypical squamous cells of undetermined significance (ASCUS) and cytology annually VERSUS No screening IN Women aged 30 years or older in Canada	11603	13000	Vijayaraghavan et al., 2010 (264)
Human papillomavirus (HPV) testing every 1-3 years VERSUS No screening IN Women aged 30 years or older in Canada	9231	11000	Vijayaraghavan et al., 2010 (264)
Human papillomavirus (HPV) testing every 1-3 years VERSUS Annual cytology IN Women aged 30 years or older in Canada	-79916	Cost-Saving	Vijayaraghavan et al., 2010 (264)
Human papillomavirus (HPV) testing for every 3 years in high-risk patients followed by colposcopy for triage of HPV-positive women VERSUS Annual cytology IN Women aged 30 years or older in Canada	-273766	Cost-Saving	Vijayaraghavan et al., 2010 (264)
Co-screening with HPV testing and cytology every 3 years VERSUS Annual cytology IN Women aged 30 years or older in Canada	-194210	Cost-Saving	Vijayaraghavan et al., 2010 (264)
Conventional cytology with human papillomavirus (HPV) testing to triage atypical squamous cells of undetermined significance (ASCUS) and cytology annually VERSUS Annual cytology IN Women aged 30 years or older in Canada	3403	3900	Vijayaraghavan et al., 2010 (264)

Conventional cytology with human papillomavirus (HPV) testing to triage atypical squamous cells of undetermined significance (ASCUS) and cytology every 1-3 years VERSUS Cytology every 3 years IN Women aged 30 years or older in Canada	-1478	Cost-Saving	Vijayaraghavan et al., 2010 (264)
Annual cytology to detect cervical cancer VERSUS Cytology every 3 years IN Women aged 30 years or older in Canada	25701	29000	Vijayaraghavan et al., 2010 (264)
Human papillomavirus (HPV) testing for every 3 years in high-risk patients with use of cytology for triage of HPV-positive women VERSUS Cytology every 3 years IN Women aged 30 years or older in Canada	7823	8900	Vijayaraghavan et al., 2010 (264)
Co-screening with human papillomavirus (HPV) testing and cytology every 3 years VERSUS Cytology every 3 years IN Women aged 30 years or older in Canada	12573	14000	Vijayaraghavan et al., 2010 (264)
Conventional cytology with human papillomavirus (HPV) testing to triage atypical squamous cells of undetermined significance (ASCUS) and cytology annually VERSUS Cytology every 3 years IN Women aged 30 years or older in Canada	22387	26000	Vijayaraghavan et al., 2010 (264)
Human papillomavirus (HPV) testing only every 3 years VERSUS Cytology every 3 years IN Women aged 30 years or older in Canada	7635	8700	Vijayaraghavan et al., 2010 (264)
Treatment with cone biopsy or loop excision followed by colposcopy at 6 months then annual cytology VERSUS Treatment with cone biopsy or loop excision followed by colposcopy at 6 months then triennial cytology IN Women with cervical intraepithelial neoplasia stage 2	5217	6000	Melnikow et al., 2010 (265)
Treatment with cryotherapy followed by colposcopy at 6 months then triennial cytology VERSUS Treatment with cryotherapy followed by conventional cytology at 6 and 12 months then triennially IN Women with cervical intraepithelial neoplasia stage 2	221	250	Melnikow et al., 2010 (265)
Treatment with cryotherapy followed by colposcopy at 6 months then annual cytology VERSUS Treatment with cryotherapy followed by colposcopy at 6 months then triennial cytology IN Women with cervical	5246	6000	Melnikow et al., 2010 (265)

intraepithelial neoplasia stage 2			
Treatment with cone biopsy or loop excision followed by colposcopy at 6 months then triennial cytology VERSUS Treatment with cone biopsy or loop excision followed by conventional cytology at 6 and 12 months then triennially IN Women with cervical intraepithelial neoplasia stage 3	331	380	Melnikow et al., 2010 (265)
Treatment with cone biopsy or loop excision followed by colposcopy at 6 months then triennial cytology VERSUS Treatment with cone biopsy or loop excision followed by colposcopy at 6 months then annual cytology IN Women with cervical intraepithelial neoplasia stage 3	5193	5900	Melnikow et al., 2010 (265)
Treatment with cryotherpy followed by colposcopy at 6 months then triennial cytology VERSUS Treatment with cryotherpy followed by conventional cytology at 6 and 12 months then triennially IN Women with cervical intraepithelial neoplasia stage 3	54	62	Melnikow et al., 2010 (265)
Treatment with cryotherpy followed by colposcopy at 6 months then annual cytology VERSUS Treatment with cryotherpy followed by colposcopy at 6 months then triennial cytology IN Women with cervical intraepithelial neoplasia stage 3	5133	5900	Melnikow et al., 2010 (265)
Treatment with cone biopsy or loop excision, followed by colposcopy at 6 months then triennial cytology VERSUS Treatment with cone biopsy or loop excision, followed by conventional cytology at 6 and 12 months then annually IN Women with cervical intraepithelial neoplasia stage 2	369	420	Melnikow et al., 2010 (265)
Lay health worker home visit for Pap smear VERSUS None IN Vietnamese-American women who have not received a Pap test in the last 3 years	30015	33000	Scoggins et al., 2010 (266)
Pap smear, every 5 years for women aged 30-69 years VERSUS No screening IN Healthy females aged 30 years	20962	23000	Chow et al., 2010 (267)
Pap smear, every 3 years for women aged 30-69 years VERSUS No screening IN Healthy females aged 30 years	22494	25000	Chow et al., 2010 (267)
Pap smear, annually for women aged 30-69 years VERSUS No screening IN Healthy females aged 30 years	26590	29000	Chow et al., 2010 (267)

HPV DNA testing followed by Pap smear triage, every 5 years for women aged 30-69 years VERSUS No screening IN Healthy females aged 30 years	28470	31000	Chow et al., 2010 (267)
HPV DNA testing combined with Pap smear, every 5 years for women aged 30-69 years VERSUS No screening IN Healthy females aged 30 years	32064	35000	Chow et al., 2010 (267)
HPV DNA testing followed by Pap smear triage, every 3 years for women aged 30-69 years VERSUS No screening IN Healthy females aged 30 years	30341	33000	Chow et al., 2010 (267)
HPV DNA testing combined with Pap smear, every 3 years for women aged 30-69 years VERSUS No screening IN Healthy females aged 30 years	35057	39000	Chow et al., 2010 (267)
HPV DNA testing followed by Pap smear triage, annually for women aged 30-69 years VERSUS No screening IN Healthy females aged 30 years	34982	38000	Chow et al., 2010 (267)
HPV DNA testing combined with Pap smear, annually for women aged 30-69 years VERSUS No screening IN Healthy females aged 30 years	40416	44000	Chow et al., 2010 (267)
HPV DNA testing followed by Pap smear triage, every 5 years for women aged 30-69 years VERSUS Pap smear, annually for women aged 30-69 years IN Healthy females aged 30 years	39604	44000	Chow et al., 2010 (267)
HPV DNA testing combined with Pap smear, every 5 years for women aged 30-69 years VERSUS Pap smear, annually for women aged 30-69 years IN Healthy females aged 30 years	55835	61000	Chow et al., 2010 (267)
HPV DNA testing followed by Pap smear triage, every 3 years for women aged 30-69 years VERSUS Pap smear, annually for women aged 30-69 years IN Healthy females aged 30 years	41375	45000	Chow et al., 2010 (267)
HPV DNA testing combined with Pap smear, every 3 years for women aged 30-69 years VERSUS Pap smear, annually for women aged 30-69 years IN Healthy females aged 30 years	58174	64000	Chow et al., 2010 (267)

HPV DNA testing followed by Pap smear triage, annually for women aged 30-69 years VERSUS Pap smear, annually for women aged 30-69 years IN Healthy females aged 30 years	55444	61000	Chow et al., 2010 (267)
HPV DNA testing combined with Pap smear, annually for women aged 30-69 years VERSUS Pap smear, annually for women aged 30-69 years IN Healthy females aged 30 years	71091	78000	Chow et al., 2010 (267)
Pap smear, every 3 years for women aged 30-69 years VERSUS Pap smear, every 5 years for women aged 30-69 years IN Healthy females aged 30 years	28228	31000	Chow et al., 2010 (267)
Pap smear, annually for women aged 30-69 years VERSUS Pap smear, every 5 years for women aged 30-69 years IN Healthy females aged 30 years	1894	2100	Chow et al., 2010 (267)
Pap smear, every 5 years for women aged 30-69 years VERSUS HPV DNA testing followed by Pap smear triage, every 5 years for women aged 30-69 years IN Healthy females aged 30 years	42037	46000	Chow et al., 2010 (267)
HPV DNA testing followed by Pap smear triage, every 3 years for women aged 30-69 years VERSUS HPV DNA testing followed by Pap smear triage, every 5 years for women aged 30-69 years IN Healthy females aged 30 years	43123	47000	Chow et al., 2010 (267)
HPV DNA testing followed by Pap smear triage, annually for women aged 30-69 years VERSUS HPV DNA testing followed by Pap smear triage, every 3 years for women aged 30-69 years IN Healthy females aged 30 years	123594	140000	Chow et al., 2010 (267)
HPV DNA testing followed by Pap smear triage, annually for women aged 30-69 years VERSUS HPV DNA testing combined with Pap smear, annually for women aged 30-69 years IN Healthy females aged 30 years	377651	420000	Chow et al., 2010 (267)
HPV 16/18 vaccine plus screening VERSUS Screening only IN French adolescent females aged 12 years	13308	15000	Demarteau et al., 2010 (268)
Bivalent human papillomavirus (HPV) vaccination VERSUS Pap smear (40% coverage) IN Women aged over 18 years with cervical cancer and pre-invasive diseases in Malaysia	1173	Cost-Saving	Ezat et al., 2010 (269)

Quadrivalent human papillomavirus (HPV) vaccination VERSUS Pap smear (40% coverage) IN Women aged over 18 years with cervical cancer and pre-invasive diseases in Malaysia	4804	5600	Ezat et al., 2010 (269)
Bivalent human papillomavirus (HPV) vaccination + pap smear VERSUS Pap smear (40% coverage) IN Women aged over 18 years with cervical cancer and pre-invasive diseases in Malaysia	325809	380000	Ezat et al., 2010 (269)
Quadrivalent human papillomavirus (HPV) vaccination + pap smear VERSUS Pap smear (40% coverage) IN Women aged over 18 years with cervical cancer and pre-invasive diseases in Malaysia	2142	2500	Ezat et al., 2010 (269)
Quadrivalent human papillomavirus (HPV) vaccination + pap smear VERSUS Bivalent human papillomavirus (HPV) vaccination + pap smear IN Women aged over 18 years with cervical cancer and pre-invasive diseases in Malaysia	0	Cost-Saving	Ezat et al., 2010 (269)
Pap smear (40% coverage) VERSUS None IN Women aged over 18 years with cervical cancer and pre-invasive diseases in Malaysia	331	390	Ezat et al., 2010 (269)
Pap test followed by human papillomavirus (HPV) DNA triage every five years VERSUS Current screening policy (Pap test every three years) IN Women without HPV infection and are eligible for vaccination and/or screening in Italy	5647	6600	Accetta et al., 2010 (270)
Human papillomavirus (HPV) DNA test and Pap test triage every five years and HPV vaccine VERSUS Current screening policy (Pap test every three years) IN Women without HPV infection and are eligible for vaccination and/or screening in Italy	30089	35000	Accetta et al., 2010 (270)
Human papillomavirus (HPV) vaccine at age 11 years VERSUS Current screening policy (Pap test every three years) IN Women without HPV infection and are eligible for vaccination and/or screening in Italy		Increases Costs, Decreases Health	Accetta et al., 2010 (270)
Human papillomavirus (HPV) DNA test every 3 years VERSUS Current screening policy (Pap test every three years) IN Women without HPV infection and are eligible for vaccination and/or screening in Italy	322223	380000	Accetta et al., 2010 (270)

Human papillomavirus (HPV) DNA test and Pap test triage every three years including HPV vaccine VERSUS Current screening policy (Pap test every three years) IN Women without HPV infection and are eligible for vaccination and/or screening in Italy	143539	170000	Accetta et al., 2010 (270)
Human papillomavirus (HPV) DNA test and Pap test triage every five years VERSUS Current screening policy (Pap test every three years) IN Women without HPV infection and are eligible for vaccination and/or screening in Italy	7227	8500	Accetta et al., 2010 (270)
Quadrivalent human papillomavirus vaccine and cervical cancer screening VERSUS Screening only IN 12 year old females in Singapore	7156	7900	Lee et al., 2011 (271)
Bivalent human papillomavirus vaccine VERSUS Quadrivalent human papillomavirus vaccine IN 12 year old females in Singapore	-72265	Increases Costs, Decreases Health	Lee et al., 2011 (271)
Bivalent human papillomavirus vaccine and cervical cancer screening VERSUS Screening only IN 12 year old females in Singapore	8198	9000	Lee et al., 2011 (271)
Human papillomavirus (HPV) vaccination at age 25 years VERSUS Visual inspection with acetic acid (VIA) every 5 years (age 30-45 years) + Pap smear every 5 years (age 50-60 years) IN Women aged 15 years and over in Thailand	9863	11000	Praditsitthikorn et al., 2011 (272)
Human papillomavirus (HPV) vaccination at age 24 years VERSUS Human papillomavirus (HPV) vaccination at age 25 years IN Women aged 15 years and over in Thailand	3542	4000	Praditsitthikorn et al., 2011 (272)
Human papillomavirus (HPV) vaccination at age 23 years VERSUS Human papillomavirus (HPV) vaccination at age 24 years IN Women aged 15 years and over in Thailand	1367	1600	Praditsitthikorn et al., 2011 (272)
Human papillomavirus (HPV) vaccination at age 22 years VERSUS Human papillomavirus (HPV) vaccination at age 22 years IN Women aged 15 years and over in Thailand	2573	2900	Praditsitthikorn et al., 2011 (272)
Human papillomavirus (HPV) vaccination at age 21 years VERSUS Human papillomavirus (HPV) vaccination at age 22 years IN Women aged 15 years and over in Thailand	2259	2600	Praditsitthikorn et al., 2011 (272)
Human papillomavirus (HPV) vaccination at age 20 years VERSUS Human papillomavirus (HPV) vaccination at age 21 years IN Women aged 15 years and over in Thailand	1441	1600	Praditsitthikorn et al., 2011 (272)

Human papillomavirus (HPV) vaccination at age 19 years VERSUS Human papillomavirus (HPV) vaccination at age 20 years IN Women aged 15 years and over in Thailand	908	1000	Praditsitthikorn et al., 2011 (272)
Human papillomavirus (HPV) vaccination at age 18 years VERSUS Human papillomavirus (HPV) vaccination at age 19 years IN Women aged 15 years and over in Thailand	1403	1600	Praditsitthikorn et al., 2011 (272)
Human papillomavirus (HPV) vaccination at age 17 years VERSUS Human papillomavirus (HPV) vaccination at age 18 years IN Women aged 15 years and over in Thailand	2498	2900	Praditsitthikorn et al., 2011 (272)
Human papillomavirus (HPV) vaccination at age 16 years VERSUS Human papillomavirus (HPV) vaccination at age 17 years IN Women aged 15 years and over in Thailand	3474	4000	Praditsitthikorn et al., 2011 (272)
Human papillomavirus (HPV) vaccination at age 15 years + Visual inspection with acetic acid (VIA) every 5 years (age 30-45 years) + Pap smear every 5 years (age 50-60 years) VERSUS Human papillomavirus (HPV) vaccination at age 16 years IN Women aged 15 years and over in Thailand	676	770	Praditsitthikorn et al., 2011 (272)
4 times human papillomavirus (HPV) DNA screening between 30-60 years along with vaccination VERSUS 4 times cytological screening IN Women aged 10 years and over	9347	10000	Coup? et al., 2012 (273)
4 times cytological screening VERSUS Vaccination IN Women aged 10 years and over	3821	4200	Coup? et al., 2012 (273)
6 times cytological screening between 30-60 years VERSUS 4 times human papillomavirus (HPV) DNA testing between 30-60 years IN Women aged 10 years and over	-20903	Increases Costs, Decreases Health	Coup? et al., 2012 (273)
4 times human papillomavirus (HPV) DNA screening along with 5-valent vaccination VERSUS Vaccination IN Women aged 10 years and over	38345	42000	Coup? et al., 2012 (273)
7 times cytological screening between 30-60 years VERSUS 4 times human papillomavirus (HPV) DNA testing between 30-60 years IN Women aged 10 years and over	-222968	Increases Costs, Decreases Health	Coup? et al., 2012 (273)

5 times human papillomavirus (HPV) DNA testing between 30-60 years VERSUS 4 times human papillomavirus (HPV) DNA testing between 30- 60 years IN Women aged 10 years and over	32006	35000	Coup? et al., 2012 (273)
6 times human papillomavirus (HPV) DNA testing between 30-60 years VERSUS 5 times human papillomavirus (HPV) DNA testing between 30- 60 years IN Women aged 10 years and over	37360	41000	Coup? et al., 2012 (273)
7 times human papillomavirus (HPV) DNA testing between 30-60 years VERSUS 6 times human papillomavirus (HPV) DNA testing between 30- 60 years IN Women aged 10 years and over		Increases Costs, Decreases Health	Coup? et al., 2012 (273)
3 times human papillomavirus (HPV) DNA screening along with broad spectrum vaccination (5-13-valent vaccination) VERSUS Vaccination IN Women aged 10 years and over		Increases Costs, Decreases Health	Coup? et al., 2012 (273)
2 times human papillomavirus (HPV) DNA screening along with 5-valent vaccination VERSUS Vaccination IN Women aged 10 years and over	21877	24000	Coup? et al., 2012 (273)
Pap smear VERSUS None IN Women aged 25-64 years in Hungary	18990	21000	Vok? et al., 2012 (274)
Intensified current screening- current practice of screening by cytology and colposcopy in outpatient services along with active communication campaign to reach and motivate women VERSUS None IN Women aged 25-64 years in Hungary	33100	36000	Vok? et al., 2012 (274)
Primary screening for human papillomavirus (HPV) using automated molecular amplification or hybridisation techniques in women over age 30 years VERSUS Primary cytology screening IN Unvaccinated women born between 1939 and 1992 in Netherlands		Increases Costs, Decreases Health	de Kok et al., 2012 (275)

Cervical cancer screening with manually screened ThinPrep liquid-based cytology (LBC) every 5 years during the age of 30-60 years VERSUS Cervical cancer screening with conventional papanicolaou (CP) IN Dutch women at risk for cerical cancer	81308	90000	de Bekker-Grob et al., 2012 (276)
Cervical cancer screening with manually screened ThinPrep liquid-based cytology (LBC) every 3 years during the age of 25-65 years VERSUS Cervical cancer screening with conventional papanicolaou (CP) IN Women at risk for cervical cancer in Netherlands	233120	260000	de Bekker-Grob et al., 2012 (276)
Gemcitabine with cisplatin chemoradiation followed by 2 cycles of adjuvant gemcitabine and cisplatin VERSUS Standard cisplatin chemoradiation IN Women with locally advanced cervix cancer (stages IIB to IVA carcinoma of the cervix)	33080	35000	Phippen et al., 2012 (277)
Cisplatain (50 mg per sq meter for 21 days) VERSUS Cisplatin (50 mg per sq meter) and paclitaxel (135 mg per sq meter) for 21 days IN Women with advanced, recurrent or persistent squamous cell carcinoma	13654	14000	Geisler et al., 2012 (278)
Cisplatain (50 mg per sq meter for 21 days) VERSUS Cisplatin (50 mg per sq meter for 21 days) and topotecan (0.75 mg per sq meter for 21 days) IN Women with advanced, recurrent or persistent squamous cell carcinoma	152327	160000	Geisler et al., 2012 (278)
Intensity-modulated radiation therapy (IMRT) VERSUS Four field radiation therapy (BOX-RT) IN Specific disease- Locally advanced cervical cancer; Age- 41 to 64 years, >=65 years, Adult; Gender- Female; Country- United States.	182777	200000	Lesnock et al., 2013 (279)
Single-agent chemotherapy with home hospice for all VERSUS Home hospice for all IN Specific disease- Cervical cancer; Age- Adult; Gender-Female; Country- United States.	44392	46000	Phippen et al., 2013 (280)
Standard doublet chemotherapy for all VERSUS Selective chemotherapy (home hospice with no chemotherapy for poorest prognosis patients with remainder receiving standard doublet chemotherapy IN Specific disease- Cervical cancer; Age- Adult; Gender- Female; Country- United States.	275630	280000	Phippen et al., 2013 (280)

Selective chemotherapy (home hospice with no chemotherapy for poorest prognosis patients with remainder receiving standard doublet chemotherapy VERSUS Single-agent chemotherapy with home hospice for all IN Specific disease- Cervical cancer; Age- Adult; Gender- Female; Country- United States.	78404	81000	Phippen et al., 2013 (280)
human papilommavirus (HPV) vaccination VERSUS screening only (every 3 years from age 25 to 65 years for 59% of the population) IN Healthy; Age-; Gender- Female; Country- belgium.	12137	13000	Demarteau et al., 2013 (281)
human papilommavirus (HPV) vaccination VERSUS screening only (every 3 years from age 25 to 65 years for 59% of the population) IN Healthy; Age-; Gender- Female; Country- belgium.	15388	17000	Demarteau et al., 2013 (281)
HPV vaccination, 12 & 15 & 18& 21 years old girls VERSUS Placebo IN Healthy; Age-; Gender- Female; Country- Italy.	22112	23000	Favato et al., 2013 (282)
HPV vaccination, 12 & 15 years old girls VERSUS Placebo IN Healthy; Age-; Gender- Female; Country- Italy.	16717	18000	Favato et al., 2013 (282)
HPV vaccination, 12 & 15 & 18 years old girls VERSUS Placebo IN Healthy; Age-; Gender- Female; Country- Italy.	18413	19000	Favato et al., 2013 (282)
HPV vaccination, 12 years old girls VERSUS Placebo IN Healthy; Age-; Gender- Female; Country- Italy.	15245	16000	Favato et al., 2013 (282)
Routine vaccination VERSUS None IN Healthy; Age- Unknown; Gender- Female; Country- estonia.	6803	7200	Uusk?la et al., 2013 (283)
Quadrivalent human papillomavirus vaccines VERSUS Placebo IN Healthy; Age- 0 to 18 years; Gender- Female; Country- Canada.	15084	16000	Brisson et al., 2013 (284)
Bivalent human papillomavirus vaccines VERSUS Placebo IN Healthy; Age- 0 to 18 years; Gender- Female; Country- Canada.	19605	21000	Brisson et al., 2013 (284)
Human papillomavirus (HPV) vaccine VERSUS None IN Healthy; Age- 0 to 18 years; Gender- Female; Country- Brazil.	-125	Cost-Saving	Fonseca et al., 2013 (285)
Human papillomavirus (HPV) vaccine + 3 screenings VERSUS only screening IN Healthy; Age- 0 to 18 years; Gender- Female; Country-Brazil.	825	850	Fonseca et al., 2013 (285)

Human papillomavirus (HPV) vaccine + 10 screenings VERSUS only	1275	1300	Fonseca et al.,
screening IN Healthy; Age- 0 to 18 years; Gender- Female; Country-			2013 (285)
Brazil.			

Colorectal Cancer

Description	Original US\$/QALY	2014US\$/QALY	Reference
Monitoring using clinical symptoms and carcinoembryonic antigen VERSUS Monitoring for cancer recurrence using clinical symptoms only IN Patients undergoing follow-up evaluation after colon cancer resection	-149873	Increases Costs, Decreases Health	Kievit et al., 1990 (286)
Surgery plus adjuvant chemotherapy VERSUS Surgery alone IN Patients with Dukes' stage C colonic carcinoma	13662	25000	Smith et al., 1993 (287)
Intensive follow-up VERSUS No follow-up IN Colorectal cancer patients previously treated by surgery	-34783	Increases Costs, Decreases Health	Kievit et al., 1995 (288)
Selective follow-up VERSUS No follow-up IN Colorectal cancer patients previously treated by surgery	-20884	Increases Costs, Decreases Health	Kievit et al., 1995 (288)
Adjuvant chemotherapy following surgery, 5% gain in life expectancy VERSUS Surgery alone IN Colorectal cancer patients Duke's B or C, no concomittant malignancy, ulcerative colitis, Crohn's disease, renal, heart or liver failure	26518	41000	Norum et al., 1997 (289)
Adjuvant chemotherapy following surgery , 10% gain in life expectancy VERSUS Surgery alone IN Colorectal cancer patients Duke's B or C, no concomittant malignancy, ulcerative colitis, Crohn's disease, renal, heart or liver failure	10607	16000	Norum et al., 1997 (289)

Adjuvant chemotherapy following surgery, 15% gain in life expectancy VERSUS Surgery alone IN Colorectal cancer patients Duke's B or C, no concomittant malignancy, ulcerative colitis, Crohn's disease, renal, heart or liver failure	7577	12000	Norum et al., 1997 (289)
Follow-up program, including carcinoembryonic antigen monitoring VERSUS No follow-up IN Norwegian colorectal cancer patients	17910	27000	Norum et al., 1997 (290)
Adjuvant chemotherapy using fluorouracil and levamisole VERSUS No adjuvant treatment IN Patients with stage III resected colon cancer	1501	2200	Bonistalli et al., 1998 (291)
Fecal occult blood screening protocol for colorectal cancer VERSUS No screening IN 50 year old males	3195	4800	Whynes et al., 1998 (292)
Fecal occult blood screening protocol for colorectal cancer VERSUS No screening IN 50 year old females	2140	3200	Whynes et al., 1998 (292)
Quality management system for a colorectal cancer screening program VERSUS Colorectal cancer screening program, with no quality management program IN 50-74 year-old population undergoing colorectal cancer screening	10717	15000	Robert et al., 2000 (293)
Onetime colonoscopic screening for colorectal cancer at 60-64 yrs old VERSUS No screening IN Men over 40 years old	-2422	Cost-Saving	Ness et al., 2000 (294)
Onetime colonoscopic screening for colorectal cancer at 55-59 yrs old VERSUS Onetime colonoscopic screening for colorectal cancer at 60-64 yrs old IN Men over 40 years old	-538	Cost-Saving	Ness et al., 2000 (294)
Onetime colonoscopic screening for colorectal cancer at 50-54 yrs old VERSUS Onetime colonoscopic screening for colorectal cancer at 55-59 yrs old IN Men over 40 years old	3625	5300	Ness et al., 2000 (294)
Onetime colonoscopic screening for colorectal cancer at 60-64 yrs old VERSUS No screening IN Women over 40 years old	-2000	Cost-Saving	Ness et al., 2000 (294)
Onetime colonoscopic screening for colorectal cancer at 55-59 yrs old VERSUS Onetime colonoscopic screening for colorectal cancer at 60-64 yrs old IN Women over 40 years old	636	920	Ness et al., 2000 (294)
Onetime colonoscopic screening for colorectal cancer at 50-54 yrs old VERSUS Onetime colonoscopic screening for colorectal cancer at 55-59 yrs old IN Women over 40 years old	8800	13000	Ness et al., 2000 (294)

Onetime colonoscopic screening for colorectal cancer at 45-49 yrs old VERSUS Onetime colonoscopic screening for colorectal cancer at 50-54 yrs old IN Women over 40 years old		Increases Costs, Decreases Health	Ness et al., 2000 (294)
Diagnostic or palliative surgery VERSUS Nonoperative therapy IN Patients with locally recurrent rectal carcinoma undergoing surgical evaluation	-131820	Increases Costs, Decreases Health	Miller et al., 2000 (295)
Surgical resection VERSUS Nonoperative therapy IN Patients with locally recurrent rectal carcinoma undergoing surgical evaluation	56697	82000	Miller et al., 2000 (295)
6 month follow-up interval for testing and treatment, 1 hepatic resection, and resection of no more than 6 metastases VERSUS No-test/no-treat IN Male patients who have previously undergone resection of a primary colorectal carcinoma (CRC) and are known to have developed metachronous liver metastases - age 65	17600	26000	Gazelle et al., 2003 (296)
Preoperative radiotherapy plus total mesorectal excision (TME) VERSUS TME without preoperative radiotherapy IN Rectal cancer patients	25100	33000	van den Brink et al., 2004 (297)
Preoperative radiotherapy plus total mesorectal excision (TME) VERSUS TME without preoperative radiotherapy IN Rectal cancer patients with microscopically negative metastases at surgery	29700	39000	van den Brink et al., 2004 (297)
Preoperative radiotherapy plus total mesorectal excision (TME) VERSUS TME without preoperative radiotherapy IN Rectal cancer patients with microscopically positive or incomplete local resection	3600	4700	van den Brink et al., 2004 (297)
Preoperative radiotherapy plus total mesorectal excision (TME) VERSUS TME without preoperative radiotherapy IN Rectal cancer patients with distant metastases at surgery	-26800	Increases Costs, Decreases Health	van den Brink et al., 2004 (297)
Standard follow up VERSUS Simplified follow-up IN Patient with invasive adenocarcinomas recorded in the final data set of colorectal cancer, post surgery. (all populations) - age 75+	3529	5100	Borie et al., 2004 (298)

Standard follow up VERSUS Simplified follow-up IN Patient with invasive adenocarcinomas recorded in the final data set of colorectal cancer (Duke's grade A) - age 75+	-9044	Increases Costs, Decreases Health	Borie et al., 2004 (298)
Standard follow up VERSUS Simplified follow-up IN Patient with invasive adenocarcinomas recorded in the final data set of colorectal cancer. (Duke's grade B) - age 75+	9730	14000	Borie et al., 2004 (298)
Standard follow up VERSUS Simplified follow-up IN Patient with invasive adenocarcinomas recorded in the final data set of colorectal cancer. (Duke's grade C) - age 75+	921	1300	Borie et al., 2004 (298)
Asprin for colorectal carcinoma chemoprevention VERSUS Celecoxib IN Healthy men - age 50	-774067	Cost-Saving	Hur et al., 2004 (299)
Standard care VERSUS Simplified follow up IN Patients who underwent curative resection of colorectal cancer and now in follow up (all stages)	3529	5100	Borie et al., 2004 (300)
Irinotecan once every 3 weeks (350 mg/m ² or 300 mg/m ²) VERSUS Irinotecan weekly (125 mg/m ² once a week for four weeks) followed by a two week break IN Patients with advanced colorectal carcinoma - age 70 or over	78627	Cost-Saving	Earle et al., 2004 (301)
Radiofrequency ablation (RF) for up to 5 metastases with 12 month follow up VERSUS RF for up to 3 metastases with 12 month follow up IN Patients with metachronous liver metastases from colorectal carcinoma	519	750	Gazelle et al., 2004 (302)
Radiofrequency ablation (RF) for up to 6 metastases with 12 month follow up VERSUS RF for up to 5 metastases with 12 month follow up IN Patients with metachronous liver metastases from colorectal carcinoma	1300	1900	Gazelle et al., 2004 (302)
Hepatic resection for up to 6 metastases with 12 month follow up VERSUS Radiofrequency ablation (RF) for up to 6 metastases with 12 month follow up IN Patients with metachronous liver metastases from colorectal carcinoma	16900	25000	Gazelle et al., 2004 (302)
Hepatic resection for up to 6 metastases with 4 month follow up VERSUS Hepatic resection for up to 6 metastases with 12 month follow	31200	45000	Gazelle et al., 2004 (302)

up IN Patients with metachronous liver metastases from colorectal carcinoma			
Oncovax vaccination VERSUS Surgery IN Patients with stage II (Dukes B2 or B3) colon cancer	22462	29000	Uyl-de Groot et al., 2005 (303)
FOLFOX- Oxaliplatin and infusional fluorouracil (FU) with leucovorin (LV) (FU/LV) VERSUS IFL- Irinotecan plus infusional fluorouracil (FU) with leucovorin (LV) (FU/LV) IN U.S. patients with metastatic colorectal carcinoma eligible for first-line chemotherapy	111890	140000	Hillner et al., 2005 (304)
Adjuvant oral capecitabine VERSUS Intravenous 5- flourouracil/leucovorin IN Patients with Dukes' C (stage III) colon cancer: healthcare perspective	-8866	Cost-Saving	Cassidy et al., 2006 (305)
Adjuvant oral capecitabine VERSUS Intravenous 5- flourouracil/leucovorin IN Patients with Dukes' C (stage III) colon cancer: societal perspective	-12065	Cost-Saving	Cassidy et al., 2006 (305)
VERSUS IN Patients with completely resected stage III colon cancer in England and Wales - mean age 60	5444	6800	Eggington et al., 2006 (306)
VERSUS IN Patients with completely resected stage III colon cancer in England and Wales - mean age 60	-6210	Cost-Saving	Eggington et al., 2006 (306)
VERSUS IN Individuals aged 60-69 without polyps or cancer through to the development of adenomatous polyps and malignant carcinoma and subsequent death in the general population of England	4305	5200	Tappenden et al., 2007 (307)
VERSUS IN Individuals aged 55 without polyps or cancer through to the development of adenomatous polyps and malignant carcinoma and subsequent death in the general population of England	-1940	Cost-Saving	Tappenden et al., 2007 (307)

VERSUS IN Individuals aged 60 without polyps or cancer through to the development of adenomatous polyps and malignant carcinoma and subsequent death in the general population of England	-2348	Cost-Saving	Tappenden et al., 2007 (307)
VERSUS IN Individuals aged 61-70 without polyps or cancer through to the development of adenomatous polyps and malignant carcinoma and subsequent death in the general population of England	-124	Cost-Saving	Tappenden et al., 2007 (307)
VERSUS IN Individuals aged 50-69 without polyps or cancer through to the development of adenomatous polyps and malignant carcinoma and subsequent death in the general population of England	5369	6500	Tappenden et al., 2007 (307)
Cetuximab plus irinotecan VERSUS Active/best supportive care (ASC/BSC) IN Patients with metastatic (late stage) colorectal cancer who have failed previous chemotherapy treatment	105595	130000	Starling et al., 2007 (308)
Oxaliplatin/5-fluorouracil/leucovorin (FU/LV) (FOLFOX4) as adjuvant treatment VERSUS 5-FU/LV alone IN Patients with early colon cancer (TNM stage II and III)	22804	28000	Aballéa et al., 2007 (309)
Treatment with Oxaliplatin in combination with infusional 5-FU/FA VERSUS Infusional 5-FU/FA IN British stage III Colon Cancer patients	7855	10000	Aballéa et al., 2007 (310)
Genetic screening of children of MUYTH associated polyposis with population screening using fecal occult blood testing VERSUS No screening IN Children of MUYTH associated polyposis (MAP) patients	32035	38000	Nielsen et al., 2007 (311)
Genetic screening of children of MUYTH associated polyposis VERSUS No screening IN Children of MUYTH associated polyposis (MAP) patients	31407	37000	Nielsen et al., 2007 (311)

Genetic screening of children of MUYTH associated polyposis with heterozygote MUYTH index patient VERSUS No screening IN Children of MUYTH associated polyposis (MAP) patients	64699	76000	Nielsen et al., 2007 (311)
Laparoscopic-assisted colectomy VERSUS Open colectomy IN Patients with colon cancer	46759	59000	Hayes et al., 2007 (312)
Colonic stenting as a bridge to definitive surgery VERSUS Emergency surgery IN 70 year old patients with complete emergent malignant left colonic obstruction secondary to a left-sided colon cancer, worse physiological status secondary to large-bowel obstruction (LBO) and baseline American Society of Anesthesiology (ASA) score of 3	-4333	Cost-Saving	Govindarajan et al., 2007 (313)
Colonic stenting as a bridge to definitive surgery VERSUS Emergency surgery IN 70 year old patients with complete emergent malignant left colonic obstruction secondary to a left-sided colon cancer, minimally impaired by large-bowel obstruction (LBO) and no elevated and American Society of Anesthesiology (ASA) score	-41848	Cost-Saving	Govindarajan et al., 2007 (313)
First line bevacizumab in combination with irrotecan and 5FU/LV VERSUS Irrotecan and 5FU/LV and placebo IN Patients with untreated metastatic colorectal cancer in England or Wales	115217	140000	Tappenden et al., 2007 (314)
First line bevacizumab in combination with irrotecan and 5-FU/LV VERSUS 5-FU/LV alone IN Patients with untreated metastatic colorectal cancer in England or Wales	162103	200000	Tappenden et al., 2007 (314)
Laparoscopic surgery VERSUS Open surgery IN Colorectal cancer patients		Increases Costs, Decreases Health	de Verteuil et al., 2007 (315)

Diagnostic laparascopy to determine if liver metastases resectable; laparotomy if liver metastases determined resectable VERSUS Laparotomy IN Colorectal cancer patients with hepatic metastases deemed resectable on pre-operative imageing	-25000	Cost-Saving	Karuna et al., 2008 (316)
Oral capecitabine (8 cycles, 1250 mg/m2 twice daily) VERSUS Rapid- infusion intravenous (IV) leucovorin (LV) (6 cycles, 20 mg/m2) followed immediately by an IV bolus of fluorouracil (FU) (425 mg/m2) IN Patients with resected, histologically confirmed Dukes' C colon carcinoma in Italy	-427	Cost-Saving	Di Costanzo et al., 2008 (317)
Oral uracil-tegafur adjuvant chemotherapy, 400 mg/m^-2 a day for 1 year VERSUS Surgery only (total mesorectal excision) IN Japanese patients with stage III colorectal cancer, 5.6 years of observation	-5014	Cost-Saving	Hisashige et al., 2008 (318)
Oral uracil-tegafur adjuvant chemotherapy, 400 mg/m^-2 a day for 1 year VERSUS Surgery only (total mesorectal excision) IN Japanese patients with stage III colorectal cancer,10 year follow up	-1802	Cost-Saving	Hisashige et al., 2008 (318)
Oral uracil-tegafur adjuvant chemotherapy, 400 mg/m^-2 a day for 1 year VERSUS Surgery only (total mesorectal excision) IN Japanese patients with stage III colorectal cancer, lifetime horizon	-788	Cost-Saving	Hisashige et al., 2008 (318)
FOLFOX regimen: (oxaliplatin 85 mg/m2 on day 1 plus LV5FU2) VERSUS FOLFIRI regimen: irinotecan 180 mg/m2 on day 1 with leucovorin (LV) 100 mg/m2 administered as a 2-hour infusion before 5- fluorouracil (5-FU) 400 mg/m2 administered as an intravenous bolus injection, followed by 5-FU 600 mg/m2 as a 22-hour infusion immediately after 5-FU bolus injection on days 1 and 2 (LV5FU2) IN United States patients with metastatic colorectal cancer	65170	74000	Tumeh et al., 2009 (319)
Pharmacogenetic testing for uridine diphosphate glucuronosyltransferase 1A1 (UGT1A1*28) before irinotecan administration VERSUS Usual care- patients received a full dose of irinotecan IN US patients with metastatic colorectal cancer who were treated with combined 5-fluorouracil, leucovorin, and irinotecan	-1360000	Cost-Saving	Gold et al., 2009 (320)

Oral capecitabine VERSUS Intravenous bolus 5-fluorouracil/I-leucovorin (FU/LV) IN Patients with colon cancer in Japan	-1	Cost-Saving	Shiroiwa et al., 2009 (321)
Cetuximab plus best supportive care VERSUS Best supportive care alone IN Patients with advanced (chemorefractory) colorectal cancer (entire study population)	280423	320000	Mittmann et al., 2009 (322)
Cetuximab plus best supportive care VERSUS Best supportive care alone IN Patients with advanced (chemorefractory) colorectal cancer (only patients with wild-type KRAS tumors)	174799	200000	Mittmann et al., 2009 (322)
Colorectal follow-up with nurse at a special clinic VERSUS No follow-up treatment IN Colorectal cancer patients with high-risk	4019	4700	Jeyarajah et al., 2009 (323)
Colorectal follow-up with nurse at a special clinic VERSUS No follow-up treatment IN Colorectal cancer patients with low-risk	3528	4100	Jeyarajah et al., 2009 (323)
Universal immunohistochemistry (IHC) testing, BRAF testing and sequencing VERSUS No testing IN Lynch syndrome testing among newly diagnosed individuals with colorectal cancer (CRC) and testing and surveillance for CRC among their first-degree relatives	26632	30000	Mvundura et al., 2010 (324)
Universal immunohistochemistry (IHC) testing and sequencing VERSUS No testing IN Lynch syndrome testing among newly diagnosed individuals with colorectal cancer (CRC) and testing and surveillance for CRC among their first-degree relatives	27519	31000	Mvundura et al., 2010 (324)
Universal microsatellite instability (MSI) testing and sequencing VERSUS No testing IN Lynch syndrome testing among newly diagnosed individuals with colorectal cancer (CRC) and testing and surveillance for CRC among their first-degree relatives	48983	56000	Mvundura et al., 2010 (324)

Universal genetic sequencing for 4 genes VERSUS No testing IN Lynch syndrome testing among newly diagnosed individuals with colorectal cancer (CRC) and testing and surveillance for CRC among their first- degree relatives	167901	190000	Mvundura et al., 2010 (324)
Universal immunohistochemistry (IHC) testing and sequencing VERSUS Universal immunohistochemistry (IHC) testing, BRAF testing and sequencing IN Lynch syndrome testing among newly diagnosed individuals with colorectal cancer (CRC) and testing and surveillance for CRC among their first-degree relatives	323220	370000	Mvundura et al., 2010 (324)
Universal microsatellite instability (MSI) testing and sequencing VERSUS Universal immunohistochemistry (IHC) testing and sequencing IN Lynch syndrome testing among newly diagnosed individuals with colorectal cancer (CRC) and testing and surveillance for CRC among their first-degree relatives	902602	100000	Mvundura et al., 2010 (324)
Universal genetic sequencing for 4 genes VERSUS Universal microsatellite instability (MSI) testing and sequencing IN Lynch syndrome testing among newly diagnosed individuals with colorectal cancer (CRC) and testing and surveillance for CRC among their first- degree relatives	869689	990000	Mvundura et al., 2010 (324)
Age-targeted immunohistochemistry (IHC) testing, BRAF testing and sequencing VERSUS No testing IN Lynch syndrome testing among newly diagnosed individuals with colorectal cancer (CRC) younger than 50 years and testing and surveillance for CRC among their first-degree relatives	9242	11000	Mvundura et al., 2010 (324)
Age-targeted immunohistochemistry (IHC) testing and sequencing VERSUS No testing IN Lynch syndrome testing among newly diagnosed individuals with colorectal cancer (CRC) younger than 50 years and testing and surveillance for CRC among their first-degree relatives	9374	11000	Mvundura et al., 2010 (324)

Age-targeted microsatellite instability (MSI) testing and sequencing VERSUS No testing IN Lynch syndrome testing among newly diagnosed individuals with colorectal cancer (CRC) younger than 50 years and testing and surveillance for CRC among their first-degree relatives	13782	16000	Mvundura et al., 2010 (324)
Age-targeted genetic sequencing for 4 genes VERSUS No testing IN Lynch syndrome testing among newly diagnosed individuals with colorectal cancer (CRC) younger than 50 years and testing and surveillance for CRC among their first-degree relatives	52984	60000	Mvundura et al., 2010 (324)
Age-targeted immunohistochemistry (IHC) testing and sequencing VERSUS Age-targeted immunohistochemistry (IHC) testing, BRAF testing and sequencing IN Lynch syndrome testing among newly diagnosed individuals with colorectal cancer (CRC) younger than 50 years and testing and surveillance for CRC among their first-degree relatives	71471	82000	Mvundura et al., 2010 (324)
Age-targeted microsatellite instability (MSI) testing and sequencing VERSUS Age-targeted immunohistochemistry (IHC) testing and sequencing IN Lynch syndrome testing among newly diagnosed individuals with colorectal cancer (CRC) younger than 50 years and testing and surveillance for CRC among their first-degree relatives	199308	230000	Mvundura et al., 2010 (324)
Age-targeted genetic sequencing for 4 genes VERSUS Age-targeted microsatellite instability (MSI) testing and sequencing IN Lynch syndrome testing among newly diagnosed individuals with colorectal cancer (CRC) younger than 50 years and testing and surveillance for CRC among their first-degree relatives	298119	340000	Mvundura et al., 2010 (324)
Universal immunohistochemistry (IHC) testing, BRAF testing and sequencing VERSUS Age-targeted immunohistochemistry (IHC) testing, BRAF testing and sequencing among patients younger than 50 years IN Lynch syndrome testing among newly diagnosed individuals with colorectal cancer (CRC) and testing and surveillance for CRC among their first-degree relatives	43672	50000	Mvundura et al., 2010 (324)

Universal immunohistochemistry (IHC) testing and sequencing VERSUS Age-targeted immunohistochemistry (IHC) testing and then sequencing among patients younger than 50 years IN Lynch syndrome testing among newly diagnosed individuals with colorectal cancer (CRC) and testing and surveillance for CRC among their first-degree relatives	45325	52000	Mvundura et al., 2010 (324)
Universal microsatellite instability (MSI) testing and sequencing VERSUS Age-targeted microsatellite instability (MSI) testing and sequencing among patients younger than 50 years IN Lynch syndrome testing among newly diagnosed individuals with colorectal cancer (CRC) and testing and surveillance for CRC among their first-degree relatives	83535	95000	Mvundura et al., 2010 (324)
Universal genetic sequencing for 4 genes VERSUS Age-targeted genetic sequencing for 4 genes among patients younger than 50 years IN Lynch syndrome testing among newly diagnosed individuals with colorectal cancer (CRC) and testing and surveillance for CRC among their first-degree relatives	279988	320000	Mvundura et al., 2010 (324)
Universal microsatellite instability (MSI) testing and sequencing VERSUS Age-targeted immunohistochemistry (IHC) testing and sequencing among patients younger than 50 years IN Lynch syndrome testing among newly diagnosed individuals with colorectal cancer (CRC) and testing and surveillance for CRC among their first-degree relatives	1599974	1800000	Mvundura et al., 2010 (324)
Universal immunohistochemistry (IHC) testing and sequencing VERSUS Age-targeted immunohistochemistry (IHC) testing, BRAF testing and sequencing among patients younger than 50 years IN Lynch syndrome testing among newly diagnosed individuals with colorectal cancer (CRC) and testing and surveillance for CRC among their first-degree relatives	507368	580000	Mvundura et al., 2010 (324)
Universal genetic sequencing for 4 genes VERSUS Age-targeted microsatellite instability (MSI) testing and sequencing among patients younger than 50 years IN Lynch syndrome testing among newly diagnosed individuals with colorectal cancer (CRC) and testing and surveillance for CRC among their first-degree relatives	1407238	1600000	Mvundura et al., 2010 (324)

Oxaliplatin/5-Fluorouracil/Leucovorin in the Treatment of Colon Cancer VERSUS 5-Fluorouracil/Leucovorin in the Treatment of Colon Cancer IN Stage 2 or Stage 3 (II or III) colorectal cancer patients treated within the Canadian healthcare system, aged 18 to 75 y.o. who have undergone surgical resection within past 7 weeks.	21261	25000	Attard et al., 2010 (325)
Screen high-risk patients every 3 years and all others every ten years (3/10) VERSUS Screen all patients with colonoscopy every ten years (10/10) IN 50-year-old newly diagnosed with colonic adenomas	5743	6300	Saini et al., 2010 (326)
Screen high-risk patients every 3 years and all others every 5 years (3/5) VERSUS Screen high-risk patients every 3 years and all others every ten years (3/10) IN 50-year-old newly diagnosed with colonic adenomas	296266	330000	Saini et al., 2010 (326)
Screen high-risk patients every 3 years and all others every 5 years (3/5) VERSUS Screen high-risk patients every 3 years and all others every 3 years (3/3) IN 50-year-old newly diagnosed with colonic adenomas	-767826	Increases Costs, Decreases Health	Saini et al., 2010 (326)
Treatment with chemotherapeutic agents VERSUS No treatment of chemotherapeutic agents IN 12473 patients aged 66 and older diagnosed with stage IV colorectal cancer between January 1, 1995 and December 31, 2005.	99100	120000	Howard et al., 2010 (327)
Colorectal cancer screening with CT colonography every 10 years VERSUS Screening with fecal occult blood testing (FOBT) biennially IN UK adults aged 60-69 years	-1101	Cost-Saving	Lee et al., 2010 (328)
Colorectal cancer screening with optical colonoscopy VERSUS Screening with fecal occult blood testing (FOBT) biennially IN UK adults aged 60-69 years	56056	64000	Lee et al., 2010 (328)
Colorectal cancer screening with flexible sigmoidoscopy VERSUS Screening with CT colonography every 10 years IN UK adults aged 60- 69 years	-36036	Increases Costs, Decreases Health	Lee et al., 2010 (328)
Fecal ummunichemical test annually VERSUS Low-sensitivity guaiac fecal occult blood test annually IN People aged 50 years with risk of colorectal cancer in Canada	572	650	Telford et al., 2010 (329)
Colonoscopy every 10 years VERSUS Fecal immunichemical test annually IN People aged 50 years with risk of colorectal cancer in Canada	4305	4900	Telford et al., 2010 (329)

Low-sensitivity guaiac fecal occult blood test annually VERSUS No screening test IN People aged 50 years with risk of colorectal cancer in Canada	8572	9800	Telford et al., 2010 (329)
No Screening VERSUS Mid performance fecal immunochemical tests (FIT) IN Average-risk patients aged 50-64 years	-1427	Increases Costs, Decreases Health	Heitman et al., 2010 (330)
High performance fecal immunochemical tests (FIT) VERSUS Mid performance fecal immunochemical tests (FIT) IN Average-risk patients aged 50-64 years	99609	110000	Heitman et al., 2010 (330)
Colonoscopy VERSUS Mid performance fecal immunochemical tests (FIT) IN Average-risk patients aged 50-64 years	-63023	Increases Costs, Decreases Health	Heitman et al., 2010 (330)
Performing KRAS testing for cetuximab with irinotecan combination therapy VERSUS Best supportive care (NoKRAS test, no treatment) IN Patients diagnosed with stage IV metastatic colorectal cancer (mCRC) refractory to chemotherapy	37599	41000	Health Quality Ontario et al., 2010 (331)
Cetuximab with irinotecan combination therapy VERSUS Performing KRAS testing for cetuximab with irinotecan combination therapy IN Patients diagnosed with stage IV metastatic colorectal cancer (mCRC) refractory to chemotherapy	143844	160000	Health Quality Ontario et al., 2010 (331)
Performing KRAS testing for cetuximab therapy VERSUS Best supportive care (NoKRAS test, no treatment) IN Patients diagnosed with stage IV metastatic colorectal cancer (mCRC) refractory to chemotherapy	48244	53000	Health Quality Ontario et al., 2010 (331)
Cetuximab therapy VERSUS Performing KRAS testing for cetuximab therapy IN Patients diagnosed with stage IV metastatic colorectal cancer (mCRC) refractory to chemotherapy	-1085168	Increases Costs, Decreases Health	Health Quality Ontario et al., 2010 (331)
Panitumumab therapy VERSUS Performing KRAS testing for panitumumab therapy IN Patients diagnosed with stage IV metastatic colorectal cancer (mCRC) refractory to chemotherapy	271353	300000	Health Quality Ontario et al., 2010 (331)

Performing KRAS testing for panitumumab therapy VERSUS Best supportive care (No KRAS test, no treatment) IN Patients diagnosed with stage IV metastatic colorectal cancer (mCRC) refractory to chemotherapy	42076	46000	Health Quality Ontario et al., 2010 (331)
Oxaliplatin (FOLFOX) with bevacizumab followed by irinotecan (FOLFIR) VERSUS Oxaliplatin (FOLFOX) followed by irinotecan (FOLFIR) IN Indian patients with metastatic colorectal cancer	9300	10000	Dranitsaris et al., 2011 (332)
Peri-operative (heptatectomy) chemotherapy VERSUS Post-operative (heptatectomy) chemotherapy IN Italian patients with cancer of the liver and candidates for hepatectomy	12576	14000	Ercolani et al., 2011 (333)
KRAS mutation testing followed by cetuximab in patients tested positive VERSUS KRAS and BRAF mutation testing followed by cetuximab in patients tested positive IN Metastatic colorectal cancer (mCRC) patients aged 50 years	414946	450000	Blank et al., 2011 (334)
No testing and treatment with cetuximab VERSUS KRAS mutation testing followed by cetuximab in patients tested positive IN Metastatic colorectal cancer (mCRC) patients aged 50 years	397151	430000	Blank et al., 2011 (334)
KRAS and BRAF mutation testing followed by cetuximab in patients tested positive VERSUS Best supportive care IN Metastatic colorectal cancer (mCRC) patients aged 50 years	82917	90000	Blank et al., 2011 (334)
Adjuvant therapy with capecitabine VERSUS Standard treatment- adjuvant therapy with intravenous bolus 5-fluorouracil (5-FU) and leucovorin (LU) for 6-8 months (either weekly or monthly) IN Patients with resected confirmed stage III colon carcinoma in Taiwan	-5399	Cost-Saving	Hsu et al., 2011 (335)
Screening plus celecoxib chemoprevention VERSUS Screening IN UK general population aged 50 - 60 years	82016	90000	Squires et al., 2011 (336)
Screening plus calcium chemoprevention VERSUS Screening IN UK general population aged 50 - 60 years	14431	16000	Squires et al., 2011 (336)
Screening plus aspirin chemoprevention VERSUS Screening IN UK general population aged 50 - 60 years	27242	30000	Squires et al., 2011 (336)
10,000 Steps of Ghent, a pedometer based community project VERSUS None IN 25-75 year old-women living in a mid-sized city	-5409	Cost-Saving	De Smedt et al., 2011 (337)

10,000 Steps of Ghent, a pedometer based community project VERSUS None IN 25-75 year-old men living in a mid-sized city	-5017	Cost-Saving	De Smedt et al., 2011 (337)
Conventional clinical assessment (CCA) + central venous pressure (CVP) + esophageal doppler monitoring (EDM) for hemodynamic control VERSUS Conventional clinical assessment (CCA) + central venous pressure (CVP) IN Patients undergoing colorectal resection	-5412	Cost-Saving	Maeso et al., 2011 (338)
Conventional clinical assessment (CCA) + central venous pressure (CVP) + esophageal doppler monitoring (EDM) for hemodynamic control VERSUS Conventional clinical assessment (CCA) IN Patients undergoing colorectal resection	-415	Cost-Saving	Maeso et al., 2011 (338)
Conventional clinical assessment (CCA) + esophageal doppler monitoring (EDM) for hemodynamic control VERSUS Conventional clinical assessment (CCA) IN Patients undergoing colorectal resection	-26233	Cost-Saving	Maeso et al., 2011 (338)
Conventional clinical assessment (CCA) + central venous pressure (CVP) + esophageal doppler monitoring (EDM) for hemodynamic control VERSUS Conventional clinical assessment (CCA) + esophageal doppler monitoring IN Patients undergoing colorectal resection	163	190	Maeso et al., 2011 (338)
Irinotecan-based regiment VERSUS 5-fluorouracil/leucovorin IN US elderly patients aged 66 years or over with stage IV colon cancer	1071750	1200000	Mullins et al., 2012 (339)
Oxaliplatin-based regiment VERSUS 5-fluorouracil/leucovorin IN US elderly patients aged 66 years or over with stage IV colon cancer	312725	350000	Mullins et al., 2012 (339)
Oxaliplatin-based regiment VERSUS Irinotecan-based regiment IN US elderly patients aged 66 years or over with stage IV colon cancer	160920	180000	Mullins et al., 2012 (339)
Annual immunohistochemical stool occult blood test (iFOBT) for colorectal cancer screening VERSUS None IN Adult population aged 50-75 years in Singapore	55000	60000	Dan et al., 2012 (340)
Double-contrast barium enema every 5 years for colorectal cancer screening VERSUS Annual immunohistochemical stool occult blood test (iFOBT) IN Adult population aged 50-75 years in Singapore	471542	Increases Costs, Decreases Health	Dan et al., 2012 (340)

Single colonoscopy at age 60 for colorectal cancer screening VERSUS Double-contrast barium enema every 5 years IN Adult population aged 50-75 years in Singapore	19000	21000	Dan et al., 2012 (340)
Sigmoidoscopy every 5 years for colorectal cancer screening VERSUS Single colonoscopy at age 60 IN Adult population aged 50-75 years in Singapore	91745	Increases Costs, Decreases Health	Dan et al., 2012 (340)
Sigmoidoscopy every 5 years plus annual immunohistochemistry stool occult blood test (iFOBT) for colorectal cancer screening VERSUS Sigmoidoscopy every 5 years IN Adult population aged 50-75 years in Singapore	44392	48000	Dan et al., 2012 (340)
Stool DNA screening every 5 years for colorectal cancer screening VERSUS Sigmoidoscopy every 5 years plus annual immunohistochemistry stool occult blood test (iFOBT) IN Adult population aged 50-75 years in Singapore		Increases Costs, Decreases Health	Dan et al., 2012 (340)
Colonoscopy every 10 years for colorectal cancer screening VERSUS Stool DNA every 5 years IN Adult population aged 50-75 years in Singapore	25223	27000	Dan et al., 2012 (340)
Computed tomographic colonography every 5 years for colorectal cancer screening VERSUS Colonoscopy every 10 years IN Adult population aged 50-75 years in Singapore		Increases Costs, Decreases Health	Dan et al., 2012 (340)
Single sigmoidoscopy at age 60 for colorectal cancer screening VERSUS None IN Adult population aged 50-75 years in Singapore	23667	26000	Dan et al., 2012 (340)
First-line doublet therapy with modification of de Gramont regimen (MdG) and oxaliplatin (OxMdG) VERSUS First-line fluorouracil until treatment failure followed by single agent irinotecan IN UK patients diagnosed with colorectal cancer	82459	91000	Manca et al., 2012 (341)
First-line modification of de Gramont regimen (MdG) regimen until treatment failure followed by doublet therapy with MdG and oxaliplatin (OxMdG regimen) VERSUS First-line fluorouracil until treatment failure followed by single agent irinotecan IN UK patients diagnosed with colorectal cancer	41809	46000	Manca et al., 2012 (341)

First-line modification of de Gramont regimen (MdG) regimen until treatment failure followed by doublet therapy with MdG and irinotecan (IrMdG regimen) VERSUS First-line fluorouracil until treatment failure followed by single agent irinotecan IN UK patients diagnosed with colorectal cancer	21683	24000	Manca et al., 2012 (341)
First-line combination therapy of fluorouracil plus irinotecan VERSUS First-line fluorouracil until treatment failure followed by single agent irinotecan IN UK patients diagnosed with colorectal cancer	21541	24000	Manca et al., 2012 (341)
Bevacizumab VERSUS Usual care IN Patients aged <70 years with newly-diagnosed metastatic colorectal cancer (mCRC) in Canada	54993	61000	Hedden et al., 2012 (342)
Bevacizumab VERSUS Usual care IN Patients aged <70 years with newly-diagnosed metastatic colorectal cancer (mCRC) who received doublet chemotherapy (5-FU/oxaliplatin or 5-FU/irinotecan) in Canada	37906	42000	Hedden et al., 2012 (342)
Biennial guaiac-based faecal occult blood test (gFOBT) with reflex faecal 5 immunochemical tests (FIT) among 55-64 year individuals VERSUS None IN Adult population of Ireland	5320	5800	Sharp et al., 2012 (343)
Biennial guaiac-based faecal occult blood test (gFOBT) with reflex faecal immunochemical tests (FIT) among 65-74 year individuals VERSUS None IN Adult population of Ireland	11044	12000	Sharp et al., 2012 (343)
Biennial reflex faecal immunochemical tests (FIT) among 55-74 year individuals VERSUS None IN Adult population of Ireland	2497	2700	Sharp et al., 2012 (343)
Biennial reflex faecal immunochemical tests (FIT) among 55-64 year 2 individuals VERSUS None IN Adult population of Ireland	2677	2900	Sharp et al., 2012 (343)
Biennial reflex faecal immunochemical tests (FIT) among 65-74 year individuals VERSUS None IN Adult population of Ireland	2500	2700	Sharp et al., 2012 (343)

Once-only flexible sigmoidoscopy (F-SIG) at age 60 VERSUS None IN Adult population of Ireland	867	950	Sharp et al., 2012 (343)
Once-only flexible sigmoidoscopy (F-SIG) at age 55 VERSUS None IN Adult population of Ireland	3916	4300	Sharp et al., 2012 (343)
Biennial guaiac-based faecal occult blood test (gFOBT) with reflex faecal immunochemical tests (FIT) among 55-74 year individuals VERSUS None IN Adult population of Ireland	6520	7200	Sharp et al., 2012 (343)
Flexible sigmoidoscopy at age 55 followed by immunochemical faecal occult blood test at age 56-74 years (biennial) for colorectal cancer VERSUS Guaiac faecal occult blood test at age 60-74 years (biennial) IN General population with normal colon/rectal epithelium in England	1135	1200	Whyte et al., 2012 (344)
Flexible sigmoidoscopy at age 55 followed by immunochemical faecal occult blood test at age 60-74 years (biennial) for colorectal cancer VERSUS Guaiac faecal occult blood test at age 60-74 years (biennial) IN General population with normal colon/rectal epithelium in England	1184	1300	Whyte et al., 2012 (344)
Flexible sigmoidoscopy at age 55 followed by immunochemical faecal occult blood test at age 60,65,70 years VERSUS Guaiac faecal occult blood test at age 60-74 years (biennial) IN General population with normal colon/rectal epithelium in England	3331	3600	Whyte et al., 2012 (344)
Fexible sigmoidoscopy at age 55 followed by immunochemical faecal occult blood test at age 66-74 years (biennial) for colorectal cancer VERSUS Guaiac faecal occult blood test at age 60-74 years (biennial) IN General population with normal colon/rectal epithelium in England	2547	2800	Whyte et al., 2012 (344)
Flexible sigmoidoscopy at age 55 followed by guaiac faecal occult blood test at age 66-74 years (biennial) for colorectal cancer VERSUS Guaiac faecal occult blood test at age 60-74 years (biennial) IN General population with normal colon/rectal epithelium in England	5700	6200	Whyte et al., 2012 (344)
Flexible sigmoidoscopy at age 55 and 65 years for colorectal cancer VERSUS Guaiac faecal occult blood test at age 60-74 years (biennial) IN General population with normal colon/rectal epithelium in England	6861	7400	Whyte et al., 2012 (344)

Flexible sigmoidoscopy at age 55 years for colorectal cancer VERSUS Guaiac faecal occult blood test at age 60-74 years (biennial) IN General population with normal colon/rectal epithelium in England	16724	18000	Whyte et al., 2012 (344)
Immunochemical faecal occult blood test at age 60-74 years (biennial) for colorectal cancer VERSUS Guaiac faecal occult blood test at age 60- 74 years (biennial) IN General population with normal colon/rectal epithelium in England	-2702	Cost-Saving	Whyte et al., 2012 (344)
Immunochemical faecal occult blood test at age 60-69 years (biennial) for colorectal cancer VERSUS Guaiac faecal occult blood test at age 60- 74 years (biennial) IN General population with normal colon/rectal epithelium in England	-2386	Cost-Saving	Whyte et al., 2012 (344)
Immunochemical faecal occult blood test at age 60, 65, 70 years for colorectal cancer VERSUS Guaiac faecal occult blood test at age 60-74 years (biennial) IN General population with normal colon/rectal epithelium in England	-1029	Cost-Saving	Whyte et al., 2012 (344)
FOLFOX regimen: 5-fluorouracil/leucovorin (FU/LV) + oxaliplatin VERSUS Standard 5-fluorouracil/leucovorin (FU/LV) IN Patients with stage III colorectal cancer in Japan	2	2	Shiroiwa et al., 2012 (345)
Prediction tool/statistical model (MMRpro) + immunohistochemistry tumor-testing strategy VERSUS Referent strategy IN Patients with newly diagnosed colorectal cancer and their relatives subject to different strategies for identifying Lynch syndrome	50562	55000	Wang et al., 2012 (346)
Bethesda clinical guidelines + immunohistochemistry tumor-testing strategy VERSUS Prediction tool/statistical model (MMRpro) + immunohistochemistry tumor-testing strategy IN Patients with newly diagnosed colorectal cancer and their relatives subject to different strategies for identifying Lynch syndrome	65347	71000	Wang et al., 2012 (346)
Prediction tool/statistical model (MMRpro) + germline testing VERSUS Bethesda clinical guidelines + immunohistochemistry tumor-testing strategy IN Patients with newly diagnosed colorectal cancer and their relatives subject to different strategies for identifying Lynch syndrome	68384	74000	Wang et al., 2012 (346)

Bethesda clinical guidelines + germline testing VERSUS Prediction tool/statistical model (MMRpro) + germline testing IN Patients with newly diagnosed colorectal cancer and their relatives subject to different strategies for identifying Lynch syndrome	82864	90000	Wang et al., 2012 (346)
Combination of immunohistochemistry and BRAF gene tumor-testing strategies VERSUS Referent strategy IN Patients with newly diagnosed colorectal cancer and their relatives subject to different strategies for identifying Lynch syndrome	59719	65000	Wang et al., 2012 (346)
Combination of microsatellite instability testing and immunohistochemistry tumor-testing strategies VERSUS Combination of immunohistochemistry and BRAF gene tumor-testing strategies IN Patients with newly diagnosed colorectal cancer and their relatives subject to different strategies for identifying Lynch syndrome	179576	190000	Wang et al., 2012 (346)
Combination of microsatellite instability testing, immunohistochemistry, and BRAF gene tumor-testing strategies VERSUS Bethesda guidelines + germline testing IN Patients with newly diagnosed colorectal cancer and their relatives subject to different strategies for identifying Lynch syndrome	193343	210000	Wang et al., 2012 (346)
Upfront germline testing strategy VERSUS Combination of microsatellite instability testing, immunohistochemistry, and BRAF gene tumor-testing strategies IN Patients with newly diagnosed colorectal cancer and their relatives subject to different strategies for identifying Lynch syndrome	393303	430000	Wang et al., 2012 (346)
Upfront germline testing strategy VERSUS Combination of microsatellite instability testing and immunohistochemistry tumor-testing strategies IN Patients with newly diagnosed colorectal cancer and their relatives subject to different strategies for identifying Lynch syndrome	384821	420000	Wang et al., 2012 (346)
MMRpro/IHC (immunohistochemistry) clinical criteria and algorithm strategy for Lynch syndrome screening VERSUS None IN US men and women newly diagnosed with colorectal cancer and their relatives	50562	55000	Wang et al., 2012 (347)
Bethesda/IHC (immunohistochemistry) clinical criteria and algorithm strategy for Lynch syndrome screening VERSUS MMRpro/IHC (immunohistochemistry) clinical criteria and algorithm strategy IN US men and women newly diagnosed with colorectal cancer and their	65347	71000	Wang et al., 2012 (347)

relatives

MMRpro/germline clinical criteria and algorithm strategy for Lynch syndrome screening VERSUS Bethesda/IHC (immunohistochemistry) clinical criteria and algorithm strategy IN US men and women newly diagnosed with colorectal cancer and their relatives	68384	74000	Wang et al., 2012 (347)
Bethesda/germline clinical criteria and algorithm strategy for Lynch syndrome screening VERSUS MMRpro/germline clinical criteria and algorithm strategy IN US men and women newly diagnosed with colorectal cancer and their relatives	82864	90000	Wang et al., 2012 (347)
Microsatellite instability testing (MSI) plus IHC/BRAF tumor testing strategy for identifying Lynch syndrome VERSUS Bethesda/germline clinical criteria and algorithm strategy IN US men and women newly diagnosed with colorectal cancer and their relatives	193343	210000	Wang et al., 2012 (347)
Upfront germline testing for Lynch syndrome VERSUS Microsatellite instability testing (MSI) plus IHC/BRAF tumor testing strategy IN US men and women newly diagnosed with colorectal cancer and their relatives	393303	430000	Wang et al., 2012 (347)
IHC/BRAF tumor testing strategy for identifying Lynch syndrome VERSUS None IN US men and women newly diagnosed with colorectal cancer and their relatives	59719	65000	Wang et al., 2012 (347)
Microsatellite instability testing (MSI) plus IHC/BRAF tumor testing strategy for identifying Lynch syndrome VERSUS IHC/BRAF tumor testing strategy IN US men and women newly diagnosed with colorectal cancer and their relatives	179576	190000	Wang et al., 2012 (347)
Upfront germline testing for Lynch syndrome VERSUS Microsatellite instability testing (MSI) plus IHC/BRAF tumor testing strategy IN US men and women newly diagnosed with colorectal cancer and their relatives	384821	420000	Wang et al., 2012 (347)
Laparoscopic surgery VERSUS Open resection IN US patients with colon and rectal cancer	-4283000	Cost-Saving	Jensen et al., 2012 (348)
Colonoscopy performed every 10 years VERSUS Fecal immunochemical test performed annually IN Adults aged 50 years with average risk for colorectal cancer in Iran	4600	4800	Barouni et al., 2012 (349)

Fecal immunochemical test performed annually VERSUS Low-sensitivity guaiac fecal occult blood test screening strategy performed annually IN Adults aged 50 years with average risk for colorectal cancer in Iran	550	580	Barouni et al., 2012 (349)
Low-sensitivity guaiac fecal occult blood test screening strategy performed annually VERSUS None IN Adults aged 50 years with average risk for colorectal cancer in Iran	10533	11000	Barouni et al., 2012 (349)
Multigene recurrence score (RS) assay for patients recently diagnosed with stage II colon cancer eligible for adjuvant chemotherapy VERSUS Examination of guideline-recommended clinicopathological factors ((tumor stage, lymph nodes examined, tumor grade and lymphovascular invasion) IN Patients with stage II colon cancer (T3,proficient DNA mismatch repair) who have undergone surgery with lymphovascular invasion and high grade tumor	-84886	Cost-Saving	Hornberger et al., 2012 (350)
Fecal occult blood testing (FOBT) yearly VERSUS None IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Not Specified; Country- United States; Other- 50-80 years.	-6171	Cost-Saving	Sharaf et al., 2013 (351)
Flexible sigmoidoscopy (FS) every 5 years VERSUS None IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Not Specified; Country- United States; Other- 50-80 years.	-2974	Cost-Saving	Sharaf et al., 2013 (351)
Colonoscopy every 10 years VERSUS None IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Not Specified; Country- United States; Other- 50-80 years.	2640	2900	Sharaf et al., 2013 (351)
Fecal immunochemical testing (FIT) yearly VERSUS None IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Not Specified; Country- United States; Other- 50-80 years.	-6468	Cost-Saving	Sharaf et al., 2013 (351)
Flexible sigmoidoscopy (FS) every 5 years and Fecal immunochemical testing (FIT) every 3 years VERSUS None IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Not Specified; Country- United States; Other- 50-80 years.	-1775	Cost-Saving	Sharaf et al., 2013 (351)
Fecal occult blood testing (FOBT) yearly VERSUS Flexible sigmoidoscopy (FS) once in lifetime IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Not Specified; Country- United States; Other- 50- 80 years.	-3391	Cost-Saving	Sharaf et al., 2013 (351)

Flexible sigmoidoscopy (FS) every 5 years VERSUS Flexible sigmoidoscopy (FS) once in lifetime IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Not Specified; Country- United States; Other- 50- 80 years.	1700	1800	Sharaf et al., 2013 (351)
Colonoscopy every 10 years VERSUS Flexible sigmoidoscopy (FS) once in lifetime IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Not Specified; Country- United States; Other- 50-80 years.	9600	10000	Sharaf et al., 2013 (351)
Fecal immunochemical testing (FIT) yearly VERSUS Flexible sigmoidoscopy (FS) once in lifetime IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Not Specified; Country- United States; Other- 50- 80 years.	-4409	Cost-Saving	Sharaf et al., 2013 (351)
Flexible sigmoidoscopy (FS) every 5 years and Fecal immunochemical testing (FIT) every 3 years VERSUS Flexible sigmoidoscopy (FS) once in lifetime IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Not Specified; Country- United States; Other- 50-80 years.	2580	2800	Sharaf et al., 2013 (351)
Flexible sigmoidoscopy (FS) every 5 years VERSUS Fecal occult blood testing (FOBT) yearly IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Not Specified; Country- United States; Other- 50-80 years.	105000	110000	Sharaf et al., 2013 (351)
Colonoscopy every 10 years VERSUS Fecal occult blood testing (FOBT) yearly IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Not Specified; Country- United States; Other- 50-80 years.	67300	73000	Sharaf et al., 2013 (351)
Fecal immunochemical testing (FIT) yearly VERSUS Fecal occult blood testing (FOBT) yearly IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Not Specified; Country- United States; Other- 50-80 years.	-8365	Cost-Saving	Sharaf et al., 2013 (351)
Flexible sigmoidoscopy (FS) every 5 years and Fecal immunochemical testing (FIT) every 3 years VERSUS Fecal occult blood testing (FOBT) yearly IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Not Specified; Country- United States; Other- 50-80 years.	23200	25000	Sharaf et al., 2013 (351)
Colonoscopy every 10 years VERSUS Flexible sigmoidoscopy (FS) every 5 years IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Not Specified; Country- United States; Other- 50-80 years.	56800	62000	Sharaf et al., 2013 (351)

Fecal immunochemical testing (FIT) yearly VERSUS Flexible sigmoidoscopy (FS) every 5 years IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Not Specified; Country- United States; Other- 50-80 years.	-35000	Cost-Saving	Sharaf et al., 2013 (351)
Flexible sigmoidoscopy (FS) every 5 years and Fecal immunochemical testing (FIT) every 3 years VERSUS Flexible sigmoidoscopy (FS) every 5 years IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Not Specified; Country- United States; Other- 50-80 years.	6660	7200	Sharaf et al., 2013 (351)
Fecal immunochemical testing (FIT) yearly VERSUS Colonoscopy every 10 years IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Not Specified; Country- United States; Other- 50-80 years.	-536923	Cost-Saving	Sharaf et al., 2013 (351)
Flexible sigmoidoscopy (FS) every 5 years and Fecal immunochemical testing (FIT) every 3 years VERSUS Colonoscopy every 10 years IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Not Specified; Country- United States; Other- 50-80 years.	-130385	Cost-Saving	Sharaf et al., 2013 (351)
Flexible sigmoidoscopy (FS) every 5 years and Fecal immunochemical testing (FIT) every 3 years VERSUS Fecal immunochemical testing (FIT) yearly IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Not Specified; Country- United States; Other- 50-80 years.	271000	290000	Sharaf et al., 2013 (351)
Flexible sigmoidoscopy (FS) once in lifetime VERSUS None IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Not Specified; Country- United States; Other- 50-80 years.	-10496	Cost-Saving	Sharaf et al., 2013 (351)
5-fluorouracil, leucovorin (5FU/LV) and oxaliplatin (FOLFOX) VERSUS 5-fluorouracil, leucovorin (5FU/LV) IN Specific disease- Stage II colon cancer; Age- 41 to 64 years; Gender- Both; Country- United States; Other- undergone an uncomplicated hemicolectomy.	54359	62000	Ayvaci et al., 2013 (352)
5-fluorouracil, leucovorin (5FU/LV) VERSUS None IN Specific disease- Stage II colon cancer; Age- 41 to 64 years; Gender- Both; Country- United States; Other- undergone an uncomplicated hemicolectomy.	14584	17000	Ayvaci et al., 2013 (352)

Cetuximab for third and further lines of treatment for KRAS wild-type VERSUS Standard/Usual care- best supportive care IN Specific disease- Metastatic Colorectal Cancer; Age- Adult; Gender- Both; Country- United Kingdom.	152409	160000	Hoyle et al., 2013 (353)
Panitumumab for third and further lines of treatment for KRAS wild-type VERSUS Standard/Usual care- best supportive care IN Specific disease- Metastatic Colorectal Cancer; Age- Adult; Gender- Both; Country- United Kingdom.	300004	320000	Hoyle et al., 2013 (353)
Cetuximab plus irinotecan for third and further lines of treatment for KRAS wild-type VERSUS Standard/Usual care- best supportive care IN Specific disease- Metastatic Colorectal Cancer; Age- Adult; Gender- Both; Country- United Kingdom; Other- the median age varied from 59 to 63 years.	141179	150000	Hoyle et al., 2013 (353)
Annual fecal immunological test (FIT)/annual fecal immunological test and colonoscopy at age 66 (COLOx1) for colorectal cancer VERSUS Fecal immunological test (FIT) IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Both; Country- United States.	9700	11000	Dinh et al., 2013 (354)
Concurrent fecal immunological test (FIT)/sigmoidoscopy for colorectal cancer VERSUS Annual fecal immunological test (FIT)/annual fecal immunological test and colonoscopy at age 66 (COLOx1) IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Both; Country- United States.	11300	12000	Dinh et al., 2013 (354)
Concurrent fecal immunological test (FIT)/sigmoidoscopy for colorectal cancer VERSUS Annual fecal immunological test (FIT) IN Healthy; Age-41 to 64 years, >=65 years; Gender- Both; Country- United States.	9900	11000	Dinh et al., 2013 (354)
Colonoscopy for colorectal cancer VERSUS Annual fecal immunological test (FIT) IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Both; Country- United States.	16400	18000	Dinh et al., 2013 (354)
Colonoscopy for colorectal cancer VERSUS Annual fecal immunological test and colonoscopy at age 66 (FIT/COLOx1) IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Not Specified; Country- United States.	35100	38000	Dinh et al., 2013 (354)
Colonoscopy for colorectal cancer VERSUS Concurrent annual fecal immunological (FIT)/sigmoidoscopy IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Both; Country- United States.	51000	55000	Dinh et al., 2013 (354)

Concurrent fecal immunological test (FIT)/sigmoidoscopy for colorectal cancer VERSUS None IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Both; Country- United States.	Cost-Saving	Dinh et al., 2013 (354)
Concurrent fecal immunological test (FIT)/sigmoidoscopy for colorectal cancer VERSUS Sigmoidoscopy IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Both; Country- United States.	Cost-Saving	Dinh et al., 2013 (354)
Fecal immunological test (FIT) for colorectal cancer VERSUS None IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Both; Country- United States.	Cost-Saving	Dinh et al., 2013 (354)
Sigmoidoscopy for colorectal cancer VERSUS None IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Both; Country- United States.	Cost-Saving	Dinh et al., 2013 (354)
Colonoscopy for colorectal cancer VERSUS Sigmoidoscopy IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Both; Country- United States.	Cost-Saving	Dinh et al., 2013 (354)
Colonoscopy for colorectal cancer VERSUS None IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Both; Country- United States.	Cost-Saving	Dinh et al., 2013 (354)
Annual fecal immunological test (FIT)/annual fecal immunological test and colonoscopy at age 66 (COLOx1) for colorectal cancer VERSUS None IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Both; Country- United States.	Cost-Saving	Dinh et al., 2013 (354)
Annual fecal immunological test (FIT) for colorectal cancer VERSUS Sigmoidoscopy IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Both; Country- United States.	Cost-Saving	Dinh et al., 2013 (354)
Annual fecal immunological test (FIT)/annual fecal immunological test and colonoscopy at age 66 (COLOx1) for colorectal cancer VERSUS Sigmoidoscopy IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Both; Country- United States.	Cost-Saving	Dinh et al., 2013 (354)
Open colectomy VERSUS None IN Specific disease- Colorectal cancer; Age- Adult; Gender- Both; Country- Greece.	31116 33000	Michalopoulos et al., 2013

			(355)
Laproscopic colectomy VERSUS None IN Specific disease- Colorectal cancer; Age- Adult; Gender- Both; Country- Greece.	47897	50000	Michalopoulos et al., 2013 (355)
Fluoropyrimidines + Oxaliplatin, Scenario 1 VERSUS fluoropyrimidines IN Specific disease- Stage III Colon Cancer; Age- Adult; Gender- Both; Country- Netherlands.	12558	13000	van Gils et al., 2013 (356)
Fluoropyrimidines + Oxaliplatin, Scenario 3 VERSUS fluoropyrimidines IN Specific disease- Stage III Colon Cancer; Age- Adult; Gender- Both; Country- Netherlands.	10786	11000	van Gils et al., 2013 (356)
Fluoropyrimidines + Oxaliplatin, Scenario 2 VERSUS fluoropyrimidines IN Specific disease- Stage III Colon Cancer; Age- Adult; Gender- Both; Country- Netherlands.	12580	13000	van Gils et al., 2013 (356)
Fluoropyrimidines + Oxaliplatin, Scenario 4 VERSUS fluoropyrimidines IN Specific disease- Stage III Colon Cancer; Age- Adult; Gender- Both; Country- Netherlands.	16390	17000	van Gils et al., 2013 (356)
Advance notification letter prior to colorectal cancer screening VERSUS current practice in the National Bowel Cancer Screening Program (NBSC) in which NO advanced letter is sent IN Healthy; Age-; Gender-Not Specified; Country- Australia.	5519	6100	Cronin et al., 2013 (357)
No stenting for patients presenting with emergency symptoms VERSUS Standard/Usual Care- CT scan IN Specific disease- colorectal cancer; Age- 0 to 18 years, 19 to 40 years, 41 to 64 years, >=65 years; Gender-Both; Country- United Kingdom.	2363	2500	Tappenden et al., 2013 (358)
Preoperative chemoradiation VERSUS Preoperative radiotherapy IN Specific disease- colorectal cancer; Age- 0 to 18 years, 19 to 40 years, 41 to 64 years, >=65 years; Gender- Both; Country- United Kingdom.	29012	31000	Tappenden et al., 2013 (358)

Preoperative chemoradiation VERSUS Preoperative radiotherapy for patients presenting with locally advanced colorectal cancer IN Specific disease- colorectal cancer; Age- 0 to 18 years, 19 to 40 years, 41 to 64 years, >=65 years; Gender- Both; Country- United Kingdom.	28980	30000	Tappenden et al., 2013 (358)
Hepatic arterial infusion VERSUS Standard/Usual Care- Best supportive care IN Specific disease- colorectal cancer; Age- 0 to 18 years, 19 to 40 years, 41 to 64 years, >=65 years; Gender- Both; Country- United Kingdom.	177968	190000	Tappenden et al., 2013 (358)
Palliative chemotherapy VERSUS Standard/Usual Care- Best supportive care IN Specific disease- colorectal cancer; Age- 0 to 18 years, 19 to 40 years, 41 to 64 years, >=65 years; Gender- Both; Country- United Kingdom.	26644	28000	Tappenden et al., 2013 (358)
Capecitabine plus oxaliplatin VERSUS Capecitabine IN Specific disease- colorectal cancer; Age- 0 to 18 years, 19 to 40 years, 41 to 64 years, >=65 years; Gender- Both; Country- United Kingdom.	216483	230000	Tappenden et al., 2013 (358)
Capecitabine plus irinotecan VERSUS Capecitabine IN Specific disease- colorectal cancer; Age- 0 to 18 years, 19 to 40 years, 41 to 64 years, >=65 years; Gender- Both; Country- United Kingdom.	30738	32000	Tappenden et al., 2013 (358)
Intense followup VERSUS Relaxed followup IN Specific disease- colorectal cancer; Age- 0 to 18 years, 19 to 40 years, 41 to 64 years, >=65 years; Gender- Both; Country- United Kingdom.	24949	26000	Tappenden et al., 2013 (358)
No CT scan VERSUS Standard/Usual Care- CT scan IN Specific disease- colorectal cancer; Age- 0 to 18 years, 19 to 40 years, 41 to 64 years, >=65 years; Gender- Both; Country- United Kingdom.	2363	2500	Tappenden et al., 2013 (358)
Methylated Septin 9 DNA plasma 2-well assay VERSUS Natural history IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Both; Country- United States.	11500	12000	Ladabaum et al., 2013 (359)

Methylated Septin 9 DNA plasma 3-well assay VERSUS Natural history IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Both; Country- United States.	8400	9100	Ladabaum et al., 2013 (359)
Simgoidoscopy VERSUS Fecal occult blood testing IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Both; Country- United States.	105000	110000	Ladabaum et al., 2013 (359)
Colonoscopy VERSUS Natural history/no screening IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Both; Country- United States.	2915	3200	Ladabaum et al., 2013 (359)
Colonoscopy VERSUS Fecal occult blood testing IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Both; Country- United States.	67300	73000	Ladabaum et al., 2013 (359)
Colonoscopy VERSUS Sigmoidoscopy IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Both; Country- United States.	56800	62000	Ladabaum et al., 2013 (359)
Combination sigmoidoscopy/fecal occult blood testing VERSUS Natural history/no screening IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Both; Country- United States.	708	770	Ladabaum et al., 2013 (359)
Combination sigmoidoscopy/fecal occult blood testing VERSUS Fecal occult blood testing IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Both; Country- United States.	36500	40000	Ladabaum et al., 2013 (359)
Combination sigmoidoscopy/fecal immunochemical testing VERSUS signmoidoscopy IN Healthy; Age- 41 to 64 years, >=65 years; Gender-Both; Country- United States.	23600	26000	Ladabaum et al., 2013 (359)
Combination sigmoidoscopy/fecal occult blood testing VERSUS Fecal immunochemical testing IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Both; Country- United States.	258000	280000	Ladabaum et al., 2013 (359)
Combination sigmoidoscopy/fecal immunochemical testing VERSUS Natural history/no screening IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Both; Country- United States.	580	630	Ladabaum et al., 2013 (359)

Combination sigmoidoscopy/fecal immunochemical testing VERSUS Fecal occult blood testing IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Both; Country- United States.	31500	34000	Ladabaum et al., 2013 (359)
Combination sigmoidoscopy/fecal immunochemical testing VERSUS Sigmoidoscopy IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Both; Country- United States.	20000	22000	Ladabaum et al., 2013 (359)
Combination sigmoidoscopy/fecal immunochemical testing VERSUS Fecal immunochemical testeing IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Both; Country- United States.	130000	140000	Ladabaum et al., 2013 (359)
Combination sigmoidoscopy/fecal immunochemical testing VERSUS Combination sigmoidoscopy/fecal occult blood testing IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Both; Country- United States.	1429	1600	Ladabaum et al., 2013 (359)
Panitumumab + fluoropyrimidine-based chemotherapy (FBC) VERSUS Bevacizumab + fluoropyrimidine-based chemotherapy (FBC) IN Specific disease- colorectal cancer; Age- Adult; Gender- Both; Country- Canada.	-1222260	Increases Costs, Decreases Health	Lawrence et al., 2013 (360)
Cetuximab + Fluoropyrimidine-based chemotherapy (FBC) VERSUS Bevacizumab + fluoropyrimidine-based chemotherapy (FBC) IN Specific disease- colorectal cancer; Age- Adult; Gender- Both; Country- Canada.	3364416	3500000	Lawrence et al., 2013 (360)
Bevacizumab + fluoropyrimidine-based chemotherapy (FBC) VERSUS Fluoropyrimidine-based chemotherapy (FBC) IN Specific disease- colorectal cancer; Age- Adult; Gender- Both; Country- Canada.	133205	140000	Lawrence et al., 2013 (360)
Modified FOLFOX6 regimen VERSUS mFLOX regimen (20 mg/m2 leucovorin (LV) and 500 mg/m2 5-fluorouracil (5-FU) and 85 mg/m2 oxaliplatin) IN Specific disease- metastatic colorectal cancer; Age- 41 to 64 years, >=65 years; Gender- Both; Country- Brazil.	66186	70000	Nebuloni et al., 2013 (361)

Esophageal Cancer

Description	Original US\$/QALY	2014US\$/QALY	Reference
Endoscopic surveillance; esophagectomy for high-grade dysplasia VERSUS Endoscopic surveillance; esophagectomy for cancer IN 55-yo men with Barrett's esophagus		Cost-Saving	Provenzale et al., 1994 (362)
5-yr. endoscopic surveillance; esophagectomy for high-grade dysplasia VERSUS No surveillance; esophagectomy for high grade dysplasia IN 55- yo men with Barrett's esophagus	27400	50000	Provenzale et al., 1994 (362)
4-yr. endoscopic surveillance; esophagectomy for high-grade dysplasia VERSUS 5-yr. endoscopic surveillance; esophagectomy for high-grade dysplasia IN 55-yo men with Barrett's esophagus	276700	500000	Provenzale et al., 1994 (362)
1,2,3-yr. endoscopic surveillance; esophagectomy for high-grade dysplasia VERSUS 4-yr. endoscopic surveillance; esophagectomy for high-grade dysplasia IN 55-yo men with Barrett's esophagus		Increases Costs, Decreases Health	Provenzale et al., 1994 (362)
Surveillance every 1-5 years VERSUS No surveillance IN Barrett's esophagus patients	98000	150000	Provenzale et al., 1999 (363)
Positron emission tomography (PET) and Endoscopic ultrasound with fine needle aspiration biopsy VERSUS Computed tomography (CT) scan and Endoscopic ultrasound with fine needle aspiration biopsy IN Patients with with local, regional, and distant esophageal cancer	60544	83000	Wallace et al., 2002 (364)
Dysplasia-guided surveillance VERSUS Observation only IN Caucasian men with a history of gastroesophageal reflux disease (GERD) - age 50	14211	18000	Rubenstein et al., 2005 (365)
Biomarker-guided surveillance VERSUS Dysplasia-guided surveillance IN Caucasian men with a history of gastroesophageal reflux disease (GERD) - age 50	1704	2200	Rubenstein et al., 2005 (365)
Dysplasia-guided oesophagectomy VERSUS Observation only IN Caucasian men with a history of gastroesophageal reflux disease (GERD) - age 50	9055	12000	Rubenstein et al., 2005 (365)
Dysplasia-guided oesophagectomy VERSUS Biomarker- or dysplasia- guided surveillance IN Caucasian men with a history of gastroesophageal reflux disease (GERD) - age 50		Cost-Saving	Rubenstein et al., 2005 (365)
Covered self-expanding metal stents (SEMS) VERSUS Plastic stents IN	-179798	Cost-Saving	Rao et al.,

United Kingdom patients with esophageal cancer			2009 (366)
Covered self-expanding metal stents (SEMS) VERSUS Uncovered self- expanding metal stents (SEMS) IN United Kingdom patients with esophageal cancer	-559677	Cost-Saving	Rao et al., 2009 (366)
Ablation VERSUS Surveillance IN US patients older than 50 years of age diagnosed with Barrett's esophagus, low dysplasia	13000	14000	Inadomi et al., 2009 (367)
Ablation, radio frequency VERSUS Ablation, argon plasma coagulation IN US patients older than 50 years of age diagnosed with Barrett's esophagus, high grade dysplasia	5839	6400	Inadomi et al., 2009 (367)
Surveillance VERSUS Ablation without surveillance IN US patients older than 50 years of age diagnosed with Barrett's esophagus, no dysplasia	16286	18000	Inadomi et al., 2009 (367)
Esophagectomy VERSUS Endoscopic therapy IN 65 year old men with early esophageal adenocarcinoma in Barrett's esophagus who receive EMR and radiofrequency ablation	-35938	Increases Costs, Decreases Health	Pohl et al., 2009 (368)

Gastrointestinal and Hepatocellular Cancer

Description	Original US\$/QALY	2014US\$/QALY	Reference
Primary chemotherapy with ELF or FLv regimen, with best supportive care VERSUS Best supportive care IN Patients with surgically non-curable gastric cancer with no previous chemotherapy or other primary tumors	25893	44000	Glimelius et al., 1995 (369)
Primary chemotherapy with ELF or FLv regimen, with best supportive care VERSUS Best supportive care IN Patients with surgically non-curable pancreatic/biliary cancer with no previous chemotherapy or other primary tumors	104782	180000	Glimelius et al., 1995 (369)
Primary chemotherapy with ELF or FLv regimen, with best supportive care VERSUS Best supportive care IN Patients with surgically non-curable colorectal cancer with no previous chemotherapy or other primary tumors	13326	22000	Glimelius et al., 1995 (369)

Primary chemotherapy with ELF or FLv regimen, with best supportive care VERSUS Best supportive care IN Patients with surgically non-curable gastric, pancreatic/biliary, or colorectal cancer with no previous chemotherapy or other primary tumors	27136	46000	Glimelius et al., 1995 (369)
Living donor liver transplant VERSUS Cadaveric liver transplant IN living liver donors and patients with early hepatocellular carcinoma saving 2 months on the wait list	168700	250000	Sarasin et al., 2001 (370)
Living donor liver transplant VERSUS Cadaveric liver transplant IN living liver donors and patients with early hepatocellular carcinoma saving 7 months on the wait list	50000	73000	Sarasin et al., 2001 (370)
Living donor liver transplant VERSUS Cadaveric liver transplant IN living liver donors and patients with early hepatocellular carcinoma saving 12 months on the wait list	36400	53000	Sarasin et al., 2001 (370)
Screening with transabdominal ultrasound (US) and alfa-fetoprotein (AFP) concentration measurement alternating at 6 month intervals VERSUS No Screening IN Transplant-eligible patients with cirrhosis secondary to chronic hepatitis C viral infection - age 50	26689	37000	Arguedas et al., 2003 (371)
Screening with alfa-fetoprotein (AFP) concentration measurement alone at 6 month intervals VERSUS Screening with transabdominal ultrasound (US) and AFP alternating at 6 month intervals IN Transplant-eligible patients with cirrhosis secondary to chronic hepatitis C viral infection - age 50	-4083	Increases Costs, Decreases Health	Arguedas et al., 2003 (371)
Screening with abdominal three phase CT and AFP (alfa-fetoprotein) concentration measurement alternating at 6 month intervals VERSUS Screening with transabdominal ultrasound (US) and AFP alternating at 6 month intervals IN Transplant-eligible patients with cirrhosis secondary to chronic hepatitis C viral infection - age 50	16605	23000	Arguedas et al., 2003 (371)
Screening with abdominal three phase CT and AFP (alfa-fetoprotein) concentration measurement alternating at 6 month intervals VERSUS No Screening IN Transplant-eligible patients with cirrhosis secondary to chronic hepatitis C viral infection - age 50	25232	35000	Arguedas et al., 2003 (371)

Screening with abdominal magnetic resonance imaging (MRI) and AFP	118000	160000	Arguedas
(alfa-fetoprotein) concentration measurement alternating at 6 month intervals VERSUS Screening with abdominal three phase CT and AFP alternating at 6 month intervals IN Transplant-eligible patients with cirrhosis secondary to abrania hangtitia C viral infaction and 50			et al., 2003 (371)
chronic hepatitis C viral infection - age 50			
VERSUS IN 40 years old patients with chronic hepatitis C and compensated cirrhosis	23043	30000	Lin et al., 2004 (372)
VERSUS IN 40 years old patients with chronic hepatitis C and compensated cirrhosis	33083	43000	Lin et al., 2004 (372)
VERSUS IN 40 years old patients with chronic hepatitis C and compensated cirrhosis	73789	95000	Lin et al., 2004 (372)
VERSUS IN 40 years old patients with chronic hepatitis C and compensated cirrhosis	96727	120000	Lin et al., 2004 (372)
VERSUS IN 40 years old patients with chronic hepatitis C and compensated cirrhosis	36429	47000	Lin et al., 2004 (372)
VERSUS IN 40 years old patients with chronic hepatitis C and compensated cirrhosis	51750	67000	Lin et al., 2004 (372)
Surveillance followed by resection VERSUS Natural history IN Patients with HCV realted cirrhosis in the context of alternative hepatocellular carcinoma (HCC) treatment strategies	21063	29000	Patel et al., 2005 (373)
Surveillance followed by cadaveric liver transplantation VERSUS Surveillance followed by resection IN Patients with HCV realted cirrhosis in the context of alternative hepatocellular carcinoma (HCC) treatment strategies	51400	71000	Patel et al., 2005 (373)
Surveillance followed by cadaveric liver transplantion VERSUS Natural history IN Patients with HCV realted cirrhosis in the context of alternative hepatocellular carcinoma (HCC) treatment strategies	46700	64000	Patel et al., 2005 (373)

Surveillance followed by living donor liver transplantaion VERSUS Surveillance followed by cadaveric liver transplantion IN Patients with HCV realted cirrhosis in the context of alternative hepatocellular carcinoma (HCC) treatment strategies	58400)	80000	Patel et al., 2005 (373)
Surveillance followed by living donor liver transplantation VERSUS Natural history IN Patients with HCV realted cirrhosis in the context of alternative hepatocellular carcinoma (HCC) treatment strategies	50400	69000	Patel et al., 2005 (373)
Imatinib mesylate treatment VERSUS No treatment IN Patients with unresectable GIST	38723	47000	Huse et al., 2007 (374)
Diagnosis with CT on neck, celiac lymph nodes, liver, and lungs VERSUS Diagnosis with CT of neck, celiac lymph, liver, and lung, and ultrasound of the supraclavicular lymph nodes (neck, CT) IN Patients with oesophageal or gastric cardia cancer	1050000	1300000	van Vliet et al., 2007 (375)
CT of neck, celiac lymph, liver, and lung, and ultrasound of the supraclavicular lymph nodes and liver VERSUS CT of neck, celiac lymph, liver, and lung, and ultrasound of the supraclavicular lymph nodes IN Patients with Oesophageal or gastric cardia cancer	94700	110000	van Vliet et al., 2007 (375)
CT of neck, celiac lymph, liver, and lung; Chest X-Ray of Lung, and ultrasound of the supraclavicular lymph nodes and liver VERSUS CT of neck, celiac lymph, liver, and lung, and ultrasound of the supraclavicular lymph nodes IN Patients with Oesophageal or gastric cardia cancer	100000	120000	van Vliet et al., 2007 (375)
Surgery VERSUS CT of neck, celiac lymph, liver, and lung, and ultrasound of the supraclavicular lymph nodes IN Patients with Oesophageal or gastric cardia cancer	365300	440000	van Vliet et al., 2007 (375)
VERSUS IN Patients with newly diagnosed hepatic malignancy	554	740	McKay et al., 2007 (376)
VERSUS IN Patients with newly diagnosed hepatic malignancy	4504	6000	McKay et al., 2007
VERSUS IN Patients with hepatic malignancy	19723	26000	(376) McKay et

			al., 2007 (376)
Surveillance of hepatocellular carcinoma with ultrasonography every 6 months (no transplantation assumed) VERSUS No systemic surveillance of hepatocellular carcinoma IN 45 year old patients with Child-Pugh class A cirrhosis	29400	35000	Nouso et al., 2008 (377)
Surveillance of hepatocellular carcinoma with ultrasonography every 6 months (with transplantation) VERSUS No systemic surveillance of hepatocellular carcinoma IN 45 year old patients with Child-Pugh class A cirrhosis	59900	70000	Nouso et al., 2008 (377)
Serology screening for Helicobacter pylori VERSUS No screening for gastric cancer or Helicobacter pylori IN Singaporean Chinese at 40 years of age, prevalence of gastric cancer = 4.2 per 100,000	25881	30000	Xie et al., 2008 (378)
13C-urea breath test (UBT) for Helicobacter pylori VERSUS Serology screening for Helicobacter pylori IN Singaporean Chinese at 40 years of age, prevalence of gastric cancer = 4.2 per 100,000	471746	550000	Xie et al., 2008 (378)
Sunitinib VERSUS Best supportive care IN Canadian patients with gastrointestinal stromal tumor who are intolerant or resistant to imatinib mesylate (Glivec)	65980	80000	Chabot et al., 2008 (379)
6months alpha-foetoprotein triage surveillance VERSUS 6-months ultrasound surveillance IN Patients with compensated cirrhosis aged 70 years or less with no pre-existing medical condition that might preclude treatment with liver transplantation or hepatic resection	107823	140000	Thompson Coon et al., 2008 (380)
6months alpha-foetoprotein triage surveillance VERSUS Annual alpha- foetoprotein triage surveillance IN Patients with compensated cirrhosis aged 70 years or less with no pre-existing medical condition that might preclude treatment with liver transplantation or hepatic resection	50774	64000	Thompson Coon et al., 2008 (380)

Annual alpha foetoprotein triage surveillance VERSUS No surveillance IN Patients with compensated cirrhosis aged 70 years or less with no pre- existing medical condition that might preclude treatment with liver transplantation or hepatic resection	37943	48000	Thompson Coon et al., 2008 (380)
Single serology screening using enzyme-linked immunosorbent assay (ELISA) VERSUS None IN All Singapore Chinese males aged from 35 to 44	13571	16000	Xie et al., 2008 (381)
C-Urea breath test (UBT) VERSUS None IN All Singapore Chinese males aged from 35 to 44	32525	38000	Xie et al., 2008 (381)
C-Urea breath test (UBT) VERSUS Single serology screening using enzyme-linked immunosorbent assay (ELISA) IN All Singapore Chinese males aged from 35 to 44	390337	460000	Xie et al., 2008 (381)
Annual ultrasound surveillance VERSUS No surveillance IN United States patients with cirrhosis at high risk for hepatocellular carcinoma (HCC), over 50 years of age	21200	27000	Andersson et al., 2008 (382)
Semi-annual ultrasound surveillance VERSUS Annual ultrasound surveillance IN United States patients with cirrhosis at high risk for hepatocellular carcinoma (HCC), over 50 years of age	30700	38000	Andersson et al., 2008 (382)
Semiannual alpha-fetoprotein (AFP) and ultrasound surveillance (US) VERSUS Semi-annual ultrasound surveillance (US) IN United States patients with cirrhosis at high risk for hepatocellular carcinoma (HCC), over 50 years of age	73500	92000	Andersson et al., 2008 (382)
Semi-annual CT scan VERSUS Semi-annual alpha-fetoprotein (AFP) and ultrasound surveillance (US) IN United States patients with cirrhosis at high risk for hepatocellular carcinoma (HCC), over 50 years of age	281650	350000	Andersson et al., 2008 (382)
Semi-annual ultrasound surveillance VERSUS Annual CT scan IN United States patients with cirrhosis at high risk for hepatocellular carcinoma (HCC), over 50 years of age	-45375	Cost-Saving	Andersson et al., 2008 (382)

Semi-annual ultrasound surveillance VERSUS Annual MRI IN United States patients with cirrhosis at high risk for hepatocellular carcinoma (HCC), over 50 years of age	-285267	Cost-Saving	Andersson et al., 2008 (382)
Sunitinib (50 mg/day, 4 weeks on and two weeks off) VERSUS Best supportive care IN Spanish patients with metastatic and/or unresectable gastrointestinal stroma tumours (GIST) after progression or intolerance with imatinib	67305	77000	Paz-Ares et al., 2008 (383)
Postoperative chemoradiotherapy VERSUS No additional treatment IN Patients with surgically resected stage IB to IV (MO) gastric adenocarcinoma	38400	44000	Wang et al., 2008 (384)
Hepatocellular carcinoma prevention VERSUS Current practice IN Asian born Australians at risk for hepatocellular cancer, aged 35 years or above	9762	11000	Robotin et al., 2009 (385)
Hepatocellular carcinoma prevention VERSUS Hepatocellular carcinoma surveillance IN Asian born Australians at risk for hepatocellular cancer, aged 35 years or above	5073	6000	Robotin et al., 2009 (385)
Hepatocellular carcinoma survelliance VERSUS Current practice IN Asian born Australians at risk for hepatocellular cancer, aged 35 years or above	302536	360000	Robotin et al., 2009 (385)
Stool antigen test (SAT) for the detection of Helicobacter pylori VERSUS No screening IN Male Canadians aged 35 years	28183	31000	Xie et al., 2009 (386)
13C-urea breath test(UBT) for the detection of Helicobacter pylori VERSUS No screening IN Male Canadians aged 35 years	47583	52000	Xie et al., 2009 (386)
13C-urea breath test(UBT) for the detection of Helicobacter pylori VERSUS Stool antigen test (SAT) for the detection of Helicobacter pylori IN Hypothetical cohort male 10,000 Canadians aged 35 years, without symptoms of infection	336404	370000	Xie et al., 2009 (386)
Serology test by enzyme-linkedimmunosorbentassay (ELISA) for the detection of Helicobacter pylori VERSUS No screening IN Male Canadians aged 35 years	31266	34000	Xie et al., 2009 (386)

Pancreaticoduocenectomy at stage III VERSUS Pancreaticoduocenectomy at cancer IN United States patients with familial adenomatous polyposis	49091	56000	Greenblatt et al., 2009 (387)
Pancreaticoduocenectomy at stage IV VERSUS Pancreaticoduocenectomy at cancer IN United States patients with familial adenomatous polyposis	3200	3700	Greenblatt et al., 2009 (387)
Sorafenib as neoadjuvant therapy before liver transplant VERSUS No bridging therapy in the first 6 months IN Italian patients with hepatocellular carcinoma on the waiting list for liver transplantation	197	220	Vitale et al., 2010 (388)
A two-stage screening, mass screening campaign and subsequent continuing surveillance for hepatocellular carcinoma (HCC) VERSUS Opportunistic screening alone IN All Taiwanese individuals born before 1984	14014	21000	Shih et al., 2010 (389)
Endoscopic surveillance of gastric ulcers VERSUS No Surveillance IN American females aged 60 years old or older, diagnosed with presumed- benign gastric ulcers, based on appearance and negative biopsy results	113100	130000	Yeh et al., 2010 (390)
Endoscopic surveillance of gastric ulcers VERSUS No Surveillance IN American males aged 60 years old or older, diagnosed with presumed- benign gastric ulcers, based on appearance and negative biopsy results	146700	170000	Yeh et al., 2010 (390)
Sunitinib maleate VERSUS Interferon-alfa IN Adults with confirmed metastatic renal cell carcinoma of clear cell histology who had not received previous systemic therapy for RCC	134994	150000	Chabot et al., 2010 (391)
Endoscopic mucosal resection (EMR) with surveillance every 5 years VERSUS Endoscopic mucosal resection (EMR) with surveillance every 10 years IN US men aged 50 years old and older diagnosed with intestinal dysplasia	20900	24000	Yeh et al., 2010 (392)

Endoscopic mucosal resection (EMR) with surveillance every 1 years VERSUS Endoscopic mucosal resection (EMR) with surveillance every 5 years IN US men aged 50 years old and older diagnosed with intestinal dysplasia	39800	45000	Yeh et al., 2010 (392)
Endoscopic mucosal resection (EMR) with surveillance every 1 year and post-treatment surveillance every 10 years VERSUS Endoscopic mucosal resection (EMR) with surveillance every 1 year IN US men aged 50 years old and older diagnosed with intestinal dysplasia	1048000	1200000	Yeh et al., 2010 (392)
Endoscopic mucosal resection (EMR) with surveillance every 10 years VERSUS No treatment or surveillance IN US men aged 50 years old and older diagnosed with intestinal metaplasia	544500	620000	Yeh et al., 2010 (392)
Endoscopic mucosal resection (EMR) with surveillance every 10 years and post-treatment surveillance every 10 years VERSUS Endoscopic mucosal resection (EMR) with surveillance every 10 years IN US men aged 50 years old and older diagnosed with intestinal metaplasia	25930000	3000000	Yeh et al., 2010 (392)
Endoscopic mucosal resection (EMR) with surveillance every 10 years VERSUS No treatment or surveillance IN US men aged 50 years old and older diagnosed with intestinal dysplasia	18600	21000	Yeh et al., 2010 (392)
Zoledronic acid (ZOL) (4 or 8 mg) VERSUS Placebo IN Renal cell carcinoma patients (median age 65) with bone metastasis in France	-12794	Cost-Saving	Botteman et al., 2010 (393)
Zoledronic acid (ZOL) (4 or 8 mg) VERSUS Placebo IN Renal cell carcinoma patients (median age 65) with bone metastasis in UK	-6722	Cost-Saving	Botteman et al., 2010 (393)
Zoledronic acid (ZOL) (4 or 8 mg) VERSUS Placebo IN Renal cell carcinoma patients (median age 65) with bone metastasis in Germany	-11522	Cost-Saving	Botteman et al., 2010 (393)
Sunitinib (50 mg/day, 6-week cycles, schedule 4/2) VERSUS Best supportive Care, diagnostic test and palliative management IN Cytokine- refractory metastatic renal cell carcinoma (mRCC) patients who were intolerant-to or experienced disease progression with IL-2 or interferon alfa in Spain	46885	54000	Paz-Ares et al., 2010 (394)

Immediate laparoscopic partial nephrectomy (LPN) VERSUS Observation IN US patients aged 65 years with an asymptomatic unilateral small renal mass with normal renal function and an unremarkable contralateral kidney.	36645	40000	Chang et al., 2011 (395)
Upper endoscopy screening with endoscopic surveillance of Barrett's esophagus VERSUS None or surveillance IN US patients aged 50 years undergoing colonscopy for colorectal cancer screening	95559	110000	Gupta et al., 2011 (396)
Upper endoscopy screening with endoscopic surveillance of Barrett's esophagus followed by endoscopic eradication therapy (EET) VERSUS None or surveillance IN US patients aged 50 years undergoing colonscopy for colorectal cancer screening	79882	88000	Gupta et al., 2011 (396)
Upper endoscopy screening without endoscopic surveillance of Barrett's esophagus VERSUS None or surveillance IN US patients aged 50 years undergoing colonscopy for colorectal cancer screening	115664	130000	Gupta et al., 2011 (396)
Chemotherapy + adjuvant trastuzumab VERSUS Chemotherapy IN Patients with HER-2-positive (human epidermal growth factor 2) gastric cancer confirmed with immunohistochemical (ICH) 2+ fluorescence in situ hybridization (FISH)+ or ICD 3+ in Japan	103660	110000	Shiroiwa et al., 2011 (397)
Chemotherapy + adjuvant trastuzumab VERSUS Chemotherapy IN Patients with HER-2-positive (human epidermal growth factor 2) gastric cancer confirmed with immunohistochemical 3+ in Japan	69297	75000	Shiroiwa et al., 2011 (397)
Chemotherapy + adjuvant trastuzumab VERSUS Chemotherapy IN Patients with HER-2-positive (human epidermal growth factor 2) gastric cancer in Japan	139051	150000	Shiroiwa et al., 2011 (397)
Primary orthotopic liver transplantation (POLT) for HCC within the Milan Criteria VERSUS Locoregional therapy (LRT) with radiofrequency ablation (RFA) followed by salvage orthotopic liver transplantation (SOLT) IN Patients aged 56 years with hepatocellular carcinoma (HCC), Child-Pugh	-25000	Cost-Saving	Landman et al., 2011 (398)

class A and hepatitis C virus (HCV)

Primary orthotopic liver transplantation (POLT) for HCC within the Milan Criteria VERSUS Hepatic resection (HR) followed by salvage orthotopic liver transplantation (SOLT) IN Patients aged 56 years with hepatocellular carcinoma (HCC), Child-Pugh class A and hepatitis C virus (HCV)	-4167	Cost-Saving	Landman et al., 2011 (398)
Two stage screening for gastric cancer- consisting of epidemiological survey and serum pepsinogen (PG) test in the first stage and endoscopy and pathological examination in the second stage screening VERSUS None IN Population aged over 35 years with family history of gastric cancer and gastric illness or with evident gastric illness symptoms in northeastern China	459	610	Zhou et al., 2011 (399)
Primary systemic chemotherapy followed by loco-regional cytoreductive surgery (CRS) and early post-operative intraperitoneal chemotherapy (EPIC) VERSUS Palliative systemic chemotherapy IN Patients with peritoneal carcinomatosis from gastric cancer	175164	190000	Hultman et al., 2012 (400)
Surgical management, resectioning of hepatic tumors and thrombi (hepatectomy and thrombectomy) and postoperative systemic chemotherapy VERSUS Transarterial chemoembolization (TACE) and systemic chemotherapy IN Patients with hepatocellular carcinoma (HCC) as well as thrombi in the inferior vena cava (IVC) and hepatic vein (HV)	9264	10000	Liu et al., 2012 (401)
Contrast-enhanced ultrasonography (CEUS) surveillance for hepatocellular carcinoma VERSUS None IN Hepatitis C virus (HCV)-related liver cirrhosis (LC) patients	18384	20000	Tanaka et al., 2012 (402)
Contrast-enhanced ultrasonography (CEUS) surveillance for hepatocellular carcinoma VERSUS Ultrasonography (US) surveillance IN Hepatitis C virus (HCV)-related liver cirrhosis (LC) patients	24250	26000	Tanaka et al., 2012 (402)
Ultrasonography (US) surveillance for hepatocellular carcinoma VERSUS None IN Hepatitis C virus (HCV)-related liver cirrhosis (LC) patients	17296	19000	Tanaka et al., 2012

			(402)
Semi-annual surveillance for hepatocellular carcinoma (HCC) VERSUS Annual surveillance IN Adult patients with decompensated cirrhosis in Italy	60292	65000	Cucchetti et al., 2012 (403)
Semi-annual surveillance for hepatocellular carcinoma (HCC) VERSUS Annual surveillance IN Adult patients with compensated cirrhosis in Italy	31598	34000	Cucchetti et al., 2012 (403)
Endoscopy screening strategy for gastric cancer annually in adults 40 to 80 years VERSUS Endoscopy screening strategy annually in men aged 50 to 80 years IN Healthy male adults aged 30 to 80 years in South Korea	20480	23000	Chang et al., 2012 (404)
Endoscopy screening strategy for gastric cancer annually in adults ages 30 to 80 years VERSUS Endoscopy screening strategy annually in men aged 40 to 80 years IN Healthy female adults aged 30 to 80 years in South Korea	81294	89000	Chang et al., 2012 (404)
Endoscopy screening strategy for gastric cancer every two years in ages 50 to 80 years VERSUS None IN Healthy female adults aged 30 to 80 years in South Korea	11378	13000	Chang et al., 2012 (404)
Endoscopy screening annually for gastric cancer in ages 50 to 80 years VERSUS Endoscopy screening strategy every two years in ages 50 to 80 years IN Healthy female adults aged 30 to 80 years in South Korea	12180	13000	Chang et al., 2012 (404)
Endoscopy screening annually for gastric cancer in ages 40 to 80 years VERSUS Endoscopy screening strategy annually in ages 50 to 80 years IN Healthy female adults aged 30 to 80 years in South Korea	22283	25000	Chang et al., 2012 (404)
Endoscopy screening annually for gastric cancer in ages 30 to 80 years VERSUS Endoscopy screening strategy annually in ages 40 to 80 years IN Healthy female adults aged 30 to 80 years in South Korea	50033	55000	Chang et al., 2012 (404)
Endoscopy screening strategy for gastric cancer annually in men age 50-80 years VERSUS None IN Healthy male adults aged 30 to 80 years in South Korea	4979	5500	Chang et al., 2012 (404)
3 years of imatinib (400mg/day administered orally) VERSUS 1 year of imatinib (400mg/day administered orally) IN Specific disease- Surgically resected Kit+ gastrointestinal stromal tumors (GIST); Age- Adult; Gender-Both; Country- United States.	62600	68000	Sanon et al., 2013 (405)

Treatment with full dose of sorafenib VERSUS Standard/Usual care- best supportive care IN Specific disease- Hepatocellular carcinoma (HCC); Age- >=65 years; Gender- Male; Country- Italy; Other- Caucasian patients aged 67 years with Barcelona Clinic Liver Cancer (BCLC) stage B & C HCC unfit or failed to respond to locoregional therapies with well compensated cirrhosis.	89168	92000	Cammà et al., 2013 (406)
Treatment with full dose of sorafenib VERSUS Standard/Usual care- best supportive care IN Specific disease- Hepatocellular carcinoma (HCC); Age- >=65 years; Gender- Male; Country- Italy; Other- Caucasian patients aged 67 years with Barcelona Clinic Liver Cancer (BCLC) stage C HCC unfit or failed to respond to locoregional therapies with well compensated cirrhosis.	84290	87000	Cammà et al., 2013 (406)
Treatment with dose-adjusted sorafenib VERSUS Standard/Usual care- best supportive care IN Specific disease- Hepatocellular carcinoma (HCC); Age- >=65 years; Gender- Male; Country- Italy; Other- Caucasian patients aged 67 years with Barcelona Clinic Liver Cancer (BCLC) stage B & C HCC unfit or failed to respond to locoregional therapies with well compensated cirrhosis.	44406	46000	Cammà et al., 2013 (406)

Treatment with full dose of sorafenib VERSUS Standard/Usual care- best supportive care IN Specific disease- Hepatocellular carcinoma (HCC); Age- >=65 years; Gender- Male; Country- Italy; Other- Caucasian patients aged 67 years with Barcelona Clinic Liver Cancer (BCLC) stage B HCC unfit or failed to respond to locoregional therapies with well compensated cirrhosis.	73790	76000	Cammà et al., 2013 (406)
Treatment with dose-adjusted sorafenib VERSUS Standard/Usual care- best supportive care IN Specific disease- Hepatocellular carcinoma (HCC); Age- >=65 years; Gender- Male; Country- Italy; Other- Caucasian patients aged 67 years with Barcelona Clinic Liver Cancer (BCLC) stage B HCC unfit or failed to respond to locoregional therapies with well compensated cirrhosis.	70570	73000	Cammà et al., 2013 (406)
Treatment with dose-adjusted sorafenib VERSUS Standard/Usual care- best supportive care IN Specific disease- Hepatocellular carcinoma (HCC); Age-; Gender- Male; Country- ; Other- Caucasian patients with Barcelona Clinic Liver Cancer (BCLC) stage C HCC unfit or failed to respond to locoregional therapies with well compensated cirrhosis.	35896	37000	Cammà et al., 2013 (406)
Hepatic resection VERSUS percutaneous radiofrequency ablation IN Specific disease- Early hepatocellular carcinoma; Age- Adult; Gender- Both; Country- Italy.	18062	19000	Cucchetti et al., 2013 (407)
only group IN Specific disease- Gastric Cancer; Age- Adult; Gender- Both; Country- China.	-15314	Cost-Saving	Chongqing et al., 2013 (408)
CSG chemotherapy and surgery group, 3 years VERSUS SOG surgery-only group IN Specific disease- Gastric Cancer; Age- Adult; Gender- Both; Country- China.	-39877	Increases Costs, Decreases	Chongqing et al., 2013 (408)

		Health	
CSG chemotherapy and surgery group, 5 years VERSUS SOG surgery-only group IN Specific disease- Gastric Cancer; Age- Adult; Gender- Both; Country- China.	-15259	Increases Costs, Decreases Health	Chongqing et al., 2013 (408)
CSG chemotherapy and surgery group, 10 years VERSUS SOG surgery- only group IN Specific disease- Gastric Cancer; Age- Adult; Gender- Both; Country- China.	-44184	Cost-Saving	Chongqing et al., 2013 (408)
3-year adjuvant therapy with imatinib VERSUS 1-year adjuvant therapy with imatinib IN Specific disease- gastrointestinal stromal tumour; Age- Adult; Gender- Both; Country- Netherlands.	41569	44000	Majer et al., 2013 (409)
Adjuvant S-1 therapy VERSUS Surgery alone IN Specific disease- gastric cancer; Age- 19 to 40 years, 41 to 64 years, >=65 years; Gender- Both; Country- Japan; Other- curatively resected.	3016	3400	Hisashige et al., 2013 (410)
S-1 first-line postoperative adjuvant chemotherapy VERSUS XELOX first- line postoperative adjuvant chemotherapy (capecitabine and oxaliplatin) IN Specific disease- gastric cancer; Age- 41 to 64 years; Gender- Both; Country- China.	58843	64000	Tan et al., 2013 (411)
S-1 first-line postoperative adjuvant chemotherapy VERSUS surgery only IN Specific disease- gastric cancer; Age- 41 to 64 years; Gender- Both; Country- China.	4688	5100	Tan et al., 2013 (411)
Surgery only VERSUS XELOX first-line postoperative adjuvant chemotherapy (capecitabine and oxaliplatin) IN Specific disease- gastric cancer; Age- 41 to 64 years; Gender- Both; Country- China.	-17997	Cost-Saving	Tan et al., 2013 (411)
2-year surveillance, gastric cancer VERSUS None IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Not Specified; Country- Singapore.	25949	27000	Zhou et al., 2013 (412)
Annual surveillance, gastric cancer VERSUS 2-year surveilance IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Not Specified; Country- Singapore.	33050	34000	Zhou et al., 2013 (412)

2-year screening, gastric cancer VERSUS annual surveilance IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Not Specified; Country- Singapore.	79673	82000	Zhou et al., 2013 (412)
2-year screening +annual surveillance, gastric cancer VERSUS 2-year screening IN Healthy; Age- 41 to 64 years, >=65 years; Gender- Not Specified; Country- Singapore.	59565	61000	Zhou et al., 2013 (412)

Hematologic Cancers

Description	Original US\$/QALY	2014US\$/QALY	Reference
IV immune globulin VERSUS no IV immune globulin IN chronic lymphocytic leukemia and hypogammaglobulinemia	6000000	11000000	Weeks et al., 1991 (413)
Bone marrow transplantation (BMT) VERSUS No BMT IN Patients receiving bone marrow transplantations for leukemia or SAA	7913	14000	Beard et al., 1991 (414)
Autologous bone marrow transplantation VERSUS Five additional courses of CHOP chemotherapy IN Patients between 15 & 60 yo with non-Hodgkin's lymphoma of intermediate- or high-grade malignancy stages II-IV who were partial responders to initial 3 courses of CHOP	-73704	Increases Costs, Decreases Health	Uyl-de Groot et al., 1995 (415)
Interferon-alpha therapy VERSUS Hydroxyurea therapy IN 50-yo patients with chronic-phase, Ph-positive chronic myelogenous leukemia (CML)	34800	54000	Kattan et al., 1996 (416)
Current treatment for Hodgkin's disease VERSUS No treatment of Hodgkin's disease IN Patients with Hodgkin's disease undergoing treatment at a university hospital in Norway	1800	2900	Norum et al., 1996 (417)
Adjuvant high-dose interferon (IFN) alfa-2b therapy VERSUS No IFN treatment IN Newly diagnosed resectable primary cutaneous melanoma patients	15200	23000	Hillner et al., 1997 (418)

Interferon alfa therapy VERSUS Conventional chemotherapy IN 45-50 yo patients diagnosed with chronic myelogenous leukemia in the early chronic phase	89494	140000	Liberato et al., 1997 (419)
Interferon alpha 2 b with melphalan and prednisone VERSUS Conventional treatment IN Patients with multiple myeloma	17374	27000	Nord et al., 1997 (420)
Allogeneic Bone Marrow Transplant VERSUS Alpha-interferon 5mil u/m2 3x per week IN Newly diagnosed CML (Chronic Myeloid Leukemia) patients transplanted within one year of diagnosis (base case 35yo)	51800	78000	Lee et al., 1998 (421)
Allogeneic Bone Marrow Transplant VERSUS Hydroxyurea 1000mg per day IN Newly diagnosed CML (Chronic Myeloid Leukemia) patients transplanted within one year of diagnosis (base case 35yo)	55500	84000	Lee et al., 1998 (421)
Cytarabine added to alpha-interferon VERSUS Interferon alpha alone IN Patients with early chronic phase chronic myelogenous leukemia	16900	24000	Beck et al., 2001 (422)
Cytarabine added to alpha-interferon VERSUS Chemotherapy (hydroxyurea) IN Patients with early chronic phase chronic myelogenous leukemia	21450	30000	Beck et al., 2001 (422)
Alpha-interferon alone VERSUS Chemotherapy (hydroxyurea) IN Patients with early chronic phase chronic myelogenous leukemia	23700	34000	Beck et al., 2001 (422)
High dose melphalan and autologous stem cell support followed by interferon maintenance VERSUS Conventional treatment with melphalan and prednizone IN Patients less than 60 years of age with multiple myeloma	27000	38000	Gulbrandsen et al., 2001 (423)
Interferon alpha-2b added to chemotherapy VERSUS Chemotherapy alone IN Patients with high tumor burden follicular non-Hodgkins lymphoma	16900	24000	Wirt et al., 2001 (424)
Laparotomy and tailored treatment VERSUS Mantle and para-aortic splenic radiation therapy IN 25 year old patients with early-stage Hodgkin's disease	24100	34000	Ng et al., 2001 (425)
Treatment with imatinib mesilate (600mg daily) VERSUS Conventional therapies of combination chemotherapy (DAT) and palliative care IN Patients in advanced stages of chronic myeloid leukemia (CML) (presenting in accelerated phase)	42231	56000	Gordois et al., 2003 (426)

Treatment with imatinib mesilate (600mg daily) VERSUS Conventional therapies of combination chemotherapy (DAT) and palliative care IN Patients in advanced stages of chronic myeloid leukemia (CML) (presenting in blast crisis)	60809	81000	Gordois et al., 2003 (426)
Intensive chemotherapy followed by myeloblastive chemotherapy VERSUS Intensive chemotherapy alone IN Patients with previously untreated multiple myeloma and stage II or stage III A/B disease - age less than/equal to 65	-49394	Increases Costs, Decreases Health	van Agthoven et al., 2004 (427)
Imatinib as first line therapy and interferon alpha plus low-dose cytarabine (INF + LDAC) as second line therapy VERSUS Interferon alpha plus low- dose cytarabine (INF + LDAC) as first line therapy with hydroxy urea as second line therapy IN Patients with newly diagnosed chronic myeloid leukemia (CML) not eligible for allogenic stem cell transplant	43300	57000	Reed et al., 2004 (428)
Treatment with imatinib mesylate VERSUS Treatment with hydroxyurea IN Patients in chronic-phase chronic myeloid leukemia (CML) for whom first-line treatment with interferon-alfa failed	55380	74000	Warren et al., 2004 (429)
Treatment with cyclophosphamide, doxorubicin, vincristine and prednisone (CHOP) plus rituximab VERSUS CHOP IN Patients with stage II, III or IV diffuse large B-cell lymphoma - age less than 60	13219	17000	Groot et al., 2005 (430)
Treatment with cyclophosphamide, doxorubicin, vincristine and prednisone (CHOP) plus rituximab VERSUS CHOP IN Patients with stage II, III or IV diffuse large B-cell lymphoma - age greater than 60	16954	22000	Groot et al., 2005 (430)
Cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) plus rituximab VERSUS CHOP alone IN Patients with diffuse large B-cell non-Hodgkins lymphoma	19297	25000	Hornberger et al., 2005 (431)
Imatinib therapy VERSUS Interferon alpha IN Patients with chronic myeloid leukemia	39336	52000	Dalziel et al., 2005 (432)
Imatinib therapy VERSUS Hydroxycarbamide IN Patients with chronic myeloid leukemia	130621	170000	Dalziel et al., 2005 (432)

Rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) chemotherapy VERSUS IN Patients that have untreated Diffused Large B-Cell Lymphoma (DLBCL) with stage II, III or IV disease and performance status of 0 to 2 - age 60-80	13878	18000	Best et al., 2005 (433)
VERSUS IN Hogkin's Disease Stage I-II patients in complete remission	-200000	Increases Costs, Decreases Health	Guadagnolo et al., 2006 (434)
VERSUS IN Hogkin's Disease Stage III-IV patients in complete remission	9042300	11000000	Guadagnolo et al., 2006 (434)
VERSUS IN Hogkin's Disease Stage III-IV patients in complete remission	-215000	Increases Costs, Decreases Health	Guadagnolo et al., 2006 (434)
VERSUS IN Hodgkin's disease stage I-II patients in complete remission	-250000	Increases Costs, Decreases Health	Guadagnolo et al., 2006 (434)
Third-line treatment with Alemtuzumab VERSUS Third-line treatment with fludarabine, cyclophosphamide and rituximab (FCR) IN Patients with chronic lymphocytic leukaemia (CLL) who were able to tolerate third-line treatment with either alemtuzumab or fludarabine, cyclophosphamide and rituximab (FCR) in New Zealand		Cost-Saving	Scott et al., 2007 (435)

Rituximab, cyclophosphamide, vincristine and prednisolone (R-CVP) VERSUS Cyclophosphamide, vincristine and prednisolone (CVP) IN US patients with advanced follicular lymphoma, aged 18 years or older, with Ann Arbor Stage III or IV follicular NHL with International Working Formulation (IWF) categories B, C, or D (WHO follicular grades 1 - 3), who have Eastern Cooperative OncologyGroup (ECOG) performance score between 0 and 2	28565	34000	Hornberger et al., 2008 (436)
Treatment with imatinib VERSUS Interferon alpha plus low-dose cytarabine IN Newly diagnosed patients with chronic-phase chronic myeloid leukemia	57103	67000	Reed et al., 2008 (437)
rituximab maintenance VERSUS Observation only / (treat on relapse, unknown treatment upon relapse) IN Relapsed or refractory follicular lymphoma patients in remission after second line therapy in maintenance settings	17253	20000	Kasteng et al., 2008 (438)
Extended adjuvant rituximab VERSUS Routine clinical observation IN US patients aged 65-70 in their second remission from follicular lymphoma (FL)	19522	23000	Hayslip et al., 2008 (439)
High-dose chemotherapy with peripheral blood stem cell transplant VERSUS Standard chemotherapy regimen (cyclophosphamide, doxorubicin, vincristine and prednisone; CHOP) IN Patients aged 15-60 years with aggressive non- Hodgkin's lymphoma	105214	120000	Fagnoni et al., 2009 (440)
Pegfilgrastim VERSUS Filgrastim IN Patients with intermediate or high grade non-Hodgkin's lymphoma (NHL) receiving myelosuppressive chemotherapy with a febrile neutropenia (FN) risk of 20% or higher recovering from CHOP- 21 regimen, scenario 3	1677	2000	Lyman et al., 2009 (441)

Pegfilgrastim VERSUS Filgrastim IN Patients with intermediate or high grade non-Hodgkin's lymphoma (NHL) receiving myelosuppressive chemotherapy with a febrile neutropenia (FN) risk of 20% or higher recovering from CHOP- 21 regimen, scenario 2	6190	7300	Lyman et al., 2009 (441)
Pentostatin VERSUS Cladribine IN UK patients with hairy cell leukemia (HCL)	4043	4400	Guest et al., 2009 (442)
Imatinib VERSUS Interferon-alpha IN Newly diagnosed chronic-phase chronic myeloid leukemia (CML-CP) patients in China	9689	11000	Chen et al., 2009 (443)
Rituximab maintenance therapy after induction therapy VERSUS Current standard practice IN French patients with follicular lymphoma	10966	13000	Deconinck et al., 2010 (444)
Rituximab + cyclophosphamide, vincristine, and prednisolone VERSUS Cyclophosphamide, vincristine, and prednisolone IN Patients with Follicular Non-Hodgkin's Lymphoma in the UK.	15973	18000	Ray et al., 2010 (445)
Rituximab + cyclophosphamide, doxorubicin, vincristine, and prednisolone VERSUS Cyclophosphamide, doxorubicin, vincristine, and prednisolone IN Patients with Follicular Non-Hodgkin's Lymphoma in the UK.	19798	22000	Ray et al., 2010 (445)
Rituximab + cyclophosphamide, etoposide, doxorubicin, and prednisolone VERSUS Cyclophosphamide, etoposide, doxorubicin, and prednisolone IN Patients with Follicular Non-Hodgkin's Lymphoma in the UK.	15759	17000	Ray et al., 2010 (445)
Rituximab + mitoxantrone, chlorambucil, and prednisolone VERSUS Mitoxantrone, chlorambucil, and prednisolone IN Patients with Follicular Non- Hodgkin's Lymphoma in the UK.	13825	15000	Ray et al., 2010 (445)
Cyclophosphamide,k doxorubicin, vincristine, prenisone, rituximab (CHOPR) VERSUS Cyclophosphamide,k doxorubicin, vincristine, prenisone (CHOP) IN Canadian adults older than 60 years with a diagnosis of diffuse large B-cell lymphoma	5163	6100	Johnston et al., 2010 (446)

Cyclophosphamide,k doxorubicin, vincristine, prenisone, rituximab (CHOPR) VERSUS Cyclophosphamide,k doxorubicin, vincristine, prenisone IN Canadian adults younger than 60 years with a diagnosis of diffuse large B- cell lymphoma	16886	20000	Johnston et al., 2010 (446)
Dasatinib 140 mg/day VERSUS High-dose imatinib 800 mg/day IN Swedish chronic phase chronic myeloid leukemia (CML) patients, resistant to lower doses of imatinib (less than or equal to 600 mg)	10131	11000	Ghatnekar et al., 2010 (447)
Desferasirox 20mg/kg/day for 7 days/week VERSUS Non-proprietary desferrioxamine 40 mg/kg/day for 5 days/week IN Low and intermediate-1 risk patients with transfusion-dependent myelodysplastic syndrome (MDS) patients (average age 77)	38614	42000	Tolley et al., 2010 (448)
Desferasirox 20mg/kg/day for 7 days/week VERSUS Non-proprietary desferrioxamine 40 mg/kg/day for 5 days/week IN Low and intermediate-1 risk patients with transfusion-dependent myelodysplastic syndrome (MDS) 60 kg patients (average age 77)	24229	27000	Tolley et al., 2010 (448)
Desferasirox 20mg/kg/day for 7 days/week VERSUS Non-proprietary desferrioxamine 30 mg/kg/day for 5 days/week IN Low and intermediate-1 risk patients with transfusion-dependent myelodysplastic syndrome (MDS) patients (average age 77)	52914	58000	Tolley et al., 2010 (448)
Desferasirox 20mg/kg/day for 7 days/week VERSUS Non-proprietary desferrioxamine 40 mg/kg/day for 5 days/week IN Low and intermediate-1 risk patients with transfusion-dependent myelodysplastic syndrome (MDS) 80 kg patients (average age 77)	53001	58000	Tolley et al., 2010 (448)
Desferasirox 15mg/kg/day for 7 days/week VERSUS Non-proprietary desferrioxamine 40 mg/kg/day for 5 days/week IN Low and intermediate-1 risk patients with transfusion-dependent myelodysplastic syndrome (MDS) patients (average age 77)	-862	Cost-Saving	Tolley et al., 2010 (448)

Desferasirox 20mg/kg/day for 7 days/week VERSUS Non-proprietary desferrioxamine 50 mg/kg/day for 5 days/week IN Low and intermediate-1 risk patients with transfusion-dependent myelodysplastic syndrome (MDS) patients (average age 77)	24375	27000	Tolley et al., 2010 (448)
Desferasirox 20mg/kg/day for 7 days/week VERSUS Non-proprietary desferrioxamine 40 mg/kg/day for 3 days/week IN Low and intermediate-1 risk patients with transfusion-dependent myelodysplastic syndrome (MDS) patients (average age 77)	61495	68000	Tolley et al., 2010 (448)
Desferasirox 20mg/kg/day for 7 days/week VERSUS Non-proprietary desferrioxamine 40 mg/kg/day for 7 days/week IN Low and intermediate-1 risk patients with transfusion-dependent myelodysplastic syndrome (MDS) patients (average age 77)	15735	17000	Tolley et al., 2010 (448)
Desferasirox 25mg/kg/day for 7 days/week VERSUS Non-proprietary desferrioxamine 40 mg/kg/day for 5 days/week IN Low and intermediate-1 risk patients with transfusion-dependent myelodysplastic syndrome (MDS) patients (average age 77)	78090	86000	Tolley et al., 2010 (448)
Bortezomib (BTZ) VERSUS Dexamethasone (DEX) IN Individuals in Sweden aged 18 or older, diagnosed with multiple myeloma who relapsed after first- line therapy or who have refractory disease and are eligible for secondline therapy	118719	130000	Hornberger et al., 2010 (449)
Bortezomib (BTZ) VERSUS Lenalidomide plus dexamethasone (LEN/DEX) IN Individuals in Sweden aged 18 or older, diagnosed with multiple myeloma who relapsed after first-line therapy or who have refractory disease and are eligible for secondline therapy	-1889733	Cost-Saving	Hornberger et al., 2010 (449)
RCHOP: Rituximab induction together with CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone) VERSUS CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone) IN Finnish patients with relapsed/refractory follicular non-Hodgkin's lymphoma	17852	20000	Ryynänen et al., 2010 (450)

R-CHOPR: Rituximab induction and maintenance with CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone) VERSUS RCHOP: Rituximab induction together with CHOP (cyclophosphamide, doxorubicin, vincristine, and prednisone) IN Finnish patients with relapsed/refractory follicular non-Hodgkin's lymphoma Extended haemodialysis using high cut-off dialysers (HCO-HD) VERSUS Standard haemodialysis IN Multiple myeloma patients with dialysis-	26723 -12549	29000 Cost-Saving	Ryynänen et al., 2010 (450) Grima et al., 2010 (451)
dependent renal failure in the United Kingdom			
Decitabine (5-day dosing) VERSUS Best supportive care (RBC transfusions, deferoxamine, erythopoiesis-stimulating factors) IN Patients adults aged over 18 years with intermediate- and high-risk myelodysplastic sydromes	5277	5800	Pan et al., 2010 (452)
Lenalidomide plus dexamethasone VERSUS Bortezomib IN Paitents with relapsed refractory multiple myeloma (rrMM) in Norway	40929	44000	M?ller et al., 2011 (453)
Thalidomide, melphalan, and prednisolone or prednisone (MPT combination) VERSUS Melphalan+prednisolone or prednisone (MP) IN UK patients with multiple myeloma; considered inappropriate for high-dose chemotherapy with stem-cell transplantation	13301	15000	Doss et al., 2011 (454)
Thalidomide, cyclosphosphamide and attenuated dexamethasone (CTDa combination) VERSUS Melphalan+prednisolone or prednisone (MP) IN UK patients with multiple myeloma; considered inappropriate for high-dose chemotherapy with stem-cell transplantation	48071	53000	Doss et al., 2011 (454)
Bortezomib, melphalan, and prednisolone or prednisone (VMP) VERSUS Melphalan+prednisolone or prednisone (MP) IN UK patients with multiple myeloma; considered inappropriate for high-dose chemotherapy with stem- cell transplantation	27511	30000	Doss et al., 2011 (454)
Bortezomib, melphalan, and prednisolone or prednisone (VMP) VERSUS Thalidomide, melphalan, and prednisolone or prednisone (MPT combination IN UK patients with multiple myeloma; considered inappropriate for high-dose chemotherapy with stem-cell transplantation	463337	510000	Doss et al., 2011 (454)

Dasatinib VERSUS Nilotinib IN UK patients with imatinib-resistant chronic phase chronic myeloid leukemia	428794	470000	Hoyle et al., 2011 (455)
Nilotinib VERSUS High-dose imatinib IN UK patients with imatinib-resistant chronic phase chronic myeloid leukemia	-53819	Cost-Saving	Hoyle et al., 2011 (455)
Nilotinib VERSUS Interferon-alpha IN UK patients with imatinib-intolerant chronic phase chronic myeloid leukemia	161631	180000	Hoyle et al., 2011 (455)
Dasatinib VERSUS Interferon-alpha IN UK patients with imatinib-intolerant chronic phase chronic myeloid leukemia	127546	140000	Hoyle et al., 2011 (455)
Dasatinib VERSUS Nilotinib IN UK patients with imatinib-intolerant chronic phase chronic myeloid leukemia	1661574	1800000	Hoyle et al., 2011 (455)
Dasatinib VERSUS High-dose imatinib IN UK patients with imatinib-resistant chronic phase chronic myeloid leukemia	141256	150000	Hoyle et al., 2011 (455)
Rituximab in addition to fludarabine and cyclophosphamide VERSUS Fludarabine and cyclophosphamide IN Patients with chronic lymphocytic leukemia (CLL): societal perspective	31513	34000	Hornberger et al., 2012 (456)
Rituximab in addition to fludarabine and cyclophosphamide VERSUS Fludarabine and cyclophosphamide IN Patients with chronic lymphocytic leukemia (CLL): healthcare perspective	23530	26000	Hornberger et al., 2012 (456)
Zoledronic acid (4mg every 3-4 weeks) VERSUS Clodronic acid (1600mg daily) IN UK patients with newly diagnosed multiple Myeloma	8403	9100	Delea et al., 2012 (457)
Primary prophylaxis with granulocyte colony-stimulating factor (G-CSF) along with first cycle of chemotherapy VERSUS Secondary prophylaxis with granulocyte colony-stimulating factor (G-CSF) along with first cycle of chemotherapy after a neutropenic event IN Elderly patients aged >=65 years with newly diagnosed diffuse large B-cell lymphoma (DLBCL) receiving curative-intent chemotherapy	680464	740000	Chan et al., 2012 (458)

Rituximab following induction chemotherapy VERSUS Standard treatment IN UK patients with follicular non-Hodgkin's lymphoma receiving first line treatment	15196	19000	Pink et al., 2012 (459)
Rituximab, fludarabine and cyclophosphamide (R-FC) VERSUS Rituximab, cyclophosphamide, vincristine and prednisolone (R-CVP) induction chemotherapies IN UK patients with follicular non-Hodgkin's lymphoma receiving first line treatment	36568	46000	Pink et al., 2012 (459)
Rituximab following induction chemotherapy VERSUS Standard treatment IN UK patients with follicular non-Hodgkin's lymphoma receiving maintenance therapy	14153	18000	Pink et al., 2012 (459)
Autologous peripheral stem cell transplantation (ASCT) with high dose chemotherapy and granulocyte colony-stimulating factor (G-CSF) with plerixafor (GP) for stem cell mobilization VERSUS Autologous peripheral stem cell transplantation (ASCT) with high dose chemotherapy and granulocyte colony-stimulating factor (G-CSF) for stem cell mobilization IN US patients with relapsed non-Hodgkin lymphoma with diffuse large B-cell lymphoma undergoing stem cell mobilization	14735	16000	Kymes et al., 2012 (460)
Progression from RCHOPR to RCOPR/COP to best supportive care VERSUS Progression from RCHOP to RCHOP to best supportive care IN Patients with follicular non-hodgkins lymphoma	13233	14000	Soini et al., 2012 (461)
Progression from RCHOPR to RCOPR/bendamustine to best supportive care VERSUS Progression from RCHOP to RCOPR/COP to best supportive care IN Patients with follicular non-hodgkins lymphoma	12672	14000	Soini et al., 2012 (461)
Progression from RCHOPR to RCOPR/COP to best supportive care VERSUS Progression from RCHOP to RCOPR/COP to best supportive care IN Patients with follicular non-hodgkins lymphoma	13077	14000	Soini et al., 2012 (461)
Progression from RCHOP to RCOPR/bendamustine to best supportive care VERSUS Progression from RCHOP to RCOPR/COP to best supportive care IN Patients with follicular non-hodgkins lymphoma	16080	17000	Soini et al., 2012 (461)
Progression from RCHOPR to RCOPR/bendamustine to best supportive care VERSUS Progression from RCHOPR to RCOPR/COP to best supportive care IN Patients with follicular non-hodgkins lymphoma	9770	11000	Soini et al., 2012 (461)

Lenalidomide plus dexamethasone (LEN/DEX) VERSUS Dexamethasone (DEX) IN Patients with multiple myeloma (MM) who have failed first-line therapy in England and Wales	46550	51000	Brown et al., 2012 (462)
Maintenance rituximab therapy VERSUS Obervation IN Patients aged 18 years or older with follicular non-Hodgkin lymphoma (f-NHL) after responding to first-line rituximab plus chemotherapy (R-chemo)	34842	38000	Hornberger et al., 2012 (463)
Bendamustine VERSUS Chlorambucil IN Patients with chronic lymphocytic leukemia unsuitable for treatment with fludarabine combination chemotherapy regimens in England and Wales	17317	19000	Woods et al., 2012 (464)
Alemtuzumab (treatment begins 7 months after diagnosis) VERSUS Conventional therapy (1 line) IN Patients with T-cell prolymphocytic leukemia (T-PLL) who had completed at least one prior conventional therapy and not suitable for stem cell transplantation	123117	130000	Lu et al., 2012 (465)
Alemtuzumab (treatment begins 3 months after diagnosis) VERSUS Conventional therapy (1 line) IN Patients with T-cell prolymphocytic leukemia (T-PLL) who had completed at least one prior conventional therapy and not suitable for stem cell transplantation	83316	86000	Lu et al., 2012 (465)
Alemtuzumab (treatment begins 7 months after diagnosis) VERSUS Conventional therapy (3 lines) IN Patients with T-cell prolymphocytic leukemia (T-PLL) who had completed at least one prior conventional therapy and not suitable for stem cell transplantation	51776	53000	Lu et al., 2012 (465)

Alemtuzumab (treatment begins 3 months after diagnosis) VERSUS onventional therapy (3 lines) IN Patients with T-cell prolymphocytic leukemia (T-PLL) who had completed at least one prior conventional therapy and not suitable for stem cell transplantation	43929	45000	Lu et al., 2012 (465)
Bisphosphonate therapy with zoledronic acid (4 mg every 3-4 weeks) VERSUS Bisphosphonate therapy with clodronate (1600 mg daily) IN UK adult patients receiving first-line treatment for newly-diagnosed stages 1-3 multiple myeloma	48404	53000	Delea et al., 2012 (466)
Lenalidomide-dexamethasone VERSUS Bortezomib IN Specific disease- relapsed refrectory multiple myeloma; Age- Adult; Gender- Both; Country- Greece.	49208	51000	Fragoulakis et al., 2013 (467)
Filgrastim VERSUS No primary prophylaxis IN Specific disease- Lymphoma Patients; Age- >=65 years, Adult; Gender- Both; Country- Canada.	5800237	600000	Lathia et al., 2013 (468)
Pegfilgrastim VERSUS Filgrastim IN Specific disease- Lymphoma Patients; Age- >=65 years, Adult; Gender- Both; Country- Canada.	2612909	2700000	Lathia et al., 2013 (468)
Autologous peripheral blood stem cell transplantation VERSUS Standard/Usual Care IN Specific disease- multiple myeloma; Age- 41 to 64 years, >=65 years; Gender- Both; Country- Italy.	63261	67000	Corso et al., 2013 (469)
Azacitidine VERSUS best supportive care IN Specific disease- high-risk myelodysplastic; Age- Adult; Gender- Not Specified; Country- Spain.	50933	53000	Crespo et al., 2013 (470)
Azacitidine VERSUS low dose chemotherapy IN Specific disease- high-risk myelodysplastic; Age- Adult; Gender- Not Specified; Country- Spain.	39259	40000	Crespo et al., 2013 (470)
Azacitidine VERSUS standard dose chemotherapy IN Specific disease- high- risk myelodysplastic; Age- Adult; Gender- Not Specified; Country- Spain.	30609	32000	Crespo et al., 2013 (470)

Azacitidine VERSUS Standard/Usual Care- Conventional care regimen IN	44585	46000	Crespo et
Specific disease- high-risk myelodysplastic; Age- Adult; Gender- Not			al., 2013
Specified; Country- Spain.			(470)

Kidney Cancer

Description	Original US\$/QALY	2014US\$/QALY	Reference
Sunitinib VERSUS Best supportive care, standard therapy: second-line therapy as prescribed by Finnish health standards IN Finnish metastatic renal cell carcinoma patients	54398	66000	Purmonen et al., 2008 (471)
Nephron-sparing surgery (NSS) VERSUS Percutaneous radiofrequency ablation (RF) IN 65-year old men in the US with unilateral RCCs (renal cell carcinomas) 4 cm or smaller	1152529	1400000	Pandharipande et al., 2008 (472)
Sunitinib malate , 6 week cycles therapy VERSUS Interleukin -2 IN United States patients with metastatic renal cell carcinoma	-17205	Cost-Saving	Remák et al., 2008 (473)
VERSUS Interferon alpha IN United States patients with metastatic renal cell carcinoma	52593	62000	Remák et al., 2008 (473)
Temsirolimus VERSUS Interferon-alpha IN United Kingdom patients with advanced, poor prognosis renal cell carcinoma needing first line treatment	175493	190000	Hoyle et al., 2009 (474)
Temsirolimus VERSUS Interferon-alpha IN United Kingdom patients with advanced, poor prognosis renal cell carcinoma needing first line treatment, no prior nephrectomy	137916	150000	Hoyle et al., 2009 (474)

Temsirolimus VERSUS Interferon-alpha IN United Kingdom patients with advanced, poor prognosis clear cell renal cell carcinoma needing first line treatment	279509	310000	Hoyle et al., 2009 (474)
Temsirolimus VERSUS Interferon-alpha IN United Kingdom patients with advanced, poor prognosis renal cell carcinoma needing first line treatment, with prior nephrectomy	286985	320000	Hoyle et al., 2009 (474)
Sorafenib VERSUS Best supportive care IN United Kingdom patients with advanced renal cell carcinoma needing second line treatment	139824	150000	Hoyle et al., 2009 (475)
Renal mass biopsy to triage patients to surgery or CT surveillance VERSUS Direct nephron-sparing surgery without biopsy IN US patients aged 65 years with small (< 4-cm) renal tumors	-315091	Cost-Saving	Pandharipande et al., 2010 (476)
Sunitinib VERSUS Sorafenib IN US patients with metastic renal cell carcinoma	-79859	Cost-Saving	Benedict et al., 2011 (477)
Sunitinib VERSUS Bevacizumab+IFN-alpha IN Sweden patients with metastic renal cell carcinoma	-297258	Cost-Saving	Benedict et al., 2011 (477)
Sunitinib VERSUS Bevacizumab IN US patients with metastic renal cell carcinoma	-418504	Cost-Saving	Benedict et al., 2011 (477)
Everolimux VERSUS Sorafenib IN Patients diagnosed with metastatic renal cell carcinoma failing first-line sunitinib treatment	89160	97000	Casciano et al., 2011 (478)
Immediate treatment VERSUS Precutaneous biopsy IN Healthy 60 year- old- men with diagnosis of small solid renal mass	-4951	Increases Costs, Decreases Health	Heilbrun et al., 2012 (479)
Precutaneous biopsy VERSUS Active surveillance (AS) IN Healthy 60 year-old- men with diagnosis of small solid renal mass	33840	37000	Heilbrun et al., 2012 (479)
Treatment with sunitinib as first-line therapy VERSUS Sorafenib treatment IN Patients with metastatic renal carcinoma (mRCC)	-9736	Cost-Saving	Calvo Aller et al., 2012 (480)

Treatment with sunitinib as first-line therapy VERSUS Treatment with bevacizuman/interferon-alpha (BEV/IFN) IN Patients with metastatic renal carcinoma (mRCC)	-213678	Cost-Saving	Calvo Aller et al., 2012 (480)
Bevacizumab plus interferon-alpha VERSUS Interleukin-2 IN Patients with metastatic renal cell carcinoma without sunitinib patient assistance program (SPAP) in China	1021196	1100000	Wu et al., 2012 (481)
Sunitinib VERSUS Interleukin-2 IN Patients with metastatic renal cell carcinoma without sunitinib patient assistance program (SPAP) in China	220384	230000	Wu et al., 2012 (481)
Interleukin-2 plus interferon-alfa VERSUS Interleukin-2 IN Patients with metastatic renal cell carcinoma without sunitinib patient assistance program (SPAP) in China	818149	860000	Wu et al., 2012 (481)
Interferon-alpha VERSUS Interleukin-2 IN Patients with metastatic renal cell carcinoma without sunitinib patient assistance program (SPAP) in China	177725	190000	Wu et al., 2012 (481)
Annual immunochemical faecal occult blood test (iFOBT) screening for colorectal cancer (CRC) starting at age 50 years VERSUS None IN Specific disease- chronic kidney disease (CKD); Age- 41 to 64 years, >=65 years; Gender- Not Specified; Country- Australia; Other- 50-70 years.	62489	68000	Wong et al., 2013 (482)
Annual immunochemical faecal occult blood test (iFOBT) screening for colorectal cancer (CRC) starting at age 50 years VERSUS None IN Specific disease- chronic kidney disease (CKD) & on kidney transplant waiting list; Age- 41 to 64 years, >=65 years; Gender- Not Specified; Country- Australia; Other- 50-70 years.	112215	120000	Wong et al., 2013 (482)
Annual immunochemical faecal occult blood test (iFOBT) screening for colorectal cancer (CRC) starting at age 50 years VERSUS None IN Specific disease- chronic kidney disease (CKD) & kidney transplant; Age-41 to 64 years, >=65 years; Gender- Not Specified; Country- Australia; Other- 50-70 years.	41207	45000	Wong et al., 2013 (482)

	0700	0000	
Sunitinib VERSUS Pazopanib IN Specific disease- advanced and/or metastatic renal cell carcinoma; Age- Unknown; Gender- Both; Country-United Kingdom.	2763	3000	Kilonzo et al., 2013 (483)
Interferon alpha (IFN-a) VERSUS Pazopanib IN Specific disease- advanced and/or metastatic renal cell carcinoma; Age- Unknown; Gender- Both; Country- United Kingdom.	60092	65000	Kilonzo et al., 2013 (483)
Best supportive care (BSC) VERSUS Pazopanib IN Specific disease- advanced and/or metastatic renal cell carcinoma; Age- Unknown; Gender- Both; Country- United Kingdom.	50787	55000	Kilonzo et al., 2013 (483)
Biopsy plus RFA (radiofrequency ablation) if needed VERSUS no biopsy, active surveillance plus cryoablation if needed IN Specific disease- Renal Mass; Age- Adult; Gender- Both; Country- Canada.	-25896	Increases Costs, Decreases Health	Bhan et al., 2013 (484)
No biopsy, immediate cryoablation VERSUS no biopsy, active surveillance plus cryoablation if needed IN Specific disease- Renal Mass; Age- Adult; Gender- Both; Country- Canada.	-292391	Increases Costs, Decreases Health	Bhan et al., 2013 (484)
No biopsy, immediate RFA (radiofrequency ablation) VERSUS no biopsy, active surveillance plus cryoablation if needed IN Specific disease- Renal Mass; Age- Adult; Gender- Both; Country- Canada.	-24581	Increases Costs, Decreases Health	Bhan et al., 2013 (484)
No biopsy, active surveillance plus RFA (radiofrequency ablation) if needed VERSUS no biopsy, active surveillance plus cryoablation if needed IN Specific disease- Renal Mass; Age- Adult; Gender- Both; Country- Canada.	-14266	Increases Costs, Decreases Health	Bhan et al., 2013 (484)
Biopsy plus cryoablation if needed VERSUS no biopsy, active surveillance plus cryoablation if needed IN Specific disease- Renal Mass; Age- Adult; Gender- Both; Country- Canada.	-167518	Increases Costs, Decreases Health	Bhan et al., 2013 (484)

Everolimus VERSUS best supportive care IN Specific disease-	115519	120000	Mihajlovic et
MetastaticRenalCellCarcinoma; Age- Adult; Gender- Both; Country-			al., 2013 (485)
Serbia.			

Lung Cancer

Description	Original US\$/QALY	2014US\$/QALY	Reference
Alternating CAV and VP-16/cisplatin chemotherapy VERSUS Standard CAV chemotherapy at 3-week intervals IN Patients with extensive small cell lung cancer (SCLC)	3472	7900	Goodwin et al., 1988 (486)
Routine preoperative brain CT with treatment based on results VERSUS Thoracotomy with no preoperative brain CT IN Patients with potentially resectable lung cancer with no preoperative evidence of presence of extrathoracic metastases	69815	120000	Colice et al., 1995 (487)
Diagnostic testing strategy using thoracoscopy VERSUS Sequential testing strategy, using sputa, fine needle aspiration, thoracoscopy IN 50-yo man with a radiographically detected large (>3 cm), peripheral lung mass suspicious for cancer	-636500	Increases Costs, Decreases Health	Raab et al., 1997 (488)
Sequential testing strategy, using sputa, fine needle aspiration, expectant management VERSUS No test IN 50-yo man with a radiographically detected large (>3 cm), peripheral lung mass suspicious for cancer	19604	30000	Raab et al., 1997 (488)
Sequential testing strategy, using sputa, fine needle aspiration, thoracoscopy VERSUS Sequential testing strategy, using sputa, fine needle aspiration, expectant management IN 50-yo man with a radiographically detected large (>3 cm), peripheral lung mass suspicious for cancer	40092	60000	Raab et al., 1997 (488)
Sequential testing strategy, using fine needle aspiration, thoracoscopy VERSUS Sequential testing strategy, using sputa, fine needle aspiration, thoracoscopy IN 50-yo man with a radiographically detected large (>3 cm), peripheral lung mass suspicious for cancer		Increases Costs, Decreases Health	Raab et al., 1997 (488)

Sequential testing strategy, using sputa, thoracoscopy VERSUS Sequential testing strategy, using sputa, fine needle aspiration, thoracoscopy IN 50-yo man with a radiographically detected large (>3 cm), peripheral lung mass suspicious for cancer	-1273000	Increases Costs, Decreases Health	Raab et al., 1997 (488)
Vinblastine + cisplatin VERSUS Best supportive care IN Patients with metastatic non-small-cell lung cancer		Cost-Saving	Berthelot et al., 2000 (489)
Vinblastine + cisplatin VERSUS Vinorelbine IN Patients with metastatic non- small-cell lung cancer	14408	22000	Berthelot et al., 2000 (489)
Vinblastine + cisplatin VERSUS Vinorelbine + cisplatin IN Patients with metastatic non-small-cell lung cancer	11648	18000	Berthelot et al., 2000 (489)
Vinblastine + cisplatin VERSUS Etoposide + cisplatin IN Patients with metastatic non-small-cell lung cancer	90883	140000	Berthelot et al., 2000 (489)
Vinblastine + cisplatin VERSUS Gemcitabine IN Patients with metastatic non-small-cell lung cancer	13798	21000	Berthelot et al., 2000 (489)
Vinblastine + cisplatin VERSUS Paclitaxel + cisplatin, 200 mg/m^2 IN Patients with metastatic non-small-cell lung cancer	34880	54000	Berthelot et al., 2000 (489)
Best supportive care VERSUS Paclitaxel + cisplatin, 200 mg/m^2 IN Patients with metastatic non-small-cell lung cancer	21970	34000	Berthelot et al., 2000 (489)
Best supportive care VERSUS Vinorelbine IN Patients with metastatic non- small-cell lung cancer	1937	3000	Berthelot et al., 2000 (489)
Best supportive care VERSUS Vinorelbine + cisplatin IN Patients with metastatic non-small-cell lung cancer	4399	6800	Berthelot et al., 2000 (489)
Best supportive care VERSUS Etoposide + cisplatin IN Patients with metastatic non-small-cell lung cancer	9301	14000	Berthelot et al., 2000 (489)
Best supportive care VERSUS Gemcitabine IN Patients with metastatic non- small-cell lung cancer	6287	9800	Berthelot et al., 2000

			(489)
Vinorelbine VERSUS Gemcitabine IN Patients with metastatic non-small-cell lung cancer	13460	21000	Berthelot et al., 2000 (489)
Vinorelbine VERSUS Vinorelbine + cisplatin IN Patients with metastatic non- small-cell lung cancer	9660	15000	Berthelot et al., 2000 (489)
Vinorelbine VERSUS Etoposide + cisplatin IN Patients with metastatic non- small-cell lung cancer		Cost-Saving	Berthelot et al., 2000 (489)
Vinorelbine VERSUS Paclitaxel + cisplatin, 200 mg/m ² IN Patients with metastatic non-small-cell lung cancer	41663	65000	Berthelot et al., 2000 (489)
Vinorelbine + cisplatin VERSUS Paclitaxel + cisplatin, 200 mg/m^2 IN Patients with metastatic non-small-cell lung cancer	68917	110000	Berthelot et al., 2000 (489)
Etoposide + cisplatin VERSUS Paclitaxel + cisplatin, 200 mg/m^2 IN Patients with metastatic non-small-cell lung cancer	29863	46000	Berthelot et al., 2000 (489)
Gemcitabine VERSUS Paclitaxel + cisplatin, 200 mg/m^2 IN Patients with metastatic non-small-cell lung cancer	83282	130000	Berthelot et al., 2000 (489)
Etoposide + cisplatin VERSUS Gemcitabine IN Patients with metastatic non- small-cell lung cancer	3482	5400	Berthelot et al., 2000 (489)
Vinorelbine + cisplatin VERSUS Gemcitabine IN Patients with metastatic non-small-cell lung cancer	26297	41000	Berthelot et al., 2000 (489)
Vinorelbine + cisplatin VERSUS Etoposide + cisplatin IN Patients with metastatic non-small-cell lung cancer		Cost-Saving	Berthelot et al., 2000 (489)
High-dose palliative radiotherapy VERSUS Best supportive care IN Patients with advanced non-small-cell lung cancer	11479	17000	Coy et al., 2000 (490)

High-dose palliative radiotherapy VERSUS Best supportive care IN Patients with advanced non-small-cell lung cancer	8661	13000	Coy et al., 2000 (490)
Selective mediastinoscopy VERSUS Chest computed tomography alone IN Patients with known non-smal-cell lung cancer (NSCLC) - T1 tumors	24500	35000	Esnaola et al., 2002 (491)
Routine mediastinoscopy VERSUS Selective mediastinoscopy IN Patients with known non-smal-cell lung cancer (NSCLC) - T1 tumors	78800	110000	Esnaola et al., 2002 (491)
Routine mediastinoscopy VERSUS Selective mediastinoscopy IN Patients with known non-smal-cell lung cancer (NSCLC) - T2 tumors	42800	61000	Esnaola et al., 2002 (491)
Selective mediastinoscopy VERSUS Chest computed tomography alone IN Patients with known non-smal-cell lung cancer (NSCLC) - T2 tumors	37900	54000	Esnaola et al., 2002 (491)
Routine mediastinoscopy VERSUS Selective mediastinoscopy IN Patients with known non-smal-cell lung cancer (NSCLC) - T3 tumors	53400	76000	Esnaola et al., 2002 (491)
Prophylactic cranial irradiation VERSUS No prophylactic cranial irradiation IN Patients in Canada with limited-stage small-cell lung cancer (SCLC) who have achieved a complete remission (assume utility of toxicity and relapse to be 1.0)	696	1200	Tai et al., 2002 (492)
Prophylactic cranial irradiation VERSUS No prophylactic cranial irradiation IN Patients in Canada with limited-stage small-cell lung cancer (SCLC) who have achieved a complete remission (assume utility of toxicity and relapse to be .25)	845	1400	Tai et al., 2002 (492)
Annual helical computed tomography (CT) screening VERSUS No screening IN A hypothetical cohort of current heavy-smokers (>20 pack-years) who were eligible for lung resection surgery - age 60	116300	160000	Mahadevia et al., 2003 (493)

Annual helical computed tomography (CT) screening VERSUS No screening	558600	750000	Mahadevia
IN A hypothetical cohort of quitting heavy-smokers (>20 pack-years) who were eligible for lung resection surgery - age 60			et al., 2003 (493)
Annual helical computed tomography (CT) screening VERSUS No screening IN A hypothetical cohort of former heavy-smokers (>20 pack-years) who were eligible for lung resection surgery - age 60	2322700	3100000	Mahadevia et al., 2003 (493)
Testing with computed tomography (CT); if CT results indeterminate, transthoracic needle biopsy; if CT results benign, watch and wait VERSUS Watchful waiting IN All adult patients with a new noncalcified pulmonary nodule seen on chest radiograph (low probability of malignancy (26%))	10935	15000	Gould et al., 2003 (494)
Testing with computed tomography (CT); if CT results indeterminate, testing with positron emission tomography with 18-fluorodeoxyglucose (FDG-PET); if FDG-PET results positive, surgery, if FDG-PET results negative, biopsy; if CT results benign, watch and w VERSUS Testing with CT; if CT results indeterminate, biopsy; if CT results benign, watch and wait IN All adult patients with a new noncalcified pulmonary nodule seen on chest radiograph (low probability of malignancy (26%))	20445	27000	Gould et al., 2003 (494)
Testing with computed tomography (CT); if CT results indeterminate, transthoracic needle biopsy; if CT results benign, watch and wait VERSUS Watchful waiting IN All adult patients with a new noncalcified pulmonary nodule seen on chest radiograph (high probability of malignancy (79%))	6515	8700	Gould et al., 2003 (494)
Testing with computed tomography (CT); if results indeterminate, testing with positron emission tomography with 18-fluorodeoxyglucose (FDG-PET); if FDG-PET results positive, surgery; if FDG-PET results negative, biopsy; if CT results benign, biopsy VERSUS Testing with CT; if results indeterminate, testing with FDG-PET; if FDG-PET results positive, surgery; if FDG-PET results negative, biopsy; if CT results benign, watch and wait IN All adult patients with a new noncalcified pulmonary nodule seen on chest radiograph (low probability of malignancy (26%))	45838	61000	Gould et al., 2003 (494)

Testing with computed tomography (CT) and positron emission tomography with 18-fluorodeoxyglucose (FDG-PET); if CT results indeterminate and FDG-PET results positive, surgery; if CT results benign and FDG-PET results negative, watch and wait; if CT results VERSUS Testing with CT; if results indeterminate, FDG-PET; if FDG-PET results positive, surgery; if FDG-PET results negative, transthoracic needle biopsy; if CT results benign, biopsy IN All adult patients with a new noncalcified pulmonary nodule seen on chest radiograph (low probability of malignancy (26%))	297212	400000	Gould et al., 2003 (494)
Testing with computed tomography (CT); if results indeterminate, surgery; if CT results benign, testing with positron emission tomography with 18-fluorodeoxyglucose (FDG-PET); if FDG-PET results positive, biopsy; if FDG-PET results negative, watch and wait VERSUS Testing with CT; if CT results indeterminate, biopsy; if CT results benign, watch and wait IN All adult patients with a new noncalcified pulmonary nodule seen on chest radiograph (high probability of malignancy (79%))	16261	22000	Gould et al., 2003 (494)
Testing with computed tomography (CT); if CT results indeterminate, surgery; if CT results benign, testing with positron emission tomography with 18- fluorodeoxyglucose (FDG-PET); if FDG-PET results positive, surgery; if FDG- PET results negative, watchful w VERSUS Testing with CT; if CT results indeterminate, surgery; if CT results benign, testing with FDG-PET; if FDG- PET results positive, biopsy; if FDG-PETresults negative, watchful waiting IN All adult patients with a new noncalcified pulmonary nodule seen on chest radiograph (high probability of malignancy (79%))	50839	68000	Gould et al., 2003 (494)
Testing with computed tomography (CT); if results indeterminate, surgery; if CT results benign, testing with positron emission tomography with 18- fluorodeoxyglucose (FDG-PET); if FDG-PET results positive, surgery; if FDG- PET results negative, biopsy VERSUS Testing with CT; if results indeterminate, surgery; if CT results benign, testing with FDG-PET; if FDG- PET results positive, surgery; if FDG-PET results negative, watch and wait IN All adult patients with a new noncalcified pulmonary nodule seen on chest radiograph (high probability of malignancy (79%))	67568	90000	Gould et al., 2003 (494)
Sleeve lobectomy VERSUS Pneumonectomy IN Patients with early stage lung cancer who have acceptable lung function	1039	1400	Ferguson et al., 2003 (495)

Resection after neoadjuvant therapy for N2 nodal disease VERSUS Initial resection IN Patients with lung cancer with N2 nodal disease identified at the time of thoracotomy	17119	23000	Ferguson et al., 2003 (496)
Spiral computed tomography (CT) followed by treatment VERSUS No spiral CT IN Men at high risk for lung cancer - age 60-64	57139	75000	Manser et al., 2005 (497)
Spiral computed tomography (CT) followed by treatment VERSUS No spiral CT IN Women at high risk for lung cancer - age 60-64	48164	63000	Manser et al., 2005 (497)
Continuous hyperfractionated and accelerated radiotherapy (CHART) VERSUS Conventional radiotherapy IN Non-small cell lung cancer patients	10687	15000	Lievens et al., 2005 (498)
Positron emission tomography (PET) plus computed tomography (CT) plus mediastinoscopy (MS) VERSUS PET plus CT IN Patients with non small cell lung carcinoma	7832	10000	Hayashi et al., 2005 (499)
Positron emission tomography (PET) plus computed tomography (CT) plus mediastinoscopy (MS) VERSUS CT only IN Patients with non small cell lung carcinoma	4951	6400	Hayashi et al., 2005 (499)
Annual chest CT VERSUS Usual care IN Patients after resection of a stage IA non-small cell lung cancer - age 60	47676	60000	Kent et al., 2005 (500)
Annual chest CT VERSUS Usual care IN Patients after resection of a stage IA non-small cell lung cancer - age 65	61775	77000	Kent et al., 2005 (500)
Annual chest CT VERSUS Usual care IN Patients after resection of a stage IA non-small cell lung cancer - age 70	84781	110000	Kent et al., 2005 (500)
VERSUS IN Patients in chemotherarpy with symptomatic advanced nonsmall cell lung cancer	12773	18000	Dooms et al., 2006 (501)
VERSUS IN Patients with inoperable stage IIIA/B or stage IV non-small-cell lung cancer.	40900	50000	van den Hout et al., 2006 (502)
Hypothetical new drug VERSUS Chemotherapy consisting of etoposide and cisplatin IN Patients with advanced small-cell lung cancer	45559	60000	Uyl-de Groot et al., 2006 (503)

Pemetrexed + cisplatin VERSUS Cisplatin IN Patients with unresectable malignant pleural mesothelioma in United Kingdom	95002	120000	Cordony et al., 2008 (504)
Pemetrexed+cisplatin VERSUS Mitomycin-C, vinblastine, cisplatin IN Patients with unresectable malignant pleural mesothelioma in United Kingdom	39559	48000	Cordony et al., 2008 (504)
Pemetrexed+cisplatin VERSUS Vinorelbine with or without platinum IN Patients with unresectable malignant pleural mesothelioma in United Kingdom	48125	58000	Cordony et al., 2008 (504)
Pemetrexed + cisplatin VERSUS Active symptom control IN Patients with unresectable malignant pleural mesothelioma in United Kingdom	58372	71000	Cordony et al., 2008 (504)
Erlotinib VERSUS Docetaxel IN 60 years old patients with advanced NSCLC who failed at least one platinum-based chemotherapy regimen	-212700	Cost-Saving	Carlson et al., 2008 (505)
Erlotinib VERSUS Pemetrexed IN 60 years old patients with advanced NSCLC who failed at least one platinum-based chemotherapy regimen	-678200	Cost-Saving	Carlson et al., 2008 (505)
Pemetrexed VERSUS Docetaxel IN 60 years old patients with advanced NSCLC who failed at least one platinum-based chemotherapy regimen	1743359	2000000	Carlson et al., 2008 (505)
CT screening for lung cancer VERSUS Usual care, no CT screening IN UK aged (61 years old +) men	25641	30000	Whynes et al., 2008 (506)
Gene copy number testing for EGFR protein expression VERSUS Immunohistochemical testing for EGFR protein expression IN US patients with non-small-cell lung cancer at least 60 years of age, who failed at least one platinum-based chemotherapy regimen and were eligible for treatment with ERL or other chemotherapy in the second-line treatment	146750	170000	Carlson et al., 2008 (507)

		100000	
Immunohistochemical testing for EGFR protein expression VERSUS Erlotinib IN US patients with non-small-cell lung cancer at least 60 years of age, who failed at least one platinum-based chemotherapy regimen and were eligible for treatment with ERL or other chemotherapy in the second-line treatment	156850	180000	Carlson et al., 2008 (507)
Gene copy number testing for EGFR protein expression VERSUS Erlotinib IN US patients with non-small-cell lung cancer at least 60 years of age, who failed at least one platinum-based chemotherapy regimen and were eligible for treatment with ERL or other chemotherapy in the second-line treatment	162018	190000	Carlson et al., 2008 (507)
Erlonitib 150 mg/day (4 cycles of 7 days per month) VERSUS Best supportive care IN Male and female Portuguese patients with advanced or metastatic non-small cell lung cancer that has failed at least one chemotherapy regimen	238175	260000	Araújo et al., 2008 (508)
Docetaxel 75 mg/m2 1st day of 21 day cycle VERSUS Erlonitib 150 mg/day (4 cycles of 7 days per month) IN Male and female Portuguese patients with advanced or metastatic non-small cell lung cancer that has failed at least one chemotherapy regimen	-163984	Increases Costs, Decreases Health	Araújo et al., 2008 (508)
Pemetrexed 500 mg/m2, 1st day of 21 day cycle VERSUS Erlonitib 150 mg/day (4 cycles of 7 days per month) IN Male and female Portuguese patients with advanced or metastatic non-small cell lung cancer that has failed at least one chemotherapy regimen	-1028174	Increases Costs, Decreases Health	Araújo et al., 2008 (508)
Indoor Radon remediation via ducting for the exhaust of radon VERSUS Usual behavior, no remediation IN Home dwellers in the United Kingdom living in previously built homes	39	44	Gray et al., 2009 (509)

Indoor Radon remediation via ducting for the exhaust of radon in new homes' construction VERSUS Usual behavior, no remediation IN Home dwellers in the United Kingdom who could move into new homes being built	8	10	Gray et al., 2009 (509)
Indoor Radon remediation via ducting for the exhaust of radon in new homes' construction VERSUS Usual behavior, no remediation IN Home dwellers in the United Kingdom (median radon concentration 21 Bq/m3 radon).	22823	26000	Gray et al., 2009 (509)
Smoking cessation program initiated before surgical lung resection VERSUS Usual care IN Active smokers with surgically resectable lung cancer, 2 years post-surgery	7441	8500	Slatore et al., 2009 (510)
Smoking cessation program initiated before surgical lung resection VERSUS Usual care IN Active smokers with surgically resectable lung cancer, 3 years post-surgery	4649	5300	Slatore et al., 2009 (510)
Smoking cessation program initiated before surgical lung resection VERSUS Usual care IN Active smokers with surgically resectable lung cancer, 4 years post-surgery	3344	3800	Slatore et al., 2009 (510)
Smoking cessation program initiated before surgical lung resection VERSUS Usual care IN Active smokers with surgically resectable lung cancer, 5 years post-surgery	2609	3000	Slatore et al., 2009 (510)
Smoking cessation program initiated before surgical lung resection VERSUS Usual care IN Active smokers with surgically resectable lung cancer, 1 year post-surgery	16145	18000	Slatore et al., 2009 (510)
CT-based follow up VERSUS IN Dutch Non-small cell lung cancer patients in follow up therapy	388804	430000	van Loon et al., 2010 (511)
PET-CT-based follow up VERSUS CT-based follow up IN Dutch Non-small cell lung cancer patients in follow up therapy	101733	110000	van Loon et al., 2010 (511)
Pemetrexed VERSUS Docetaxel IN Spanish patients with advanced or metastatic non-small cell lung cancer	32860	38000	Asukai et al., 2010 (512)
Erlotinib VERSUS Docetaxel IN Patients with advanced non-small-cell lung cancer needing second line treatment in the United Kingdom	-13097	Cost-Saving	Lewis et al., 2010 (513)

Carbon-ion radiotherapy VERSUS Stereotactic body radiotherapy with photons IN Inoperable stage I non-small cell lung cancer	92214	110000	Grutters et al., 2010 (514)
Carbon-ion radiotherapy VERSUS Stereotactic body radiotherapy with photons IN Operable stage I non-small cell lung cancer	-210287	Increases Costs, Decreases Health	Grutters et al., 2010 (514)
Second-line treatment with oral topotecan + best supportive care VERSUS Best supportive care IN UK patients diagnosed with small cell lung cancer treated with first-line chemotherapy	67770	77000	Hartwell et al., 2010 (515)
Usual smoking-cessation (USC) plus genetic test VERSUS Usual smoking- cessation (USC) IN Heavy smokers aged 50 years (>20 cigarettes per day) in Australia	21855	24000	Gordon et al., 2010 (516)
Adding cetuximab to standard cisplatin-vinorelbine first-line chemotherapy VERSUS Standard cisplatin-vinorelbine first-line chemotherapy IN Swiss patients with extracellular portion of epidermal growth factor receptor (EGFR), expressing advanced non-small-cell lung cancer (NSCLC)	524259	580000	Joerger et al., 2010 (517)
Integrated PET/CT VERSUS CT IN Patients with suspected or histologically proven non-small cell lung cancer (NSCLC)	79878	94000	Schreyögg et al., 2010 (518)
Second-line pemetrexed therapy (500 mg/sq.m) VERSUS Best supportive care IN Patients over 18 years with stage IIIB or IV non-small cell lung cancer (NSCLC) who had progressed after first-line cisplatin-based chemotherapy	57108	63000	Vergnenegre et al., 2011 (519)
Second-line docetaxel therapy (75 mg/sq.m) VERSUS Second-line pemetrexed therapy (500 mg/sq.m) IN Patients over 18 years with stage IIIB or IV non-small cell lung cancer (NSCLC) who had progressed after first-line cisplatin-based chemotherapy	-430327	Cost-Saving	Vergnenegre et al., 2011 (519)
Second-line docetaxel therapy (75 mg/sq.m) VERSUS Best supportive care IN Patients over 18 years with stage IIIB or IV non-small cell lung cancer (NSCLC) who had progressed after first-line cisplatin-based chemotherapy	45502	50000	Vergnenegre et al., 2011 (519)

Stereotactic body radiotherapy (SBRT) VERSUS Three-dimensional conformal radiation therapy (3D-CRT) IN United states 65 year old men with medically inoperable Stage 1 non-small-cell lung cancer (NSCLC)	6000	6600	Sher et al., 2011 (520)
Three-dimensional conformal radiation therapy (3D-CRT) VERSUS Radiofrequency ablation (RFA) IN United states 65 year old men with medically inoperable Stage 1 non-small-cell lung cancer (NSCLC)	52400	58000	Sher et al., 2011 (520)
Nicotine replacement therapy VERSUS None IN UK smokers who recently initiated quit attempts	556	610	Taylor et al., 2011 (521)
Varenicline (1 mg tablets twice daily for 77 days) VERSUS None IN UK smokers who recently initiated quit attempts	3906	4300	Taylor et al., 2011 (521)
Bupropion (150 mg tablet once daily for 6 days, then twice daily for 7 weeks) VERSUS None IN UK smokers who recently initiated quit attempts	-1801	Cost-Saving	Taylor et al., 2011 (521)
Consolidation therapy VERSUS Non-consolidation therapy IN Japanese men aged 60 years with stage IIIB and IV NSCLC (non-small cell lung cancer)- all histology	203022	220000	Tsuchiya et al., 2011 (522)
Consolidation therapy VERSUS Non-consolidation therapy IN Japanese men aged 60 years with stage IIIB and IV NSCLC (non-small cell lung cancer)- non-squamous cell carcinoma.	150115	170000	Tsuchiya et al., 2011 (522)
Consolidation therapy VERSUS Non-consolidation therapy IN Japanese men aged 60 years with stage IIIB and IV NSCLC (non-small cell lung cancer)-adenocarcinoma	208778	230000	Tsuchiya et al., 2011 (522)
Consolidation therapy with pemetrexed VERSUS Non-consolidation therapy IN Japanese men aged 60 years with stage IIIB and IV NSCLC (non-small cell lung cancer)- squamous cell carcinoma	-370858	Increases Costs, Decreases Health	Tsuchiya et al., 2011 (522)
Zoledronic acid (4 mg) IV every 3 weeks for up to 21 months. VERSUS Placebo IN Patients with non small cell lung cancer (NSCLC) with bone metastases in France	1078	1200	Joshi et al., 2011 (523)
Zoledronic acid (4 mg) IV every 3 weeks for up to 21 months VERSUS Placebo IN Patients with non small cell lung cancer (NSCLC) with bone metastases in Germany	-19743	Cost-Saving	Joshi et al., 2011 (523)

Zoledronic acid (4 mg) IV every 3 weeks for up to 21 months VERSUS Placebo IN UK patients with non small cell lung cancer (NSCLC) with bone metastases	-14328	Cost-Saving	Joshi et al., 2011 (523)
Zoledronic acid (4 mg) IV every 3 weeks for up to 21 months VERSUS Placebo IN Patients with non small cell lung cancer (NSCLC) with bone metastases in Portugal	-7747	Cost-Saving	Joshi et al., 2011 (523)
Zoledronic acid (4 mg) IV every 3 weeks for up to 21 months VERSUS Placebo IN Patients with non small cell lung cancer (NSCLC) with bone metastases in Netherlands	11350	13000	Joshi et al., 2011 (523)
Clinically guided second-line treatment (non-smoker women with adenocarcinoma receive erlotinib) VERSUS No patient selection strategy (all patients were assumed to receive erlotinib) IN French patients with advanced non-small-cell lung cancer who have failed platinum-based chemotherapy and eligible forsecond-line erlotinib initiation	-83046	Cost-Saving	Borget et al., 2011 (524)
Biologically guided second-line treatment (patients with known EGFR mutations receive erlotinib) VERSUS No patient selection strategy (all patients were assumed to receive erlotinib) IN French patients with advanced non-small-cell lung cancer who have failed platinum-based chemotherapy and eligible for second-line erlotinib initiation	-95010	Cost-Saving	Borget et al., 2011 (524)
First-line treatment with gefitinib in patients with activating EGFR mutations VERSUS First-line treatment with chemotherapy in patients with activating EGFR mutations IN patients with advanced lung cancer with activating epidermal growth factor receptor (EGFR) mutations		Cost-Saving	de Lima Lopes et al., 2011 (525)
EGFR (epidermal growth factor receptor) testing and first-line treatment with gefitinib in patients with activating EGFR mutations VERSUS Standard practice (first-line treatment with chemotherapy followed by gefitinib) IN Patients with advanced adenocarcinoma of the lung	-44063	Cost-Saving	de Lima Lopes et al., 2011 (525)
Annual computed tomography (CT) screening for lung cancer VERSUS None IN US males aged 70 years with smoking history of at least 20 pack-years	169000	200000	McMahon et al., 2011 (526)
Annual computed tomography (CT) screening for lung cancer VERSUS None IN US males aged 60 years with smoking history of at least 20 pack-years	135000	160000	McMahon et al., 2011 (526)

Annual computed tomography (CT) screening for lung cancer VERSUS None IN US females aged 50 years with smoking history of at least 20 pack-years	137000	160000	McMahon et al., 2011 (526)
Annual computed tomography (CT) screening for lung cancer VERSUS None IN US females aged 60 years with smoking history of at least 20 pack-years	126000	150000	McMahon et al., 2011 (526)
Annual computed tomography (CT) screening for lung cancer VERSUS None IN US females aged 70 years with smoking history of at least 20 pack-years	159000	190000	McMahon et al., 2011 (526)
Annual computed tomography (CT) screening for lung cancer VERSUS None IN US current and former heavy smoker males aged 70 years with smoking history of at least 40 pack-years	166000	190000	McMahon et al., 2011 (526)
Annual computed tomography (CT) screening for lung cancer VERSUS None IN US current and former heavy smoker females aged 60 years	110000	130000	McMahon et al., 2011 (526)
Annual computed tomography (CT) screening for lung cancer VERSUS None IN US current and former heavy smoker males aged 70 years who quit = 10 years ago	147000	170000	McMahon et al., 2011 (526)
Annual computed tomography (CT) screening for lung cancer VERSUS None IN US current and former smoker females aged 60 years who quit = 10 years ago	112000	130000	McMahon et al., 2011 (526)
Annual computed tomography (CT) screening for lung cancer VERSUS None IN US current and former smoker males aged 70 years	149000	170000	McMahon et al., 2011 (526)
Annual computed tomography (CT) screening for lung cancer VERSUS None IN US current heavy smoker females aged 60 years	112000	130000	McMahon et al., 2011 (526)
Annual computed tomography (CT) screening for lung cancer and bupropion and nicotine replacement therapy to current smokers at the screening examination VERSUS None IN US current and former heavy smoker males aged 50 years	144500	170000	McMahon et al., 2011 (526)

Annual computed tomography (CT) screening for lung cancer and bupropion and nicotine replacement therapy to current smokers at the screening examination VERSUS None IN US current and former heavy smoker females aged 50 years	130500	150000	McMahon et al., 2011 (526)
Annual smoking cessation therapy VERSUS None IN US current smoker males aged 50 years	57600	68000	McMahon et al., 2011 (526)
Annual smoking cessation therapy VERSUS None IN US current smoker females aged 50 years	69400	81000	McMahon et al., 2011 (526)
One-time smoking cessation therapy VERSUS None IN US current smoker males aged 50 years with smoking history of at least 20 pack-years	49100	58000	McMahon et al., 2011 (526)
One-time smoking cessation therapy VERSUS None IN US current smoker females aged 50 years with smoking history of at least 20 pack-years	69300	81000	McMahon et al., 2011 (526)
Annual computed tomography (CT) screening for lung cancer VERSUS None IN US males aged 50 years with smoking history of at least 20 pack-years	149000	170000	McMahon et al., 2011 (526)
6 cycles of carboplatin and paclitaxel (200mg/sq.m) plus bevacizumab (15mg/kg) given intravenously for 3 weeks VERSUS 6 cycles of carboplatin and paclitaxel (200mg/sq.m) given intravenously for 3 weeks IN US patients with stage IIIB/IV non-small cell lung cancer (NSCLC)	559609	610000	Goulart et al., 2011 (527)
Erlonitib VERSUS Placebo IN UK patients with stable non-small cell lung cancer with non-squamous histology	98633	110000	Dickson et al., 2011 (528)
Pemetrexed VERSUS Erlotinib IN UK patients with stable non-small cell lung cancer with non-squamous histology	121668	130000	Dickson et al., 2011 (528)

Pemetrexed VERSUS Placebo IN UK patients with stable non-small cell lung cancer with non-squamous histology	109028	120000	Dickson et al., 2011 (528)
Erlonitib VERSUS Placebo IN UK patients with stable non-small cell lung cancer with squamous histology.	64885	72000	Dickson et al., 2011 (528)
Vinorelbine (25 mg/m2) + cisplatin (30 mg/m2) along with rh-endostatin (7.5 mg/m2) for 4 cycles (endostatin strategy) VERSUS Vinorelbine (25 mg/m2) + cisplatin (30 mg/m2) for 4 cycles (NP strategy) IN Patients aged 18 to 76 years with newly diagnosed stage IIIB (malignant pleural effusion) or stage IV cancer or recurrent NSCLC (non small cell lung cancer) in China	24454	27000	Wu et al., 2011 (529)
Carboplatin plus paclitaxel (200mg/m2) VERSUS Cisplatin (80mg/m2) plus vinblastine and mitomycin (MVP) IN Patients with locally advanced (stage IIIB) or metastatic (stage IV) non-small cell carcinomas of the lung (NSCLC)	10964	12000	Thongprasert et al., 2011 (530)
Maintenance therapy with pemetrexed plus best supportive care VERSUS Best supportive care IN Patients with stage IIIB or IV advanced non- squamous cell lung cancer in Switzerland	140552	150000	Matter- Walstra et al., 2012 (531)
Gefitinib VERSUS Docetaxel IN Patients with non-small cell lung cancer in Thailand	-17643	Cost-Saving	Thongprasert et al., 2012 (532)
Pemetrexed VERSUS Docetaxel IN Patients with non-small cell lung cancer in Thailand	237150	260000	Thongprasert et al., 2012 (532)
Erlotinib VERSUS Docetaxel IN Patients with non-small cell lung cancer in Thailand	124703	140000	Thongprasert et al., 2012 (532)
Immunohistochemistry biomarker screening VERSUS None IN Patients with advanced stage non-small cell lung cancer	57165	62000	Atherly et al., 2012 (533)
Fluorescence in-situ hybridisation biomarker screening VERSUS None IN Patients with advanced stage non-small cell lung cancer and tumours with adenocarcinoma histology	46144	50000	Atherly et al., 2012 (533)

Reverse transcription-PCR biomarker screening VERSUS None IN Patients with advanced stage non-small cell lung cancer and tumours with adenocarcinoma histology	41200	45000	Atherly et al., 2012 (533)
Immunohistochemistry biomarker screening VERSUS None IN Patients with advanced stage non-small cell lung cancer and tumours with adenocarcinoma histology	24720	27000	Atherly et al., 2012 (533)
Fluorescence in-situ hybridisation biomarker screening VERSUS None IN Non-smoking patients with advanced stage non-small cell lung cancer and tumours with adenocarcinoma histology	12462	14000	Atherly et al., 2012 (533)
Reverse transcription-PCR biomarker screening VERSUS None IN Non- smoking patients with advanced stage non-small cell lung cancer and tumours with adenocarcinoma histology	11127	12000	Atherly et al., 2012 (533)
Immunohistochemistry biomarker screening VERSUS None IN Non-smoking patients with advanced stage non-small cell lung cancer and tumours with adenocarcinoma histology	6676	7200	Atherly et al., 2012 (533)
Fluorescence in-situ hybridisation biomarker screening VERSUS None IN Non-smoking patients with advanced stage non-small cell lung cancer, tumours with adenocarcinoma histology and wild type for both EGFR (epidermal growth factor receptor) and KRAS	4756	5200	Atherly et al., 2012 (533)
Reverse transcription-PCR biomarker screening VERSUS None IN Non- smoking patients with advanced stage non-small cell lung cancer, tumours with adenocarcinoma histology and wild type for both EGFR (epidermal growth factor receptor) and KRAS	4246	4600	Atherly et al., 2012 (533)

Immunohistochemistry biomarker screening VERSUS None IN Non-smoking patients with advanced stage non-small cell lung cancer, tumours with adenocarcinoma histology and wild type for both EGFR (epidermal growth factor receptor) and KRAS	2548	2800	Atherly et al., 2012 (533)
Fluorescence in-situ hybridisation biomarker screening VERSUS None IN Patients with advanced stage non-small cell lung cancer	106707	120000	Atherly et al., 2012 (533)
First-line chemotherapy treatment with erlotnib VERSUS First-line chemotherapy treatment with gefitinib IN Patients with EGFR-TK mutation- positive advanced or metastatic non-small-cell lung cancer	33769	37000	Dillon et al., 2012 (534)
Epidermal growth factor receptor (EGFR) mutation testing strategy only on patients with sufficient tumor tissue (test strategy) VERSUS No testing and all patients were treated with combination chemotherapy with a platinum agent IN Patients with stage IV adenocarcinoma	110644	120000	Handorf et al., 2012 (535)
Epidermal growth factor receptor (EGFR) mutation testing strategy for patients without available tissue, underwent a repeat biopsy to provide tissue for testing (rebiopsy strategy) VERSUS EGFR mutation testing strategy only on patients with sufficient tumor tissue (test strategy) IN Patients with stage IV adenocarcinoma	122234	130000	Handorf et al., 2012 (535)
Epidermal growth factor receptor (EGFR) mutation testing strategy for patients without available tissue, underwent a repeat biopsy to provide tissue for testing (rebiopsy strategy) followed by treatment with carboplatin plus premetrexed VERSUS EGFR mutation testing strategy for patients without available tissue, underwent a repeat biopsy to provide tissue for testing (rebiopsy strategy) followed by treatment with premetrexed IN Patients with stage IV adenocarcinoma	180665	200000	Handorf et al., 2012 (535)

Epidermal growth factor receptor (EGFR) mutation testing strategy for patients without available tissue, underwent a repeat biopsy to provide tissue for testing (rebiopsy strategy) followed by treatment with carboplatin, premetrexed and bevacizumab VERSUS EGFR mutation testing strategy for patients without available tissue, underwent a repeat biopsy to provide tissue for testing (rebiopsy strategy) followed by treatment with premetrexed and carboplatin IN Patients with stage IV adenocarcinoma	359619	400000	Handorf et al., 2012 (535)
VERSUS IN Specific disease- Advanced nonsquamous non-small-cell Lung Cancer; Age- Unknown; Gender- Not Specified; Country- China.	124793	140000	Zeng et al., 2013 (536)
Gene-guided (EGFR mutation-positive tumors) gefitinib switch maintenance therapy without gefitinib patients assistance program (GPAP) VERSUS Routine follow-up IN Specific disease- Non-small cell lung cancer; Age- Unknown; Gender- Both; Country- China; Other- advanced EGFR mutation- positive, first line chemotherapy program.	57066	59000	Zhu et al., 2013 (537)
Gene-guided (EGFR mutation-positive tumors) gefitinib switch maintenance therapy with gefitinib patients assistance program (GPAP) VERSUS Routine follow-up IN Specific disease- Non-small cell lung cancer; Age- Unknown; Gender- Both; Country- China; Other- advanced EGFR mutation-positive, first line chemotherapy completed with 10 years.	15665	16000	Zhu et al., 2013 (537)
Lobectomy VERSUS SBRT-CO (stereotactic body radiation therapy-clearly operable) IN Specific disease- Stage I Non-Small Cell Lung Cancer; Age-Adult; Gender- Both; Country- United States.	13200	14000	Shah et al., 2013 (538)
SBRT-CO (stereotactic body radiation therapy-clearly operable) VERSUS SBRT-MO (marginally operable) IN Specific disease- Stage I Non-Small Cell Lung Cancer; Age- Adult; Gender- Both; Country- United States.	-11039	Cost-Saving	Shah et al., 2013 (538)

Screening for lung cancer VERSUS None IN Specific disease- current smokers and former smokers; Age- 41 to 64 years; Gender- Both; Country- United States.	28240	29000	Villanti et al., 2013 (539)
Screening for lung cancer + light smoking cessation intervention VERSUS None IN Specific disease- current smokers and former smokers; Age- 41 to 64 years; Gender- Both; Country- United States; Other- all current smokers and half of the former smokers between age 50 and 64 to be eligible for lung cancer screening, with eligibility set as at least 30 pack-years of smoking history.	23185	24000	Villanti et al., 2013 (539)
Screening for lung cancer + intensive smoking cessation intervention: NRT generic plus behavioral VERSUS None IN Specific disease- current smokers and former smokers; Age- 41 to 64 years; Gender- Both; Country- United States.	16198	17000	Villanti et al., 2013 (539)
Screening for lung cancer + intensive smoking cessation intervention: bupropion generic plus behavioral VERSUS None IN Specific disease- current smokers and former smokers; Age- 41 to 64 years; Gender- Both; Country- United States.	16656	17000	Villanti et al., 2013 (539)
Screening for lung cancer + intensive smoking cessation intervention: chantix plus behavioral VERSUS None IN Specific disease- current smokers and former smokers; Age- 41 to 64 years; Gender- Both; Country- United States.	17310	18000	Villanti et al., 2013 (539)
Low dose computed tomography screening VERSUS Standard/Usual Care IN Specific disease- lung cancer; Age- 41 to 64 years, >=65 years; Gender-Both; Country- Israel.	1464	1500	Shmueli et al., 2013 (540)
Positron emission tomography (PET) scan + sending all patients for surgery VERSUS None IN Specific disease- non-small cell lung cancer; Age- Adult; Gender- Both; Country- Iran.	936	1000	Akbari Sari et al., 2013 (541)
VeriStrat (serum proteomic test) guided strategy & chemotherapy with docetaxel VERSUS Erlotinib to all IN Specific disease- non-small cell lung cancer; Age- 41 to 64 years; Gender- Both; Country- United States.	91111	99000	Nelson et al., 2013 (542)

VeriStrat (serum proteomic test) guided strategy & chemotherapy with pemetrexed VERSUS Performance status guided selection strategy (PS- guided) IN Specific disease- non-small cell lung cancer; Age- 41 to 64 years; Gender- Both; Country- United States.	-148538	Cost-Saving	Nelson et al., 2013 (542)
VeriStrat (serum proteomic test) guided strategy & chemotherapy with docetaxel VERSUS Performance status guided selection strategy (PS-guided) IN Specific disease- non-small cell lung cancer; Age- 41 to 64 years; Gender- Both; Country- United States.	8462	9200	Nelson et al., 2013 (542)
VeriStrat (serum proteomic test) guided strategy & chemotherapy with pemetrexed VERSUS Erlotinib to all IN Specific disease- non-small cell lung cancer; Age- 41 to 64 years; Gender- Both; Country- United States.	123332	130000	Nelson et al., 2013 (542)
Higher hyperfractionated radiotherapy VERSUS conventional fractionation radiotherapy IN Specific disease- Non–Small-Cell Lung Cancer; Age- Adult; Gender- Not Specified; Country- Netherlands.	370368	390000	Ramaekers et al., 2013 (543)
Identical hyperfractionated radiotherapy VERSUS conventional fractionation radiotherapy IN Specific disease- Non-Small-Cell Lung Cancer; Age- Adult; Gender- Not Specified; Country- Netherlands.	17226	18000	Ramaekers et al., 2013 (543)
Very accelerated radiotherapy VERSUS identical hyperfractionated radiotherapy IN Specific disease- Non-Small-Cell Lung Cancer; Age- Adult; Gender- Not Specified; Country- Netherlands.	-21013	Cost-Saving	Ramaekers et al., 2013 (543)
Moderately accelerated radiotherapy VERSUS very accelerated radiotherapy IN Specific disease- Non-Small-Cell Lung Cancer; Age- Adult; Gender- Not Specified; Country- Netherlands.	32145	34000	Ramaekers et al., 2013 (543)

Melanoma

Description	Original US\$/QALY	2014US\$/QALY	Reference
Life-long chest X-ray screening VERSUS No screening IN patients with intermediate-thickness, local cutaneous melanoma	215000	320000	Mooney et al., 1997 (544)

One-time visual screening examination by a dermatologist VERSUS No screening IN Adults older than 20 yrs. considered to be at high risk of experiencing skin cancer	30360	46000	Freedberg et al., 1999 (545)
Low dose interferon alpha-2a adjuvant therapy VERSUS No treatment IN Patients who have had surgical resection of AJCC stage II primary melanoma (10 yrs study horizon)	8613	13000	Lafuma et al., 2001 (546)
Low dose interferon alpha-2a adjuvant therapy VERSUS No treatment IN Patients who have had surgical resection of AJCC stage II primary melanoma (5 yrs study horizon)	16934	26000	Lafuma et al., 2001 (546)
Testing with SLM and treating positives with high-dose adjuvant interferon (IFN) VERSUS Observation only IN Patients with clinical stage II malignant melanoma after surgical excision of their melanoma	18700	25000	Wilson et al., 2002 (547)
Low-dose adjuvant interferon (IFN) treatment for all patients VERSUS Testing with SLM and treating positives with high-dose adjuvant interferon (IFN) IN Patients with clinical stage II malignant melanoma after surgical excision of their melanoma	57273	77000	Wilson et al., 2002 (547)
Testing with SLM and treating with high or low dose adjuvant interferon based on positive or negative results respectively VERSUS Testing with SLM and treating positives with high-dose adjuvant interferon (IFN) IN Patients with clinical stage II malignant melanoma after surgical excision of their melanoma	31100	42000	Wilson et al., 2002 (547)
High-dose interferon treatment VERSUS No interferon treatment IN Patients with stage II to III melanoma	9426	13000	Crott et al., 2004 (548)
VERSUS IN Patients with malignant melanoma	67727	87000	Dixon et al., 2006 (549)
1 time melanoma dermatologist visual screening at age 50 years VERSUS Background screening only IN Hypothetical US cohort of the general population	8000	10000	Losina et al., 2007 (550)
Melanoma dermatologist visual screening every year starting at age 50 years VERSUS Melanoma dermatologist visual screening every 2 years starting at age 50 years IN Hypothetical US cohort of the general population	424000	530000	Losina et al., 2007 (550)

Melanoma dermatologist visual screening every year starting at age 50 years VERSUS Melanoma dermatologist visual screening every 2 years starting at age 50 years IN Hypothetical US cohort of siblings of patients with melanoma	210000	260000	Losina et al., 2007 (550)
Melanoma dermatologist visual screening every 2 years starting at age 50 years VERSUS 1 time melanoma dermatologist visual screening at age 50 years IN Hypothetical US cohort of siblings of patients with melanoma	35500	44000	Losina et al., 2007 (550)
1 time melanoma dermatologist visual screening at age 50 years VERSUS Background screening only IN Hypothetical US cohort of siblings of patients with melanoma	4000	5000	Losina et al., 2007 (550)
1 time melanoma dermatologist visual screening at age 50 years VERSUS Background screening only IN Hypothetical US cohort of higher risk ((at least 2 first degree relatives having been diagnosed as having melanoma) siblings of patients with melanoma	900	1100	Losina et al., 2007 (550)
Melanoma dermatologist visual screening every 2 years starting at age 50 years VERSUS 1 time melanoma dermatologist visual screening at age 50 years IN Hypothetical US cohort of higher risk ((at least 2 first degree relatives having been diagnosed as having melanoma) siblings of patients with melanoma	14700	18000	Losina et al., 2007 (550)
Melanoma dermatologist visual screening every year starting at age 50 years VERSUS Melanoma dermatologist visual screening every 2 years starting at age 50 years IN Hypothetical US cohort of higher risk ((at least 2 first degree relatives having been diagnosed as having melanoma) siblings of patients with melanoma	99800	130000	Losina et al., 2007 (550)
Adjuvant high dose interferon following surgical treatment VERSUS Surgical treatment, no pharmaceutical adjuvant IN US Node positive stage IIIA melanoma patients	169548	210000	Cormier et al., 2007 (551)
Adjuvant high dose interferon following surgical treatment VERSUS Surgical treatment, no pharmaceutical adjuvant IN US Node positive stage IIIB melanoma patients	95304	120000	Cormier et al., 2007 (551)
Adjuvant high dose interferon following surgical treatment VERSUS Surgical treatment, no pharmaceutical adjuvant IN US Node positive stage IIIC melanoma patients	76068	92000	Cormier et al., 2007

			(551)
Wide excision (WEX) with sentinel lymph node biopsy (SNB) VERSUS Wide excision only IN Australian patients with cutaneous melanoma with primary tumors greater than or equal to 1 mm in thickness, 52 years of age	1664	1900	Morton et al., 2008 (552)
Application of broad-spectrum Sun Protection Factor 15 sunscreen to head neck arms and hands every morning VERSUS Use of sun screen at their own discretion IN White population aged 49 years in sunny settings in Australia	45540	49000	Hirst et al., 2012 (553)
Ipilimumab (3mg/kg) VERSUS Standard/Usual care- best supportive care (BSC) IN Specific disease- patients with advanced (unresectable or metastatic) melanoma; Age- Adult; Gender- Both; Country- United States.	128656	140000	Barzey et al., 2013 (554)
Mole Mate system- novel diagnostic aid comprising a handheld SIAscopy scanner incorporating an algorithm developed for use in primarycare VERSUS Standard/Usual care- best practice (recommended by NICE) IN Specific disease- Pigmented skin lesions; Age- 41 to 64 years, Adult; Gender- Not Specified; Country- United States.	3042	3200	Wilson et al., 2013 (555)
FISH assay addition, diagnostic strategy 2 VERSUS Secondary microscopic assessment by a pathologist IN Healthy; Age- Adult; Gender- Both; Country-United States.	33000	36000	Kansal et al., 2013 (556)
FISH assay addition, diagnostic strategy 1 VERSUS Initial microscopic assessment by a PCP or pathologist IN Healthy; Age- Adult; Gender- Both; Country- United States.	14930	16000	Kansal et al., 2013 (556)
Vemurafenib VERSUS dacarbazine IN Specific disease- malignant melanoma; Age- 41 to 64 years, >=65 years; Gender- Both; Country- United Kingdom; Other- locally advanced or metastatic BRAF V600 mutation- positive.	87085	95000	Beale et al., 2013 (557)

Neck Cancer

Description	Original US\$/QALY	2014US\$/QALY	Reference
Positron emission tomography VERSUS Observation followed by surgery or radiation IN Classification N0 head and neck squamous cell carcinoma patients after a computed tomography (CT) scan	2505	3600	Hollenbeak et al., 2001 (558)
Primary radioactive iodine treatment VERSUS Primary surgery - anti-thyroid drugs (ATDs) followed by thyroid lobectomy once euthyroidism has been achieved IN a 40 year old woman with a single toxic thyroid nodule presenting as clinical hyperthyroidism	-5353	Increases Costs, Decreases Health	Vidal- Trecan et al., 2002 (559)
Lifelong medical therapy with anti-thyroid drugs (ATDs) followed by thyroid lobectomy VERSUS Primary radioactive iodine treatment IN a 40 year old woman with a single toxic thyroid nodule presenting as clinical hyperthyroidism	-1338	Increases Costs, Decreases Health	Vidal- Trecan et al., 2002 (559)
Lifelong medical therapy with anti-thyroid drugs (ATDs) followed by radioactive iodine treatment VERSUS Anti-thyroid drugs (ATDs) followed by thyroid lobectomy once euthyroidism has been achieved IN a 40 year old woman with a single toxic thyroid nodule presenting as clinical hyperthyroidism	-1701	Increases Costs, Decreases Health	Vidal- Trecan et al., 2002 (559)
Screening by a dental specialist VERSUS No screening IN Patients with oral lichen planus - average age 55	2137	2900	van der Meij et al., 2002 (560)
Primary low-dose radioactive iodine treatment (<555 MBq) VERSUS Primary high-dose radioactive iodine treatment (>555 MBq) IN Female patients with clinical hyperthyroidism and a toxic solitary thyroid nodule - age 40	31200	41000	Vidal- Trecan et al., 2004 (561)
Primary thyroid lobectomy (once euthyroidism has been achieved with antithyroid drugs) VERSUS Primary high-dose radioactive iodine treatment (>555 MBq) IN Female patients with clinical hyperthyroidism and a toxic solitary thyroid nodule - age 40	11517	15000	Vidal- Trecan et al., 2004 (561)
Lifelong anti-thyroid drugs followed by radioactive iodine treatment VERSUS Primary high-dose radioactive iodine treatment (>555 MBq) IN Female patients with clinical hyperthyroidism and a toxic solitary thyroid nodule - age 40	-7727	Increases Costs, Decreases Health	Vidal- Trecan et al., 2004 (561)

Lifelong anti-thyroid drugs followed by thyroid lobectomy VERSUS Primary high-dose radioactive iodine treatment (>555 MBq) IN Female patients with clinical hyperthyroidism and a toxic solitary thyroid nodule - age 40	-7838	Increases Costs, Decreases Health	Vidal- Trecan et al., 2004 (561)
Recombinant human thyroid stimulating hormone VERSUS Thyroid hormone withdrawal IN Patients undergoing diagnosis of recurrent thyroid cancer	33495	43000	Blamey et al., 2005 (562)
VERSUS IN Patients with newly diagnosed differentiated papillary or follicular thyroid cancer without metastases	1192	1500	Mernagh et al., 2006 (563)
Cetuximab in combination with radiotherapy VERSUS Radiotherapy only IN Advanced head and neck cancer in patients (in Belgium) for whom chemoradiotherapy is inappropriate or intolerable	10764	13000	Brown et al., 2008 (564)
Cetuximab in combination with radiotherapy VERSUS Radiotherapy only IN Advanced head and neck cancer in patients (in France) for whom chemoradiotherapy is inappropriate or intolerable	13613	16000	Brown et al., 2008 (564)
Cetuximab in combination with radiotherapy VERSUS Radiotherapy only IN Advanced head and neck cancer in patients (in Italy) for whom chemoradiotherapy is inappropriate or intolerable	9470	11000	Brown et al., 2008 (564)
Cetuximab in combination with radiotherapy VERSUS Radiotherapy only IN Advanced head and neck cancer in patients (in Switzerland) for whom chemoradiotherapy is inappropriate or intolerable	12975	15000	Brown et al., 2008 (564)
Cetuximab in combination with radiotherapy VERSUS Radiotherapy only IN Advanced head and neck cancer in patients (in the UK) for whom chemoradiotherapy is inappropriate or intolerable	11488	13000	Brown et al., 2008 (564)

18-Fluoro-2-Deoxyglucose Positron emission tomography (PET scan) of the nasal passages VERSUS Magnetic resonance imaging of the nasal passages IN Southern China and Southeast Asia patients suspected of nasopharyngeal carcinoma. Taiwanese healthcare system.	1389	1600	Yen et al., 2009 (565)
MRI followed by PET scan if MRI results are uncertain VERSUS Magnetic Resonance Imaging (MRI) scan of the nasal passages IN Southern China and Southeast Asia patients suspected of nasopharyngeal carcinoma. Taiwanese healthcare system.	462	530	Yen et al., 2009 (565)
Docetaxel 75 mg/m2 followed by cisplatin 100 mg/m2 on day 1 and 5-FU as a continuous infusion at 1000 mg/m2 per day for 4 days, along with ciprofloxacin 500 mg twice a day for 10 days and dexamethasone 48 mg during each cycle VERSUS Cisplatin 100 mg/m2 on Day 1 followed by 5-FU 1000 mg/m2 per day as a continuous infusion for 5 days. IN Head and neck cancer patients in the UK	3285	3900	Parthan et al., 2009 (566)
Recombinant human thyroid stimulating hormone (rhTSH) before radioidine ablation VERSUS No recombinant human thryoid stimulating hormone (rhTSH) IN Canadian patients with thyroid cancer	1435	1600	Mernagh et al., 2009 (567)
Recombinant human thyroid stimulating hormone (rhTSH) before radioidine ablation VERSUS No recombinant human thryoid stimulating hormone (rhTSH) IN Canadian patients with thyroid cancer where ablation performed as outpatient, so no time spent in radio-protective ward	12643	14000	Mernagh et al., 2009 (567)
Dissect patients with residual disease on positron emission tomography- computed tomography (PET-CT) VERSUS Dissect all patients IN United States 50 year old men with node-positive head and neck squamous cell carcinoma 5 years post chemoradiotherapy		Cost-Saving	Sher et al., 2009 (568)
Recombinant human thyrotropin (rhTSH) VERSUS Thyroid hormone (throxine) withdrawal IN US patients aged 44 years with low-risk differentiated thyroid cancer who were prepared for ablation	52554	58000	Wang et al., 2010 (569)
Transoral CO2 Endolaryngeal laser excision (TOL) VERSUS Standard fractionated external beam radiation IN Adults with early-stage glottic	-15420	Cost-Saving	Higgins et al., 2011

carcinoma			(570)
Yearly community-based oral cancer screening VERSUS None IN US males over 40 years regularly using tobacco and/or alcohol	-6239	Cost-Saving	Dedhia et al., 2011 (571)
Cetuximab plus radiotherapy VERSUS Radiotherapy IN Patients with locally advanced squamous cell carcinoma of the head and neck in Taiwan	36992	42000	Chan et al., 2011 (572)
Molecular test (Afirma Gene Expression Classifier) VERSUS Current practice based on cytological findings IN US adult patients with thyroid nodules and indeterminate fine need aspiration biopsy (FNAB) results	-20757	Cost-Saving	Li et al., 2011 (573)
Preventative swallowing exercise program (PREP) in addition to usual care VERSUS Usual care IN Patients with advanced stage III and IV head and neck cancer undergoing concomitant chemo-raadiotherapy (CCRT)	4708	5200	Ret?l et al., 2011 (574)
Addition of docetaxel to cisplatin and platinum/infusional 5-fluorouracil (TPF) VERSUS Chemotherapy plus platinum/infusional 5-fluorouracil (PF) IN Patients with stage III/IV unresectable head and neck cancer in Italy	15646	17000	Liberato et al., 2012 (575)
Intensity modulated radiotherapy (IMRT) VERSUS Three-dimensional conformal radiotherapy (3DCRT) IN Patients with locally advanced oropharyngeal carcinoma undergoing radiotherapy	4476	4900	Yong et al., 2012 (576)
Volumetric modulated arc therapy (VMAT) VERSUS Three-dimensional conformal radiotherapy (3DCRT) IN Patients with locally advanced oropharyngeal carcinoma undergoing radiotherapy	2398	2600	Yong et al., 2012 (576)
Cetuximab + platinum-based chemotherapy VERSUS Platinum-based chemotherapy alone IN Patients with recurrent or metastatic head and neck squamous cell carcinoma (HNSCC)	390670	410000	Hannouf et al., 2012 (577)
Repeat fine-needle aspiration (FNA) VERSUS Diagnostic thyroid lobectomy IN US patients aged 40 years with diagnosis of atypia of undetermined significance (AUS) on initial thyroid fine-needle aspiration (FNA)	-97287	Cost-Saving	Heller et al., 2012 (578)

Fine-needle aspiration biopsy (FNAB) with a new molecular diagnostic test as an addition (DX) VERSUS FNAB in combination with the the Bethesta System for reporting thyroid cytopathology guidelines IN Patients with an initial indeterminate fine-needle aspiration biopsy for evaluating thyroid nodules through cytological diagnosis	-27000	Cost-Saving	Najafzadeh et al., 2012 (579)
Intensity modulated proton radiation therapy (IMPT) if efficient (receive if IMPT is cost-effective compared to IMRT, below 80,000 per QALY gained) VERSUS Intensity modulated radiation therapy with photons (IMRT) for all patients IN Specific disease- Advanced head and neck cancer; Age- Adult; Gender- Not Specified; Country- Netherlands.	79774	87000	Ramaekers et al., 2013 (580)
Intensity modulated proton radiation therapy (IMPT) for all patients VERSUS Intensity modulated proton radiation therapy (IMPT) if efficient (receive if IMPT is cost-effective compared to IMRT, below 80,000 per QALY gained) IN Specific disease- Advanced head and neck cancer; Age- Adult; Gender- Not Specified; Country- Netherlands.	169328	180000	Ramaekers et al., 2013 (580)
Fine needle aspiration (FNA) with on-site adequacy evaluation VERSUS Fine needle aspiration (FNA) without on-site adequacy evaluation IN Specific disease- solitary thyroid nodule; Age- Unknown; Gender- Not Specified; Country- United States.	639143	670000	Zanocco et al., 2013 (581)
Sentinel lymph node (SLN) procedure followed by neck dissection or watchful waiting VERSUS Elective neck dissection IN Specific disease- Clinical T1-2N0 oral squamous cell cancer; Age- Unknown; Gender- Both; Country-Netherlands.	4670	4900	Govers et al., 2013 (582)
Gene expression VERSUS Elective neck dissection IN Specific disease- Clinical T1-2N0 oral squamous cell cancer; Age- Unknown; Gender- Both; Country- Netherlands.	-749713	Increases Costs, Decreases Health	Govers et al., 2013 (582)
Gene expression and sentinel node VERSUS Elective neck dissection IN Specific disease- Clinical T1-2N0 oral squamous cell cancer; Age- Unknown; Gender- Both; Country- Netherlands.	5415557	5700000	Govers et al., 2013 (582)
Gene expression VERSUS Sentinel node IN Specific disease- Clinical T1- 2N0 oral squamous cell cancer; Age- Unknown; Gender- Both; Country- Netherlands.	-130671	Increases Costs, Decreases Health	Govers et al., 2013 (582)

Sentinel node VERSUS Elective neck dissection IN Specific disease- Clinical T1-2N0 oral squamous cell cancer; Age- Unknown; Gender- Both; Country-Netherlands.	4670	4900	Govers et al., 2013 (582)
Gene expression plus sentinel node VERSUS sentinel node IN Specific disease- Clinical T1-2N0 oral squamous cell cancer; Age- Unknown; Gender-Both; Country- Netherlands.	-178782	Increases Costs, Decreases Health	Govers et al., 2013 (582)
Elective neck dissection VERSUS Watchful waiting IN Specific disease- Clinical T1-2N0 oral squamous cell cancer; Age- Unknown; Gender- Both; Country- Netherlands.	9036	9500	Govers et al., 2013 (582)
Diagnostic hemithyroidectomy with intraoperative pathology examination VERSUS Diagnostic hemithyroidectomy IN Healthy; Age- Adult; Gender- Both; Country- United States.	-47480	Increases Costs, Decreases Health	Zanocco et al., 2013 (583)
Total thyroidectomy VERSUS Diagnostic hemithyroidectomy IN Healthy; Age- Adult; Gender- Both; Country- United States.	-12530	Increases Costs, Decreases Health	Zanocco et al., 2013 (583)
Minimally invasive esophagectomy VERSUS Open esophagectomy IN Specific disease- resectable esophageal cancer; Age- Adult; Gender- Both; Country- Canada.	-74645	Cost-Saving	Lee et al., 2013 (584)
Intensity modulated radiation therapy VERSUS 3-dimensional conformal Radiation therapy IN Specific disease- head/neck cancer; Age- >=65 years; Gender- Not Specified; Country- United States.	34523	36000	Kohler et al., 2013 (585)
Total thyroidectomy (TTX) with prophylactic central neck dissection (pCND) VERSUS Total thyroidectomy (TTX) IN Specific disease- Thyroid Cancer afer total thyroidectomy (TTX); Age- 19 to 40 years, 41 to 64 years; Gender- Not Specified; Country- United States.	-27667	Increases Costs, Decreases Health	Zanocco et al., 2013 (586)

Other Cancers

Description	Original US\$/QALY	2014US\$/QALY	Reference
Vena caval filter VERSUS Anticoagulation therapy IN Lung cancer patients who have survived acute pulmonary embolism	-21500	Cost-Saving	Sarasin et al., 1993 (587)
Anticoagulation therapy VERSUS Observation IN Lung cancer patients with acute deep venous thrombosis	-6638	Cost-Saving	Sarasin et al., 1993 (587)
Vena caval filter VERSUS Anticoagulation therapy IN Lung cancer patients with acute deep venous thrombosis	-13050	Cost-Saving	Sarasin et al., 1993 (587)
Anticoagulation therapy VERSUS Observation IN Lung cancer patients who have survived acute pulmonary embolism	-9647	Cost-Saving	Sarasin et al., 1993 (587)
Antiemetic therapy with ondansetron VERSUS Antiemetic therapy with metoclopramide IN 40-kg patient receiving cisplatin chemotherapy (>=75 mg/ sq. m) who had not previously been exposed to antineoplastic agents	168391	280000	Zbrozek et al., 1994 (588)
Antiemetic therapy with ondansetron VERSUS Antiemetic therapy with metoclopramide IN 70-kg patient receiving cisplatin chemotherapy (>=75 mg/ sq. m) who had not previously been exposed to antineoplastic agents	407667	670000	Zbrozek et al., 1994 (588)
Semiannual Pap smear VERSUS Annual Pap smear after 2 negative smears 6 months apart IN Women with HIV infection, CD4 cell count <200 cells/mm^3	43700	66000	Goldie et al., 1999 (589)
Annual Pap smear VERSUS No screen IN Women with HIV infection, CD4 cell count 200-500 cells/mm^3	12800	19000	Goldie et al., 1999 (589)
Annual Pap smear VERSUS No screen IN Women with HIV infection, CD4 cell count <200 cells/mm^3	22500	34000	Goldie et al., 1999 (589)
Annual Pap smear after 2 negative smears 6 months apart VERSUS Annual Pap smear IN Women with HIV infection, CD4 cell count 200-500 cells/mm^3	14800	22000	Goldie et al., 1999 (589)
Annual Pap smear after 2 negative smears 6 months apart VERSUS Annual Pap smears IN Women with HIV infection, CD4 cell count >500 cells/mm^3	15800	24000	Goldie et al., 1999 (589)

Annual Pap smear after 2 negative smears 6 months apart VERSUS Annual Pap smears IN Women with HIV infection, CD4 cell count <200 cells/mm^3	28700	43000	Goldie et al., 1999 (589)
Semiannual Pap smear VERSUS Annual Pap smear after 2 negative smears 6 months apart IN Women with HIV infection, CD4 cell count 200-500 cells/mm^3	27600	42000	Goldie et al., 1999 (589)
Semiannual Pap smear VERSUS Annual Pap smear after 2 negative smears 6 months apart IN Women with HIV infection, CD4 cell count >500 cells/mm^3	40300	61000	Goldie et al., 1999 (589)
Semiannual colposcopy VERSUS Semiannual Pap smear IN Women with HIV infection, CD4 cell count 200-500 cells/mm^3	375000	570000	Goldie et al., 1999 (589)
Semiannual colposcopy VERSUS Semiannual Pap smear IN Women with HIV infection, CD4 cell count >500 cells/mm^3	540000	810000	Goldie et al., 1999 (589)
Semiannual colposcopy VERSUS Semiannual Pap smear IN Women with HIV infection, CD4 cell count <200 cells/mm^3	448000	680000	Goldie et al., 1999 (589)
Annual Pap smear VERSUS No screen IN Women with HIV infection, CD4 cell count >500 cells/mm^3	12800	19000	Goldie et al., 1999 (589)
Anal PAP screening every 3 years VERSUS No screening IN HIV positive homosexual and bisexual men with CD4 count >500		Increases Costs, Decreases Health	Goldie et al., 1999 (590)
Anal PAP screening every 2 years VERSUS No screening IN HIV positive homosexual and bisexual men with CD4 count >500	13000	19000	Goldie et al., 1999 (590)
Anal PAP screening every year VERSUS Anal PAP screening every 2 years IN HIV positive homosexual and bisexual men with CD4 count >500	16600	24000	Goldie et al., 1999 (590)
Anal PAP screening every 6 months VERSUS Anal PAP screening every year IN HIV positive homosexual and bisexual men with CD4 count >500	49600	73000	Goldie et al., 1999 (590)
Anal PAP screening every 3 years VERSUS No screening IN HIV positive homosexual and bisexual men with CD4 count 200-500		Increases Costs, Decreases Health	Goldie et al., 1999 (590)
Anal PAP screening every 2 years VERSUS No screening IN HIV positive homosexual and bisexual men with CD4 count 200-500		Increases Costs, Decreases	Goldie et al., 1999 (590)

		Health	
Anal PAP screening every year VERSUS Anal PAP screening every 2 years IN HIV positive homosexual and bisexual men with CD4 count 200-500	23800	35000	Goldie et al., 1999 (590)
Anal PAP screening every 6 months VERSUS Anal PAP screening every year IN HIV positive homosexual and bisexual men with CD4 count 200- 500	54300	80000	Goldie et al., 1999 (590)
Anal PAP screening every 6 months VERSUS Anal PAP screening every year IN HIV positive homosexual and bisexual men with CD4 count <200	91100	130000	Goldie et al., 1999 (590)
Anal PAP screening every year VERSUS Anal PAP screening every 2 years IN HIV positive homosexual and bisexual men with CD4 count <200	57100	84000	Goldie et al., 1999 (590)
Anal PAP screening every 2 years VERSUS Anal PAP screening every 3 years IN HIV positive homosexual and bisexual men with CD4 count <200	51400	76000	Goldie et al., 1999 (590)
Anal PAP screening every 3 years VERSUS No screening IN HIV positive homosexual and bisexual men with CD4 count <200	49300	73000	Goldie et al., 1999 (590)
Recombinant human erythropoietin (epoetin) VERSUS Blood transfusions IN Anemic patients with cancer undergoing chemotherapy	163080	240000	Cremieux et al., 1999 (591)
Medullary hormone analysis VERSUS Ignore IN Patients with signs of adrenal incidentaloma (2.5-cm incidentaloma)	22400	33000	Kievit et al., 2000 (592)
Fine-needle aspiration cytology VERSUS Medullary hormone analysis IN Patients with signs of adrenal incidentaloma (2.5-cm incidentaloma)	-17000	Increases Costs, Decreases Health	Kievit et al., 2000 (592)
Cortical hormone analysis VERSUS Fine-needle aspiration cytology IN Patients with signs of adrenal incidentaloma (2.5-cm incidentaloma)	-290000	Increases Costs, Decreases Health	Kievit et al., 2000 (592)
Full hormone analysis VERSUS Cortical hormone analysis IN Patients with signs of adrenal incidentaloma (2.5-cm incidentaloma)	22500	33000	Kievit et al., 2000 (592)
Meta-iodobenzylguanidine VERSUS Full hormone analysis IN Patients with signs of adrenal incidentaloma (2.5-cm incidentaloma)	-40000	Increases Costs, Decreases	Kievit et al., 2000 (592)

		Health	
I-iodomethyl-norcholesterol VERSUS Meta-iodobenzylguanidine IN Patients with signs of adrenal incidentaloma (2.5-cm incidentaloma)	-7222	Increases Costs, Decreases Health	Kievit et al., 2000 (592)
Magnetic resonance imaging (MRI) VERSUS I-iodomethyl-norcholesterol IN Patients with signs of adrenal incidentaloma (2.5-cm incidentaloma)	22500	33000	Kievit et al., 2000 (592)
Computed tomography (CT) scan VERSUS Magnetic resonance imaging (MRI) IN Patients with signs of adrenal incidentaloma (2.5-cm incidentaloma)		Increases Costs, Decreases Health	Kievit et al., 2000 (592)
Surgery (no testing) VERSUS Computed tomography (CT) scan IN Patients with signs of adrenal incidentaloma (2.5-cm incidentaloma)		Increases Costs, Decreases Health	Kievit et al., 2000 (592)
Medullary hormone analysis VERSUS Ignore IN Patients with signs of adrenal incidentaloma (6-cm incidentaloma)	17450	25000	Kievit et al., 2000 (592)
Fine-needle aspiration cytology VERSUS Medullary hormone analysis IN Patients with signs of adrenal incidentaloma (6-cm incidentaloma)		Increases Costs, Decreases Health	Kievit et al., 2000 (592)
Meta-iodobenzylguanidine VERSUS Fine-needle aspiration cytology IN Patients with signs of adrenal incidentaloma (6-cm incidentaloma)		Increases Costs, Decreases Health	Kievit et al., 2000 (592)
Cortical hormone analysis VERSUS Meta-iodobenzylguanidine IN Patients with signs of adrenal incidentaloma (6-cm incidentaloma)		Increases Costs, Decreases Health	Kievit et al., 2000 (592)
I-iodomethylnorcholesterol VERSUS Cortical hormone analysis IN Patients with signs of adrenal incidentaloma (6-cm incidentaloma)		Increases Costs, Decreases Health	Kievit et al., 2000 (592)

Full hormone analysis VERSUS I-iodomethylnorcholesterol IN Patients with signs of adrenal incidentaloma (6-cm incidentaloma)	47000	68000	Kievit et al., 2000 (592)
Magnetic resonance imaging (MRI) VERSUS Full hormone analysis IN Patients with signs of adrenal incidentaloma (6-cm incidentaloma)		Increases Costs, Decreases Health	Kievit et al., 2000 (592)
Computed tomography (CT) scan VERSUS Magnetic resonance imaging (MRI) IN Patients with signs of adrenal incidentaloma (6-cm incidentaloma)		Increases Costs, Decreases Health	Kievit et al., 2000 (592)
Surgery (no testing) VERSUS Computed tomography (CT) scan IN Patients with signs of adrenal incidentaloma (6-cm incidentaloma)		Increases Costs, Decreases Health	Kievit et al., 2000 (592)
Screening for anal squamous intraepithelial lesions and anal cancer every 3 years VERSUS No screening IN Hypothetical cohort of 30yo HIV negative homosexual and bisexual men	7000	10000	Goldie et al., 2000 (593)
Screening for anal squamous intraepithelial lesions and anal cancer every 2 years VERSUS Screening for anal squamous intraepithelial lesions and anal cancer every 3 years IN Hypothetical cohort of 30yo HIV negative homosexual and bisexual men	15100	22000	Goldie et al., 2000 (593)
Screening for anal squamous intraepithelial lesions and anal cancer every 1 year VERSUS Screening for anal squamous intraepithelial lesions and anal cancer every 2 years IN Hypothetical cohort of 30yo HIV negative homosexual and bisexual men	34800	51000	Goldie et al., 2000 (593)
Screening for anal squamous intraepithelial lesions and anal cancer every 6 months VERSUS Screening for anal squamous intraepithelial lesions and anal cancer every 1 year IN Hypothetical cohort of 30yo HIV negative homosexual and bisexual men	143500	210000	Goldie et al., 2000 (593)
Single-fraction radiotherapy VERSUS Multiple-fraction radiotherapy (6 fractions of 4 Gy) IN Cancer patients in the Netherlands with painful bone metastases from solid tumors	-53121	Cost-Saving	van den Hout et al., 2003 (594)

Rapid magnetic resonance (MR) imaging VERSUS Lumbar x-ray IN A hypothetical cohort of primary care patients with low back pain (LBP) referred for imaging to exclude cancer as the cause of their pain	296176	400000	Hollingworth et al., 2003 (595)
Palliative radiotherapy for bone metastases VERSUS *No comparator explicitly stated (no palliative treatment?) IN Cancer patients in Australia treated by radiation with palliative intent for bone metastases	939	1400	Barton et al., 2003 (596)
Subcutaneous low molecular weight heparin VERSUS Warfarin (6 months) with low molecular weight heparin (first 5 days) IN Cancer patients who experienced a venous thromboembolic event - age 65	149865	200000	Aujesky et al., 2005 (597)
Gamma knife radiosurgery VERSUS None IN Patients aged between 20 - 65 years with benign cranial base tumors	3762	4700	Cho et al., 2006 (598)
Open surgery VERSUS None IN Patients aged between 20 - 65 years with benign cranial base tumors	8996	11000	Cho et al., 2006 (598)
VERSUS IN Cancer patients with indications for anticoagulation for 6 months	11398	14000	Dranitsaris et al., 2006 (599)
VERSUS IN Patients with Type II Diabetes, hypertension and in remission with variety of cancers	398	500	Graves et al., 2006 (600)
VERSUS IN Patients received cisplatin based chemotherapy and received at least one dose of study drug	35935	45000	Lordick et al., 2007 (601)
Three-drug regimen consisting of aprepitant, a 5HT-3 antagonist, and a corticosteroid VERSUS Standard regimen IN Patients receiving a chemotherapeutic regimen including 70 mg/m2 or less of cisplatin	97429	120000	Moore et al., 2007 (602)
Adding aprepitant to the conventional regimen only after chemotherapy- induced nausea and vomiting (CINV) occurs with a prior cycle of chemotherapy VERSUS Standard regimen IN Patients receiving a chemotherapeutic regimen including 70 mg/m2 or less of cisplatin	96333	120000	Moore et al., 2007 (602)

Three-drug regimen consisting of aprepitant, a 5HT-3 antagonist, and a corticosteroid VERSUS Adding arepitant to the conventional regimen only after chemotherapy-induced nausea and vomiting (CINV) occurs with a prior cycle of chemotherapy IN Patients receiving a chemotherapeutic regimen including 70 mg/m2 or less of cisplatin	98250	120000	Moore et al., 2007 (602)
Aprepitant VERSUS Standard treatment IN Patients with cancer reveiving highly emetogenic chemotherapy (HEC), trial - based	-27387	Cost-Saving	Annemans et al., 2007 (603)
Aprepitant VERSUS Standard treatment IN Patients with cancer reveiving highly emetogenic chemotherapy (HEC), real-life based	-31122	Cost-Saving	Annemans et al., 2007 (603)
Aprepitant VERSUS Standard treatment IN Patients with moderately emetogenic chemotherapy (MEC), trial based	-1601	Cost-Saving	Annemans et al., 2007 (603)
Aprepitant VERSUS Standard treatment IN Patients with moderately emetogenic chemotherapy (MEC), real-life-based	-1956	Cost-Saving	Annemans et al., 2007 (603)
Controlled and maintained physical exercise at recommended frequencies VERSUS No physical exercise IN Persons 30 years old with: BMI=26, cholesterol=190, systolic blood pressure=120	17314	22000	Annemans et al., 2007 (604)
Controlled and maintained physical exercise at recommended frequencies VERSUS No physical exercise IN Persons 40 years old with: BMI=30, cholesterol=210, systolic blood pressure=250	11631	15000	Annemans et al., 2007 (604)
Controlled and maintained physical exercise at recommended frequencies VERSUS No physical exercise IN Persons 50 years old with: BMI=32, cholesterol=250, systolic blood pressure=140	2922	3700	Annemans et al., 2007 (604)
Prophylactic pegfilgrastim (6mg) VERSUS No prophylactic G-CSF (granulocyte colony-stimulating factor) IN Hospitalized patients (ages 18-65 years old) for a solid tumor cancer with a diagnosis of neutropenia (agranulocytosis)	-692025	Cost-Saving	Eldar-Lissai et al., 2008 (605)

Prophylactic pegfilgrastim (6mg) VERSUS Prophylactic filgrastim (300 mg and 480 mg) IN Hospitalized patients (ages 18-65 years old) for a solid tumor cancer with a diagnosis of neutropenia (agranulocytosis)	-3023416	Cost-Saving	Eldar-Lissai et al., 2008 (605)
Annual screening test for anal intra-epithelial neoplasia (AIN) and anal cancer VERSUS No screening IN UK population of men who have sex with men (MSM) ages 16-24	-306618	Increases Costs, Decreases Health	Karnon et al., 2008 (606)
VERSUS No screening IN UK population of men who have sex with men (MSM) ages 16-24	-28	Increases Costs, Decreases Health	Karnon et al., 2008 (606)
Screening test for anal intra-epithelial neoplasia (AIN) and anal cancer every 3 years VERSUS No screening IN UK population of men who have sex with men (MSM) ages 16-24	-261878	Increases Costs, Decreases Health	Karnon et al., 2008 (606)
Screening test for anal intra-epithelial neoplasia (AIN) and anal cancer every 4 years VERSUS No screening IN UK population of men who have sex with men (MSM) ages 16-24	-259005	Increases Costs, Decreases Health	Karnon et al., 2008 (606)
Screening test for anal intra-epithelial neoplasia (AIN) and anal cancer every 5 years VERSUS No screening IN UK population of men who have sex with men (MSM) ages 16-24	-16391	Increases Costs, Decreases Health	Karnon et al., 2008 (606)
Annual screening test for anal intra-epithelial neoplasia (AIN) and anal cancer VERSUS No screening IN UK population of men with HIV ages 16-24	-111724	Increases Costs, Decreases Health	Karnon et al., 2008 (606)
Screening test for anal intra-epithelial neoplasia (AIN) and anal cancer every 2 years VERSUS No screening IN UK population of men with HIV ages 16-24	-113758	Increases Costs, Decreases Health	Karnon et al., 2008 (606)
Screening test for anal intra-epithelial neoplasia (AIN) and anal cancer every 3 years VERSUS No screening IN UK population of men with HIV ages 16-24	-115226	Increases Costs, Decreases Health	Karnon et al., 2008 (606)

Screening test for anal intra-epithelial neoplasia (AIN) and anal cancer every 4 years VERSUS No screening IN UK population of men with HIV ages 16-24	-115115	Increases Costs, Decreases Health	Karnon et al., 2008 (606)
Screening test for anal intra-epithelial neoplasia (AIN) and anal cancer every 5 years VERSUS No screening IN UK population of men with HIV ages 16-24	-114588	Increases Costs, Decreases Health	Karnon et al., 2008 (606)
EPO(epoitin alfa) starting at hemoglobin level 12g/dl VERSUS Red blood cell transfusion treatment (RBCT) alone with a trigger of 10g/dl IN Patients with cancer who developed chemotherapy-related anemia in Sweden	33865	39000	Borg et al., 2008 (607)
30Gy of radiation divided in 10 fractions VERSUS 8Gy radiation in single fraction IN Patients enrolled in clinical trial RTOG97-14 with bone metastases	6975	7700	Konski et al., 2009 (608)
Lipid screening at 7-year intervals VERSUS No screening IN A hypothetical cohort of 30-year-old male survivors of Hodgkin's Lymphoma(HL) who survived 5 years after mediastinal irradiation. It was assumed that survivors of HL did not have pre-existing clinical CHD and that the incidence of hyperlipidemia in survivors of HL was similar to that for the age- and sexmatched US population.	22700	27000	Chen et al., 2009 (609)

Lipid screening at 5-year intervals VERSUS Lipid screening at 7-year intervals IN A hypothetical cohort of 30-year-old male survivors of Hodgkin's Lymphoma(HL) who survived 5 years after mediastinal irradiation. It was assumed that survivors of HL did not have pre-existing clinical CHD and that the incidence of hyperlipidemia in survivors of HL was similar to that for the age- and sex-matched US population.	31700	37000	Chen et al., 2009 (609)
Lipid screening at 3-year intervals VERSUS Lipid screening at 5-year intervals IN A hypothetical cohort of 30-year-old male survivors of Hodgkin's Lymphoma(HL) who survived 5 years after mediastinal irradiation. It was assumed that survivors of HL did not have pre-existing clinical CHD and that the incidence of hyperlipidemia in survivors of HL was similar to that for the age- and sex-matched US population.	78200	92000	Chen et al., 2009 (609)
Lipid screening at 1-year intervals VERSUS Lipid screening at 3-year intervals IN A hypothetical cohort of 30-year-old male survivors of Hodgkin's Lymphoma (HL) who survived 5 years after mediastinal irradiation. It was assumed that survivors of HL did not have pre-existing clinical CHD and that the incidence of hyperlipidemia in survivors of HL was similar to that for the age- and sex-matched US population.	73171	86000	Chen et al., 2009 (609)

Lipid screening at 7-year intervals VERSUS No screening IN A hypothetical cohort of 30-year-old female survivors of Hodgkin's Lymphoma (HL) who survived 5 years after mediastinal irradiation. It was assumed that survivors of HL did not have pre-existing clinical CHD and that the incidence of hyperlipidemia in survivors of HL was similar to that for the age- and sexmatched US population.	27000	32000	Chen et al., 2009 (609)
Lipid screening at 5-year intervals VERSUS Lipid screening at 7-year intervals IN A hypothetical cohort of 30-year-old female survivors of Hodgkin's Lymphoma (HL) who survived 5 years after mediastinal irradiation. It was assumed that survivors of HL did not have pre-existing clinical CHD and that the incidence of hyperlipidemia in survivors of HL was similar to that for the age- and sex-matched US population.	42800	50000	Chen et al., 2009 (609)

Lipid screening at 3-year intervals VERSUS Lipid screening at 5-year	36145	42000	Chen et al.,
intervals IN A hypothetical cohort of 30-year-old female survivors of			2009 (609)
Hodgkin's Lymphoma (HL) who survived 5 years after mediastinal			
irradiation. It was assumed that survivors of HL did not have pre-existing			
clinical CHD and that the incidence of hyperlipidemia in survivors of HL was			
similar to that for the age- and sex-matched US population.			

Lipid screening at 1-year intervals VERSUS Lipid screening at 3-year intervals IN A hypothetical cohort of 30-year-old female survivors of Hodgkin's Lymphoma (HL) who survived 5 years after mediastinal irradiation. It was assumed that survivors of HL did not have pre-existing clinical CHD and that the incidence of hyperlipidemia in survivors of HL was similar to that for the age- and sex-matched US population.	212121	250000	Chen et al., 2009 (609)
Pleurx cathether for home-based drainage of effusions VERSUS Chest tube placement with talc slurry IN US patients with malignant pleural effusions	-18620	Increases Costs, Decreases Health	Olden et al., 2010 (610)
Erythropoiesis-stimulating agent (ESA), dose: 22191U/week VERSUS Supportive transfusions IN Canadian cancer patients with anemia. Target Hemoglobin <= 12g/dL	96001	110000	Klarenbach et al., 2010 (611)
Erythropoiesis-stimulating agent (ESA), dose: 17673U/week VERSUS Supportive transfusions IN Canadian cancer patients with anemia. Target Hemoglobin <= 12g/dL	67846	75000	Klarenbach et al., 2010 (611)
Erythropoiesis-stimulating agent (ESA), dose: 29502U/week VERSUS Supportive transfusions IN Canadian cancer patients with anemia with an initial Hemoglobin >10g/dL	141006	160000	Klarenbach et al., 2010 (611)
Erythropoiesis-stimulating agent (ESA), dose: 16596U/week VERSUS Supportive transfusions IN Canadian cancer patients with anemia with an initial Hemoglobin > 10g/dL	68744	76000	Klarenbach et al., 2010 (611)
Erythropoiesis-stimulating agent (ESA) dose: 37069U/week, VERSUS Supportive transfusions IN Canadian cancer patients with anemia with target Hemoglobin <=12g/dL, initial Hemoglobin<=10g/dL. Chemotherapy- induced anemia only	131891	150000	Klarenbach et al., 2010 (611)
Erythropoiesis-stimulating agent (ESA) VERSUS Supportive transfusions IN Canadian cancer patients with anemia. Target Hemoglobin <= 12g/dL	272012	300000	Klarenbach et al., 2010 (611)

Trabectedin (TRA), followed by end stage treatment VERSUS End-stage treatment IN Adult patients with mSTS who were previously treated with Anthracycline and/or ifosfamide (first line treatment)	62780	69000	Soini et al., 2010 (612)
Start screening for Lynch syndrome at aged 25 years and implement genetic testing at 5% risk threshold VERSUS Current practice (genetic testing for lynch syndrome was offered to those with appropriate clinical risk factors after a malignacy was detected) IN US general population	27571	30000	Dinh et al., 2011 (613)
Start screening for Lynch syndrome at aged 35 years and implement genetic testing at 5% risk threshold VERSUS Current practice (genetic testing for lynch syndrome was offered to those with appropriate clinical risk factors after a malignacy was detected) IN US general population	24585	27000	Dinh et al., 2011 (613)
Start screening for Lynch syndrome at aged 30 years and implement genetic testing at 5% risk threshold VERSUS Current practice (genetic testing for lynch syndrome was offered to those with appropriate clinical risk factors after a malignacy was detected) IN US general population	26299	29000	Dinh et al., 2011 (613)
Gemcitabine + cisplatin VERSUS Gemcitabine monotherapy for a maximum of 24 weeks IN 63 year-old patients with locally advanced or metastatic cholangiocarcinoma, gallbladder cancer, or ampullary cancer and ECOG performance status of 0-2.	59480	66000	Roth et al., 2011 (614)
Intranasal fentanyl spray (infs) VERSUS Fentanyl buccal tablet (fbt) IN Swedish patients with breakthrough cancer pain and advaned stage cancer	17005	19000	Vissers et al., 2011 (615)
Intranasal fentanyl spray (infs) VERSUS Oral transmucosal fentanyl citrate (OTFC) IN Swedish patients with breakthrough cancer pain and advaned stage cancer	5271	5800	Vissers et al., 2011 (615)
Clodronate administered daily orally VERSUS Zoledronate administered intravenously every 4 weeks IN Patients with metastatic bone disease (MBD) in Brazil: healthcare perspective	-22653	Cost-Saving	Cunio Machado Fonseca et al., 2011 (616)
Clodronate administered daily orally VERSUS Zoledronate administered intravenously every 4 weeks IN Patients with metastatic bone disease	-22281	Cost-Saving	Cunio Machado

(MBD) in Brazil: societal perspective			Fonseca et al., 2011 (616)
Cisplatin plus raltitrexed for first-line treatment chemotherapy VERSUS Active symptom control IN Patients with malignant pleural mesothelioma	39615	44000	Woods et al., 2012 (617)
Cisplatin plus pemetrexed for first-line treatment chemotherapy VERSUS Cisplatin plus raltitrexed for first-line treatment chemotherapy IN Patients with malignant pleural mesothelioma	-715566	Increases Costs, Decreases Health	Woods et al., 2012 (617)
Cisplatin for first-line treatment chemotherapy VERSUS Active symptom control IN Patients with malignant pleural mesothelioma		Increases Costs, Decreases Health	Woods et al., 2012 (617)
Biennial anal cytology VERSUS None IN US HIV+ women with CD4 count <200 on antiretrovirals	34763	38000	Lazenby et al., 2012 (618)
Annual anal cytology VERSUS None IN US HIV+ women with CD4 count <200 on antiretrovirals	112026	120000	Lazenby et al., 2012 (618)
Denosumab VERSUS Zoledronic acid IN US patients with breast cancer	78915	83000	Stopeck et al., 2012 (619)
Denosumab VERSUS Zoledronic acid IN US patients with non-small-cell lung cancer (NSCLC)	67931	71000	Stopeck et al., 2012 (619)
Denosumab VERSUS Zoledronic acid IN US patients with castration- resistant prostate cancer (CRPC)	49405	52000	Stopeck et al., 2012 (619)
Direct decompressive surgery with postoperative radiotherapy (S+ RT) VERSUS Standard of care (corticosteroids and radiotherapy) IN Patients with neoplastic metastatic epidural spinal cord compression in Canada	250307	270000	Furlan et al., 2012 (620)
Tunneled pleural catheter (TPC) VERSUS Bedside pleurodesis (BP) IN Patients with malignant pleural effusion	-167000	Increases Costs, Decreases Health	Puri et al., 2012 (621)
Thorascoscopic pleurodesis (TP) VERSUS Bedside pleurodesis (BP) IN Patients with malignant pleural effusion	3008500	3300000	Puri et al., 2012 (621)

Repeated thoracentesis (RT) VERSUS Bedside pleurodesis (BP) IN Patients with malignant pleural effusion	-59429	Increases Costs, Decreases Health	Puri et al., 2012 (621)
Prophylactic short-term enoxaparin (LMWH) (40 mg subcutaneously once daily for 4 months) VERSUS Standard of care (no low molecular weight heparin (LMWH)) IN US patients with recent diagnosis of advanced cancer with no indication for prophylactic or therapeutic anticoagulation	90893	96000	Pishko et al., 2012 (622)
Varenicline VERSUS Unaided cessation IN Adults who smoke cigarettes in Greece	-8032	Cost-Saving	Athanasakis et al., 2012 (623)
Varenicline VERSUS Bupropion IN Adults who smoke cigarettes in Greece	-85353	Cost-Saving	Athanasakis et al., 2012 (623)
Varenicline VERSUS Nicotine replacement therapy IN Adults who smoke cigarettes in Greece	-11306	Cost-Saving	Athanasakis et al., 2012 (623)
Complex rehabilitation intervention delivered by a hospice-based multidisciplinary team VERSUS Usual care IN UK patients with advanced recurrent cancer	29936	33000	Jones et al., 2012 (624)
Gene-expression profiling (GEP) on the tissue of origin (GEPTOOtesting) VERSUS Standard/Usual care IN Specific disease- metastatic and poorly differentiated cancer; Age- Adult; Gender- Both; Country- United States.	46858	49000	Hornberger et al., 2013 (625)
High resolution anoscopy (HRA) at 6 months and 12 months VERSUS High resolution anoscopy (HRA) at 6 months and anal cytology at 12 months IN Specific disease- HIV infection; Age- 19 to 40 years; Gender- Male; Country- United States; Other- men having sex with men after treatment with high-grade intraepithelial neoplasia (HGAIN) and CD4 count greater than 500 cells/cubic mm.	4446	4700	Assoumou et al., 2013 (626)

Combined high resolution anoscopy (HRA) and anal cytology at 6 months and HRA at 12 months VERSUS HRA at 6 months and 12 months IN Specific disease- HIV infection; Age- 19 to 40 years; Gender- Male; Country- United States; Other- men having sex with men after treatment with high-grade intraepithelial neoplasia (HGAIN) and CD4 count greater than 500 cells/cubic mm.	-27148	Increases Costs, Decreases Health	Assoumou et al., 2013 (626)
Combined high resolution anoscopy (HRA) and anal cytology at 6 months and anal cytology at 12 months VERSUS HRA at 6 months and 12 months IN Specific disease- HIV infection; Age- 19 to 40 years; Gender- Male; Country- United States; Other- men having sex with men after treatment with high-grade intraepithelial neoplasia (HGAIN) and CD4 count greater than 500 cells/cubic mm.	-32664	Increases Costs, Decreases Health	Assoumou et al., 2013 (626)
Combined high resolution anoscopy (HRA) anal cytology at 6 months and 12 months VERSUS HRA at 6 months and 12 months IN Specific disease- HIV infection; Age- 19 to 40 years; Gender- Male; Country- United States; Other- men having sex with men after treatment with high-grade intraepithelial neoplasia (HGAIN) and CD4 count greater than 500 cells/cubic mm.	17373	18000	Assoumou et al., 2013 (626)
HPV vaccination, including cross-protection VERSUS None IN Healthy; Age- 0 to 18 years; Gender- Female; Country- Netherlands.	7696	8400	Luttjeboer et al., 2013 (627)
HPV vaccination VERSUS None IN Healthy; Age- 0 to 18 years; Gender- Female; Country- Netherlands.	9452	10000	Luttjeboer et al., 2013 (627)
Delivery of cancer treatment in general practice (GP) surgery VERSUS Delivery of cancer treatment in hospital IN Specific disease- cancer; Age- 19 to 40 years, 41 to 64 years, >=65 years; Gender- Both; Country- United Kingdom.	25197	27000	Corrie et al., 2013 (628)

Doxorubicin/ ifosfamide VERSUS trabectedin monotherapy IN Specific disease- advanced soft tissue sarcoma; Age- >=65 years; Gender- Both; Country- Italy.	-33994	Cost-Saving	Guest et al., 2013 (629)
Doxorubicin/ ifosfamide VERSUS trabectedin monotherapy IN Specific disease- advanced soft tissue sarcoma; Age- >=65 years; Gender- Both; Country- Spain.	-121659	Cost-Saving	Guest et al., 2013 (629)
Doxorubicin/ ifosfamide VERSUS trabectedin monotherapy IN Specific disease- advanced soft tissue sarcoma; Age- >=65 years; Gender- Both; Country- Sweden.	-227801	Cost-Saving	Guest et al., 2013 (629)
Mifamurtide VERSUS None IN Specific disease- forHigh- Grade,Resectable, NonmetastaticOsteosarcoma; Age- Adult; Gender- Both; Country- United Kingdom.	77764	86000	Johal et al., 2013 (630)

Ovarian Cancer

Description	Original US\$/QALY	2014US\$/QALY	Reference
Amifostine pretreatment VERSUS No amifostine pretreatment IN Patients with advanced ovarian cancer who are receiving combination therapy with cisplatin and cyclophosphamide	36161	55000	Bennett et al., 1998 (631)
High dose chemotherapy with autologous hematopoetic rescue VERSUS Cisplatin-based chemotherapy at conventional doses IN Patients with newly diagnosed advanced ovarian cancer	31915	48000	Messori et al., 1998 (632)
Paclitaxel plus cisplatin VERSUS Cyclophosphamide plus cisplatin IN Patients advanced ovarian cancer defined as International Federation of Gynaecology and Obstetrics' (FIGO) stage IIc, III, or IV	13827	19000	Limat et al., 2004 (633)

Referral to expert center VERSUS Referral to less experienced center IN Patients with advanced stage ovarian cancer patients in the US	5029	5900	Bristow et al., 2007 (634)
Inpatient intravenous paclitaxel (24 h) and intraperitoneal cisplatin plus outpatient intraperitoneal paclitaxel chemotherapy (IP/IV) VERSUS Outpatient intravenous paclitaxel (3 h) and carboplatin chemotherapy (IV/IV) IN Patients with optimal residual disease Stage III ovarian cancer	37454	44000	Bristow et al., 2007 (635)
Prophylactic surgery (hysterectomy and bilateral salpingo-oophorectomy) at age 40 years VERSUS Prophylactic surgery (hysterectomy and bilateral salpingo-oophorectomy) at age 30 years IN Women with Lynch syndrome in US	5025	5900	Kwon et al., 2008 (636)
Combined strategy: annual screening from age 30 years with endometrial biopsy, CA 125, and transvaginal ultrasound (TVUS) VERSUS Prophylactic surgery (hysterectomy and bilateral salpingo-oophorectomy) at age 40 years IN Women with Lynch syndrome in US	194650	230000	Kwon et al., 2008 (636)
Annual screening with endometrial biopsy, transvaginal utrasound, and CA 125 from age 30 years VERSUS Annual screening from age 30 years until prophylactic surgery at age 40 years (combined strategy) IN Women with Lynch syndrome in US	-16521	Increases Costs, Decreases Health	Kwon et al., 2008 (636)
Prophylactic surgery (hysterectomy and bilateral salpingo-oophorectomy) at age 30 years VERSUS No prevention IN Women with Lynch syndrome in US, 30 years old	13877	16000	Kwon et al., 2008 (636)
Intravenous chemotherapy VERSUS Intraperitoneal therapy IN Patients with optimally resected stage 111 ovarian cancer, 11.5 year time horizon	71835	84000	Havrilesky et al., 2008 (637)
Intravenus chemotherapy VERSUS Intraperitoneal therapy IN Patients with optimally resected stage 111 ovarian cancer, lifetime horizon	32053	38000	Havrilesky et al., 2008 (637)
Treatment in semi-specialized hospital VERSUS Treatment in a general hospitals IN Ovarian cancer patients	8964	11000	Greving et al., 2009 (638)
Treatment in tertiary care centers VERSUS Treatment in semi-specialized	128948	150000	Greving et

hospital IN Ovarian cancer patients			al., 2009 (638)
Population-based BRCA 1/2 testing measuring cancer incidence, life expectancy and costs VERSUS No intervention IN Ashkenazi Jewish women living in the United States ages 35-55 years	8300	9500	Rubinstein et al., 2009 (639)
Annual gynecologic surveillance VERSUS Annual exams IN US women aged 30 years with lynch syndrome (hereditary nonpolyposis colorectal cancer)	-56302	Cost-Saving	Yang et al., 2011 (640)
Prophylactic Surgery VERSUS Annual gynecologic surveillance IN US women aged 30 years with lynch syndrome (hereditary nonpolyposis colorectal cancer)	-83644	Cost-Saving	Yang et al., 2011 (640)
Docetaxel and carboplatin (cDC) weekly VERSUS Ssequential single- agent docataxel followed by carboplatin (sDC) IN US women with recurrent, platinum-sensitive ovarian cancer	25239	27000	Havrilesky et al., 2011 (641)
Carrboplatin, paclitaxel, bevacizumab, and bevacizumab maintenance VERSUS Carboplatin, paclitaxel and paclitaxel maintenance IN Older adult patients aged 58 years diagnosed with epithelial ovarian cancer	-1980240	Increases Costs, Decreases Health	Lesnock et al., 2011 (642)
Carboplatin, paclitaxel and paclitaxel maintenance VERSUS Carboplatin and paclitaxel IN Older adult patients aged 58 years diagnosed with epithelial ovarian cancer	13402	15000	Lesnock et al., 2011 (642)
Prolonged Prophylaxis (PP) for venous thromboembolism: Enoxaparin (40mg) subcutaneously once daily for 4 weeks post-surgery VERSUS No additional therapy after discharge IN US patients aged 65 years with stage IIIC ovarian cancer having cytoreductive surgery followed by six cycles of chemotherapy with carboplatin and paclitaxel	-1413	Cost-Saving	Uppal et al., 2012 (643)
Prophylactic salpingectomy at age 40 years with prophylactic oophorectomy at age 50 years VERSUS Prophylactic (bilateral) salpingectomy at age 40 years IN Specific disease- Ovarian Cancer; Age- 19 to 40 years; Gender- Female; Country- Canada; Other- BRCA2 mutation carriers.	89746	93000	Kwon et al., 2013 (644)

Prophylactic salpingectomy at age 40 years with prophylactic oophorectomy at age 50 years VERSUS Prophylactic (bilateral) salpingectomy at age 40 years IN Specific disease- Ovarian Cancer; Age- 19 to 40 years; Gender- Female; Country- Canada; Other- BRCA1 mutation carriers.	37833	39000	Kwon et al., 2013 (644)
Prophylactic (bilateral) salpingectomy at age 40 years VERSUS Bilateral salpingo-oophorectomy at age 40 years IN Specific disease- Ovarian Cancer; Age- 19 to 40 years; Gender- Female; Country- Canada; Other-BRCA2 mutation carriers.	25677	26000	Kwon et al., 2013 (644)
Prophylactic (bilateral) salpingectomy at age 40 years VERSUS Bilateral salpingo-oophorectomy at age 40 years IN Specific disease- Ovarian Cancer; Age- 19 to 40 years; Gender- Female; Country- Canada; Other-BRCA1 mutation carriers.	20065	21000	Kwon et al., 2013 (644)
Total laproscopic hysterectomy VERSUS total adominal hysterectomy IN Specific disease- early stage endometrial cancer; Age- Adult; Gender- Female; Country- Australia.	-96763	Cost-Saving	Graves et al., 2013 (645)
Early Palliative Care VERSUS None IN Specific disease- Ovarian Cancer; Age- Unknown; Gender- Female; Country- United States.	37440	Cost-Saving	Lowery et al., 2013 (646)
Trabectedin plus pegylated liposomal doxorubicin VERSUS Liposomal doxorubicin IN Specific disease- Ovarian Cancer; Age- Adult; Gender-Female; Country- United Kingdom.	61005	64000	Fisher et al., 2013 (647)
Lymph node dissection VERSUS No LND; hysterectomy IN Specific disease- Grade 3 endometrial cancer; Age- Adult; Gender- Female; Country- United States; Other- pre-surgical early stage population.	40183	42000	Havrilesky et al., 2013 (648)
Lymph node dissection VERSUS No LND; hysterectomy IN Specific disease- Grades 2-3 endometrial cancer; Age- Adult; Gender- Female; Country- United States; Other- pre-surgical early stage population.	-243100	Increases Costs, Decreases Health	Havrilesky et al., 2013 (648)

Polyethylene glycolated liposomal doxorubicin (PLD)/carboplatin VERSUS Paclitaxel/carboplatin IN Specific disease- platinum-sensitive recurrent ovarian cancer; Age- Adult; Gender- Female; Country- South Korea.	21658	23000	Lee et al., 2013 (649)
Bevacizumab (7.5mg/m2) administered with primary chemotherapy (carboplatin and paclitaxel) VERSUS Carboplatin and paclitaxel chrmotherapy IN Specific disease- Ovarian Cancer; Age- Adult; Gender- Female; Country- United States; Other- High risk (Suboptimally debulked stage IIIC or stage IV) disease.	168610	180000	Barnett et al., 2013 (650)
Bevacizumab (7.5mg/m2) administered with primary chemotherapy (carboplatin and paclitaxel) for patients testing positive for single nucleotide polymorphismbiomarker predictive test VERSUS Carboplatin and paclitaxel chemotherapy IN Specific disease- Ovarian Cancer; Age- Adult; Gender- Female; Country- United States.	128928	140000	Barnett et al., 2013 (650)

Pancreatic Cancer

Description	Original US\$/QALY	2014US\$/QALY	Reference
Initial endocopic placement of a metal billiary stent VERSUS Initial endocopic placement of a plastic billiary stent IN Patients with unresectable pancreatic carcinoma and obstructive jaundice	-154643	Cost-Saving	Arguedas et al., 2002 (651)
Radiation plus concurrent fluorouracil-based chemotherapy VERSUS No treatment IN 65- year old patients with locally advanced pancreatic cancer and no major co-morbidity	68724	83000	Krzyzanowska et al., 2007 (652)
Annual surveillance endoscopic ultrasound with fine needle aspiration VERSUS Do nothing IN 45 year old male, first degree relative of pancreatic adenocarcinoma patients with EUS findings of chronic pancreatitis	-62759	Increases Costs, Decreases Health	Rubenstein et al., 2007 (653)

Annual surveillance endoscopic ultrasound VERSUS Do nothing IN 45 year old male, first degree relative of pancreatic adenocarcinoma patients with EUS findings of chronic pancreatitis	-45436	Increases Costs, Decreases Health	Rubenstein et al., 2007 (653)
Prophylactic total pancreatectomy VERSUS Do nothing IN 45 year old male, first degree relative of pancreatic adenocarcinoma patients with EUS findings of chronic pancreatitis	-45904	Increases Costs, Decreases Health	Rubenstein et al., 2007 (653)
Surveillance VERSUS No surveillance IN United States 60 year old patients with branch duct intraductal papillary mucinous neoplasm	20096	22000	Huang et al., 2009 (654)
Surgery VERSUS Surveillance IN United States 60 year old patients with branch duct intraductal papillary mucinous neoplasm	132436	150000	Huang et al., 2009 (654)
Surgical resection aimed at cure VERSUS Standard care IN Swedish patients with exocrine or ampullary pancreatic adenocarcinoma	48267	53000	Ljungman et al., 2010 (655)
Gemcitabine with radiotherapy VERSUS Gemcitabine with stereotactic body radiotherapy (SBRT) IN Patients with locally advanced pancreatic cancer receiving chemotherapy or chemotherapy and radiation	-50000	Increases Costs, Decreases Health	Murphy et al., 2011 (656)
Gemcitabine with intensity-modulated radiotherapy (IMRT) VERSUS Gemcitabine with stereotactic body radiotherapy (SBRT) IN Patients with locally advanced pancreatic cancer receiving chemotherapy or chemotherapy and radiation	-224561	Increases Costs, Decreases Health	Murphy et al., 2011 (656)
Gemcitabine with conventional radiotherapy VERSUS Gemcitabine IN Patients with locally advanced pancreatic cancer receiving chemotherapy or chemotherapy and radiation	126800	140000	Murphy et al., 2011 (656)

Gemcitabine with intensity-modulated radiotherapy (IMRT) VERSUS Gemcitabine with conventional radiotherapy IN Patients with locally advanced pancreatic cancer receiving chemotherapy or chemotherapy and radiation	1371429	1500000	Murphy et al., 2011 (656)
Gemcitabine plus stereotactic body radiotherapy (SBRT) VERSUS Gemcitabine alone IN Patients with locally advanced pancreatic cancer receiving chemotherapy or chemotherapy and radiation	69500	77000	Murphy et al., 2011 (656)
Everolimus (10mg daily) VERSUS Sunitinib (37.5mg daily) IN Patients with advanced progressive pancreatic neuroendocrine tumors	34816	37000	Casciano et al., 2012 (657)
Chemotherapy alone (gemcitabine 600mg per m.sq. concurrent with cisplatin 30 mg per m.sq. both 3 times per month for 4 months) VERSUS None IN Patients with radiographically resectable pancreatic head adenocarcinoma	36264	38000	Abbott et al., 2012 (658)
Surgery plus adjuvant chemotherapy (gemcitabine 1000 mg per m.sq, 3 infusions per month for 6 months) VERSUS None IN Patients with radiographically resectable pancreatic head adenocarcinoma	91956	97000	Abbott et al., 2012 (658)
Surgery plus adjuvant chemotherapy VERSUS Chemotherapy alone (gemcitabine 600mg per m.sq. concurrent with cisplatin 30 mg per m.sq. both 3 times per month for 4 months) IN Patients with radiographically resectable pancreatic head adenocarcinoma	133404	140000	Abbott et al., 2012 (658)
VERSUS IN Specific disease- resectable pancreatic head adenocarcinoma; Age- Adult; Gender- Both; Country- United States.	-12184	Cost-Saving	Abbott et al., 2013 (659)
Personalized palliative care- providing individual palliative care by accounting for individual's clinical characteristics and standard palliative care (conventional treatment based on suficient pain management) VERSUS None IN Specific disease- malignancy of the exocrine pancreas or ampulla; Age- 19 to 40 years, 41 to 64 years, >=65 years; Gender- Not Specified; Country- Sweden; Other-unresectable tumors.	143399	150000	Ljungman et al., 2013 (660)

Resection VERSUS None IN Specific disease- malignancy of the exocrine pancreas or ampulla; Age- 19 to 40 years, 41 to 64 years, >=65 years; Gender- Not Specified; Country- Sweden; Other-resectable tumors.	62743	66000	Ljungman et al., 2013 (660)
Capecitabine + gemcitabine (GEM) (Gem-CAP) VERSUS Standard/Usual care- Gemcitabine (GEM) alone IN Specific disease- Metastatic pancreatic cancer; Age- Unknown; Gender- Both; Country- Canada.	81888	89000	Tam et al., 2013 (661)
Erlotinib combination (gem-e) consisting of erlotinib + gemcitabine (GEM) VERSUS Standard/Usual care- Gemcitabine (GEM) alone IN Specific disease- Metastatic pancreatic cancer; Age- Unknown; Gender- Both; Country- Canada.	149237	160000	Tam et al., 2013 (661)
Combination of 5-fluorouracil, folinic acid, irinotecan, and oxaliplatin (folfirinox) with gemcitabine (GEM) VERSUS Standard/Usual care- Gemcitabine (GEM) alone IN Specific disease- Metastatic pancreatic cancer; Age- Unknown; Gender- Both; Country- Canada.	129375	140000	Tam et al., 2013 (661)
Screening for pancreatic cancer VERSUS Standard/Usual Care IN Specific disease- diabetes; Age- Adult; Gender- Both; Country-Sweden.	18739	20000	Ghatnekar et al., 2013 (662)

Prostate Cancer

Description	Original US\$/QALY	2014US\$/QALY	Reference
Preoperative autologous donation, overall VERSUS No preoperative autologous donation IN Patients with clinical Stage A or B prostate cancer undergoing radical retropubic prostatectomy	1813000	3000000	Goodnough et al., 1994 (663)
Flutamide plus orchiectomy VERSUS Orchiectomy alone IN 70-yo men with newly diagnosed, untreated minimal metastatic prostate carcinoma with good performance status	27000	43000	Bennett et al., 1996 (664)

Flutamide plus orchiectomy VERSUS Orchiectomy alone IN 70-yo men with newly diagnosed, untreated severe metastatic prostate carcinoma with good performance status	18840	30000	Bennett et al., 1996 (664)
biopsy VERSUS no biopsy IN 50 yo men with excess PSA levels and probability of clinically significant cancer given positive biopsy = 0.2		Cost-Saving	Gottlieb et al., 1996 (665)
biopsy VERSUS no biopsy IN 60 yo men with excess PSA levels (>0ng/mL) and probability of clinically significant cancer given positive biopsy = 0.2	13558	22000	Gottlieb et al., 1996 (665)
biopsy VERSUS no biopsy IN 70 yo men with excess PSA levels (>0ng/mL) and probability of clinically significant cancer given positive biopsy = 0.2		Increases Costs, Decreases Health	Gottlieb et al., 1996 (665)
Endorectal surface coil for MR imaging VERSUS Conventional magnetic resonance imaging IN Otherwise healthy men with biopsy-proved prostate cancer	1158	1800	Langlotz et al., 1996 (666)
High specificity Endorectal surface coil for MR imaging VERSUS Endorectal surface coil for MR imaging IN Otherwise healthy men with biopsy-proved prostate cancer	10525	17000	Langlotz et al., 1996 (666)
Mitoxantrone & prednisone VERSUS Prednisone alone IN Patients with symptomatic (pain) hormone-refractory prostate cancer	-4873	Cost-Saving	Bloomfield et al., 1998 (667)
Magnetic Resonance Imaging VERSUS Radical prostatectomy performed on the basis of clinical staging IN 65 year old male candidates for surgery on prostate cancer		Cost-Saving	Jager et al., 2000 (668)
Bilateral orchiectomy VERSUS Diethylstilbestrol IN 65 year old male with previous history of prostate cancer	7500	11000	Bayoumi et al., 2000 (669)
Nonsteroidal antiandrogen (NSAA) VERSUS Bilateral orchiectomy IN 65 year old male with previous history of prostate cancer	-75833	Increases Costs, Decreases Health	Bayoumi et al., 2000 (669)

Nonsteroidal antiandrogen (NSAA) + bilateral orchiectomy VERSUS Bilateral orchiectomy IN 65 year old male with previous history of prostate cancer	-274000	Increases Costs, Decreases Health	Bayoumi et al., 2000 (669)
Luteinizing hormone-releasing hormone agonist (LHRH) VERSUS Bilateral orchiectomy IN 65 year old male with previous history of prostate cancer	-1000000	Increases Costs, Decreases Health	Bayoumi et al., 2000 (669)
Nonsteroidal antiandrogen (NSAA) + luteinizing hormone-releasing hormone agonist VERSUS Bilateral orchiectomy IN 65 year old male with previous history of prostate cancer	-475714	Increases Costs, Decreases Health	Bayoumi et al., 2000 (669)
Selection-based management policy using DNA-ploidy as an experimental marker (prostatectomy for nondiploid result; monitoring for diploid result) VERSUS Monitoring (observation) IN Male patients diagnosed with moderately differentiated (Gleason sum score 5-7) prostate cancer - age 60	17374	23000	Calvert et al., 2003 (670)
Selection-based management policy using DNA-ploidy as an experimental marker (prostatectomy for nondiploid result; monitoring for diploid result) VERSUS Radical prostatectomy for all patients IN Male patients diagnosed with moderately differentiated (Gleason sum score 5-7) prostate cancer - age 60	24804	33000	Calvert et al., 2003 (670)
Zoledronic acid VERSUS Placebo IN Multi-national men with advanced stage prostate cancer	159200	220000	Reed et al., 2004 (671)
Bicalutamide and standard care VERSUS Standard care only IN Patients with early prostate cancer enrolled in a large clinical trial in Belgium	25581	34000	Moeremans et al., 2004 (672)
Single fraction radiotherapy VERSUS Pain medication IN Patient with hormone-refractory prostate cancer who had developed a painful solitary bone metastasis	6857	9000	Konski et al., 2004 (673)
Multifraction radiotherapy VERSUS Pain medication IN Patient with hormone- refractory prostate cancer who had developed a painful solitary bone metastasis	36000	47000	Konski et al., 2004 (673)

Chemotherapy VERSUS Pain medication IN Patient with hormone-refractory prostate cancer who had developed a painful solitary bone metastasis	-52709	Increases Costs, Decreases Health	Konski et al., 2004 (673)
Androgen blockade therapy (CAB) with bicalutamide plus monthly luteinizing hormone releasing hormone agonist (LH-Rha) VERSUS LH-RHa therapy alone IN Men with documented metastatic prostate cancer (stage D2)	20053	26000	Penson et al., 2005 (674)
Finasteride prevention therapy VERSUS No prevention therapy IN Men in the US without prostate cancer - age 55	226087	290000	Zeliadt et al., 2005 (675)
Hormone therapy with radiation VERSUS Radiation alone IN Patients with locally advanced prostate cancer	2153	2800	Konski et al., 2005 (676)
Bicalutamide with a luteinizing hormone-releasing hormone (LHRH) (5 years) VERSUS Flutamide with a LHRH (5 years) IN Men with documented metastatic prostate cancer (stage D2)	22000	28000	Ramsey et al., 2005 (677)
Bicalutamide with a luteinizing hormone-releasing hormone (LHRH) (10 years) VERSUS Flutamide with a LHRH (10 years) IN Men with documented metastatic prostate cancer (stage D2)	16000	21000	Ramsey et al., 2005 (677)
Intensity-modulated radiation therapy (IMRT) VERSUS 3D conformal radiation therapy (3DCRT) IN Males aged 70 year with good risk for prostate cancer	17448	22000	Konski et al., 2005 (678)
Intensity-modulated radiation therapy (IMRT) VERSUS 3D conformal radiation therapy (3DCRT) IN Males aged 70 year with intermediate risk for prostate cancer	16182	20000	Konski et al., 2005 (678)
Long-term androgen-deprivation with radiation therapy (RT) VERSUS Short- term androgen-deprivation with RT IN Men with histologically confirmed adenocarcinoma of the prostate	1122	1400	Konski et al., 2006 (679)
VERSUS IN 70-year old patients with intermediate-risk prostate cancer	40101	50000	Konski et al., 2006 (680)
Annual screening regardless of PSA level VERSUS Biennial screening if PSA<=3 IN Japanese Men screened for prostate cancer	80857	98000	Kobayashi et al., 2007

			(681)
Biennial screening if PSA<=1.0 VERSUS Biennial screening if PSA<=3.0 IN Japanese Men screened for prostate cancer	34231	41000	Kobayashi et al., 2007 (681)
Biennial screening if PSA<=2.0 VERSUS Biennial screening if PSA<=3.0 IN Japanese Men screened for prostate cancer	9250	11000	Kobayashi et al., 2007 (681)
Biennial screening if PSA<=2.0 VERSUS Biennial screening if PSA<=3.0 IN Japanese Men screened for prostate cancer	-7727	Increases Costs, Decreases Health	Kobayashi et al., 2007 (681)
Proton beam therapy VERSUS Intensity modulated radiation therapy (IMRT) IN 70 year old man with prostate cancer	63578	77000	Konski et al., 2007 (682)
Proton beam therapy VERSUS Intensity modulated radiation therapy (IMRT) IN 60 year old man with prostate cancer	55726	68000	Konski et al., 2007 (682)
Cyproterone acetate (mono hormone therapy) VERSUS Bicalutamine (complete androgenic blocade) IN Prostate cancer patients	-55636	Cost-Saving	Lazzaro et al., 2007 (683)
Cyproterone acetate (mono hormone therapy) VERSUS LHRH-a (complete androgenic blocade) IN Prostate cancer patients	-7538	Cost-Saving	Lazzaro et al., 2007 (683)
Finasteride treatment as a prophylactic against the development of prostrate cancer VERSUS No preventive treatment IN 50 year old men in the United States with a Prostate Specific Antigen of <3.0mg per ml and a normal Digital Rectal Examination	122747	140000	Svatek et al., 2008 (684)
inasteride treatment as a prophylactic against the development of prostrate cancer VERSUS No preventive treatment IN 50 year old men in the United States with a Prostate Specific Antigen of <3.0mg per ml and a normal Digital Rectal Examination	112062	130000	Svatek et al., 2008 (684)

Finasteride treatment as a prophylactic against the development of prostrate cancer VERSUS No preventive treatment IN 50 year old men in the United States with a Prostate Specific Antigen of <3.0mg per ml and a normal Digital Rectal Examination	3405932	3900000	Svatek et al., 2008 (684)
Computerized tomography for initial patient positioning for radiotherapy localization to treat prostate cancer VERSUS Ultrasound initial patient positioning for radiotherapy localization to treat prostate cancer IN United States Prostate Cancer patients aged 46-79 (average age=66; SD=9)	-18639	Increases Costs, Decreases Health	Quigley et al., 2008 (685)
Electromagnetic (Calypso 4D) VERSUS Ultrasound initial patient positioning for radiotherapy localization to treat prostate cancer IN United States Prostate Cancer patients aged 46-79 (average age=66; SD=9)	14053	17000	Quigley et al., 2008 (685)
Ultrasound initial patient positioning for radiotherapy to treat prostate cancer VERSUS Electronic portal imaging devices for initial patient position for radiotherapy to treat prostate cancer IN United States Prostate Cancer patients aged 46-79 (average age=66; SD=9)	5959	7000	Quigley et al., 2008 (685)
Prostate Px test VERSUS Current post-prostatectomy practice IN Post- prostatectomy prostate cancer patients in the United States	2100	2400	Zubek et al., 2009 (686)
Nomogram VERSUS Current post-prostatectomy practice IN Post- prostatectomy prostate cancer patients in the United States	35	40	Zubek et al., 2009 (686)
Prostate Px test VERSUS Nonogram IN Post-prostatectomy prostate cancer patients in the United States	4704	5400	Zubek et al., 2009 (686)
Original IMPACT program VERSUS Baseline, no program. (reliance on the county health care safety net) IN Men with prostate cancer, mean age of diagnosis 60 years. (worst case scenario)	27189	34000	Bergman et al., 2009 (687)
Modified IMPACT program (\$10 million budget) VERSUS Baseline, no program. (reliance on the county health care safety net) IN Men with prostate cancer, mean age of diagnosis 60 years. (worst case scenario)	84236	110000	Bergman et al., 2009 (687)
Medicaid prostate cancer program VERSUS Baseline, no program. (reliance on the county health care safety net) IN Men with prostate cancer, mean age of diagnosis 60 years. (worst case scenario)	10714	13000	Bergman et al., 2009 (687)

hemoprevention 5-alpha reductase inhibitors (5ARIs) to avert prostate cancer. Finesterase 5mg daily. Dutasteride 0.5mg daily. VERSUS No chemoprevention to avert prostate cancer. Standard care. IN US men aged 75+ y.o. who have been previously examined for prostate cancer and men considered to be at greater risk for prostate cancer.	37900	42000	Earnshaw et al., 2010 (688)
No bone mineral density (BMD) test and universal alendronate therapy VERSUS Bone mineral density (BMD) test and selective alendronate therapy for patients with osteoporosis IN United States men aged 70 years with locally advanced or high-risk localized prostate cancer starting a 2-year course of androgen deprivation therapy after radiation therapy.	178700	200000	lto et al., 2010 (689)
Bone mineral density test (BMD) and selective alendronate therapy for patients with osteoporosis VERSUS No bone mineral density test (BMD) and no alendronate therapy IN United States men aged 70 years with locally advanced or high-risk localized prostate cancer starting a 2-year course of androgen deprivation therapy after radiation therapy.	66800	73000	lto et al., 2010 (689)
Dustasteride chemoprevention VERSUS Placebo IN Men with a PSA of 2.5- 10.0 mg/mL, a normal biopsy, absence of severe lower urinary tract symptoms and a prostate volume of =80ml	140240	150000	Svatek et al., 2010 (690)
Chemoprevention with finasteride for 25 years VERSUS No chemoprevention IN 50 year-old US male patients with negative family history of prostate cancer	101025	110000	Reed et al., 2011 (691)
Chemoprevention with finasteride for 25 years VERSUS No chemoprevention IN 50 year-old US male patients with positive family history of prostate cancer	64193	71000	Reed et al., 2011 (691)
Chemoprevention with finasteride for 25 years VERSUS No chemoprevention IN 50 year-old US male patients	89300	99000	Reed et al., 2011 (691)
Zoledronic acid (4mg) administered via IV infusion every 3 weeks for 15 months VERSUS Placebo IN Patients with hormone-refractory prostate cancer (HRPC) with a documented history of bone metastases in Portgual	12745	14000	Carter et al., 2011 (692)

Zoledronic acid (4mg) administered via IV infusion every 3 weeks for 15 months VERSUS Placebo IN Patients with hormone-refractory prostate cancer (HRPC) with a documented history of bone metastases in Germany	35123	39000	Carter et al., 2011 (692)
Zoledronic acid (4mg) administered via IV infusion every 3 weeks for 15 months VERSUS Placebo IN Patients with hormone-refractory prostate cancer (HRPC) with a documented history of bone metastases in Netherlands	3578	3900	Carter et al., 2011 (692)
Zoledronic acid (4mg) administered via IV infusion every 3 weeks for 15 months VERSUS Placebo IN Patients with hormone-refractory prostate cancer (HRPC) with a documented history of bone metastases in France	53022	58000	Carter et al., 2011 (692)
Robot-assisted laparoscopic prostatectomy (RALP) VERSUS Retropubic radical prostatectomy (RRP) IN Patients aged 50 - 69 years with clinically localised prostate cancer undergoing radical prostatectomy (RP)	-1071571	Increases Costs, Decreases Health	Hohw? et al., 2011 (693)
Formal one-to-one pelvic-floor muscle training with therapist VERSUS Standard of care & lifestyle advice IN UK men with urinary incontinence post transurethral resection of the prostate (TURP)	-10087229	Increases Costs, Decreases Health	Glazener et al., 2011 (694)
Formal one-to-one pelvic-floor muscle training with therapist VERSUS Standard of care & lifestyle advice IN UK men with urinary incontinence post radical prostatectomy	131052	140000	Glazener et al., 2011 (694)
Usual care plus chemoprevention with dutasteride (0.5 mg/day) VERSUS Usual care plus placebo IN US healthy men aged 50-75 years at increased risk for prostate cancer	21781	24000	Kattan et al., 2011 (695)
Monthly injection of degarelix VERSUS 3-monthly luteinizing hormone- releasing hormone analogue (triptorelin) plus short-term antiandrogen treatment IN UK patients aged 70 years with asymptomatic metastatic prostate cancer	85445	94000	Lu et al., 2011 (696)
Radical prostatectomy for localized prostate cancer VERSUS Watchful waiting IN Men aged 70 years with Gleason score between 0-4 and prostate specific antigen score <=10 in Sweden	34449	39000	Lyth et al., 2012 (697)

Radical prostatectomy for localized prostate cancer VERSUS Watchful waiting IN Men aged 75 years with Gleason score between 0-4 and prostate specific antigen score <=10 in Sweden	12984	15000	Lyth et al., 2012 (697)
Radical prostatectomy for localized prostate cancer VERSUS Watchful waiting IN Men aged 65 years with Gleason score between 0-4 and prostate specific antigen score between 11-20 in Sweden	5169	5900	Lyth et al., 2012 (697)
Radical prostatectomy for localized prostate cancer VERSUS Watchful waiting IN Men aged 70 years with Gleason score between 0-4 and prostate specific antigen score between 11-20 in Sweden	19240	22000	Lyth et al., 2012 (697)
Radical prostatectomy for localized prostate cancer VERSUS Watchful waiting IN Men aged 75 years with Gleason score between 0-4 and prostate specific antigen score between 11-20 in Sweden	63377	72000	Lyth et al., 2012 (697)
Radical prostatectomy for localized prostate cancer VERSUS Watchful waiting IN Men aged 65 years with Gleason score between 0-4 and prostate specific antigen score >20 in Sweden	3117	3600	Lyth et al., 2012 (697)
Radical prostatectomy for localized prostate cancer VERSUS Watchful waiting IN Men aged 70 years with Gleason score between 0-4 and prostate specific antigen score >20 in Sweden	12700	15000	Lyth et al., 2012 (697)
Radical prostatectomy for localized prostate cancer VERSUS Watchful waiting IN Men aged 75 years with Gleason score between 0-4 and prostate specific antigen score >20 in Sweden	38790	44000	Lyth et al., 2012 (697)
Radical prostatectomy for localized prostate cancer VERSUS Watchful waiting IN Men aged 65 years with Gleason score between 5-6 and a prostate specific antigen score <=10 in Sweden	8604	9800	Lyth et al., 2012 (697)
Radical prostatectomy for localized prostate cancer VERSUS Watchful waiting IN Men aged 70 years with Gleason score between 5-6 and a prostate specific antigen score <=10 in Sweden	22275	25000	Lyth et al., 2012 (697)

Radical prostatectomy for localized prostate cancer VERSUS Watchful waiting IN Men aged 75 years with Gleason score between 5-6 and a prostate specific antigen score <=10 in Sweden	70011	80000	Lyth et al., 2012 (697)
Radical prostatectomy for localized prostate cancer VERSUS Watchful waiting IN Men aged 65 years with Gleason score between 5-6 and a prostate specific antigen score between 11-20	5995	6800	Lyth et al., 2012 (697)
Radical prostatectomy for localized prostate cancer VERSUS Watchful waiting IN Men aged 70 years with Gleason score between 5-6 and prostate specific antigen score between 11-20 in Sweden	15113	17000	Lyth et al., 2012 (697)
Radical prostatectomy for localized prostate cancer VERSUS Watchful waiting IN Men aged 75 years with Gleason score between 5-6 and prostate specific antigen score between 11-20 in Sweden	42237	48000	Lyth et al., 2012 (697)
Radical prostatectomy for localized prostate cancer VERSUS Watchful waiting IN Men aged 65 years with Gleason score between 5-6 and prostate specific antigen score >20 in Sweden	4819	5500	Lyth et al., 2012 (697)
Radical prostatectomy for localized prostate cancer VERSUS Watchful waiting IN Men aged 65 years with Gleason score between 5-6 and prostate specific antigen score >20 in Sweden	11573	13000	Lyth et al., 2012 (697)
Radical prostatectomy for localized prostate cancer VERSUS Watchful waiting IN Men aged 75 years with Gleason score between 5-6 and prostate specific antigen score >20 in Sweden	29026	33000	Lyth et al., 2012 (697)
Radical prostatectomy for localized prostate cancer VERSUS Watchful waiting IN Men aged 65 years with Gleason score of 7 and prostate specific antigen score <10 in Sweden	6201	7100	Lyth et al., 2012 (697)
Radical prostatectomy for localized prostate cancer VERSUS Watchful waiting IN Men aged 70 years with Gleason score of 7 and prostate specific antigen score <10 in Sweden	14787	17000	Lyth et al., 2012 (697)

Radical prostatectomy for localized prostate cancer VERSUS Watchful waiting IN Men aged 75 years with Gleason score of 7 and prostate specific antigen score <10 in Sweden	36282	41000	Lyth et al., 2012 (697)
Radical prostatectomy for localized prostate cancer VERSUS Watchful waiting IN Men aged 65 years with Gleason score of 7 and prostate specific antigen score 11-20 in Sweden	5543	6300	Lyth et al., 2012 (697)
Radical prostatectomy for localized prostate cancer VERSUS Watchful waiting IN Men aged 70 years with Gleason score of 7 and prostate specific antigen score 11-20 in Sweden	12216	14000	Lyth et al., 2012 (697)
Radical prostatectomy for localized prostate cancer VERSUS Watchful waiting IN Men aged 75 years with Gleason score of 7 and prostate specific antigen score 11-20 in Sweden	26723	31000	Lyth et al., 2012 (697)
Radical prostatectomy for localized prostate cancer VERSUS Watchful waiting IN Men aged 65 years with Gleason score of 7 and prostate specific antigen score >20 in Sweden	5722	6500	Lyth et al., 2012 (697)
Radical prostatectomy for localized prostate cancer VERSUS Watchful waiting IN Men aged 70 years with Gleason score of 7 and prostate specific antigen score >20 in Sweden	10359	12000	Lyth et al., 2012 (697)
Radical prostatectomy for localized prostate cancer VERSUS Watchful waiting IN Men aged 75 years with Gleason score of 7 and prostate specific antigen score >20 in Sweden	20814	24000	Lyth et al., 2012 (697)
Radical prostatectomy for localized prostate cancer VERSUS Watchful waiting IN Men aged 65 years with Gleason score bewteen 8-9 and prostate specific antigen score <=10 in Sweden	7038	8000	Lyth et al., 2012 (697)
Radical prostatectomy for localized prostate cancer VERSUS Watchful waiting IN Men aged 70 years with Gleason score bewteen 8-9 and prostate specific antigen score <=10 in Sweden	13228	15000	Lyth et al., 2012 (697)
Radical prostatectomy for localized prostate cancer VERSUS Watchful waiting IN Men aged 75 years with Gleason score bewteen 8-9 and prostate specific antigen score <=10 in Sweden	26973	31000	Lyth et al., 2012 (697)

Radical prostatectomy for localized prostate cancer VERSUS Watchful waiting IN Men aged 65 years with Gleason score bewteen 8-9 and prostate specific antigen between 11-20 in Sweden	6897	7900	Lyth et al., 2012 (697)
Radical prostatectomy for localized prostate cancer VERSUS Watchful waiting IN Men aged 70 years with Gleason score bewteen 8-9 and prostate specific antigen between 11-20 in Sweden	11787	13000	Lyth et al., 2012 (697)
Radical prostatectomy for localized prostate cancer VERSUS Watchful waiting IN Men aged 75 years with Gleason score bewteen 8-9 and prostate specific antigen between 11-20 in Sweden	22278	25000	Lyth et al., 2012 (697)
Radical prostatectomy for localized prostate cancer VERSUS Watchful waiting IN Men aged 65 years with Gleason score bewteen 8-9 and prostate specific antigen >20 in Sweden	7358	8400	Lyth et al., 2012 (697)
Radical prostatectomy for localized prostate cancer VERSUS Watchful waiting IN Men aged 70 years with Gleason score bewteen 8-9 and prostate specific antigen >20 in Sweden	11162	13000	Lyth et al., 2012 (697)
Radical prostatectomy for localized prostate cancer VERSUS Watchful waiting IN Men aged 75 years with Gleason score bewteen 8-9 and prostate specific antigen >20 in Sweden	18903	22000	Lyth et al., 2012 (697)
Radical prostatectomy for localized prostate cancer VERSUS Watchful waiting IN Men aged 65 years with Gleason score between 0-4 and prostate specific antigen score <=10 in Sweden	10489	12000	Lyth et al., 2012 (697)
Monotherayp (AB: tamsuloosin) VERSUS Watchful waiting (WW) IN Men aged 50 years or older with benign prostatic hyperplasia (BPH) in Norway	5943	6600	Bjerklund Johansen et al., 2012 (698)
Fixed Dose Combination (FDC)- dutasteride and tamsulosin VERSUS Watchful waiting (WW) IN Men aged 50 years or older with benign prostatic hyperplasia (BPH) in Norway	8489	9400	Bjerklund Johansen et al., 2012 (698)
Fixed Dose Combination (FDC)- dutasteride and tamsulosin VERSUS Watchful waiting (WW) IN Men aged 50 years or older with benign prostatic hyperplasia (BPH) in Norway (lifetime time horizon)	7058	7800	Bjerklund Johansen et al., 2012

(698)

			()
Monotherapy (AB:tamsulosin) VERSUS Watchful waiting (WW) IN Men aged 50 years or older with benign prostatic hyperplasia (BPH) in Norway (lifetime time horizon)	5831	6400	Bjerklund Johansen et al., 2012 (698)
Monotherapy (5-ARI:dutasteride) VERSUS Watchful waiting (WW) IN Men aged 50 years or older with benign prostatic hyperplasia (BPH) in Norway (lifetime time horizon)	10137	11000	Bjerklund Johansen et al., 2012 (698)
Monotherapy (5-ARI: dutasteride) VERSUS Watchful waiting (WW) IN Men aged 50 years or older with benign prostatic hyperplasia (BPH) in Norway	12952	14000	Bjerklund Johansen et al., 2012 (698)
Prostate specific antigen (PSA) at 2ng/mL threshold value plus Beckman Coulter Prostate Health Index (phi) screening test VERSUS Annual prostate cancer screening using PSA test at 2ng/mL threshold value IN Adult men aged 50-64 years	-26900	Cost-Saving	Nichol et al., 2012 (699)
Prostate specific antigen (PSA) at 2ng/mL threshold value plus Beckman Coulter Prostate Health Index (phi) screening test VERSUS Annual prostate cancer screening using PSA test at 2ng/mL threshold value IN Adult men aged 65-75 years	-41600	Cost-Saving	Nichol et al., 2012 (699)
Prostate specific antigen (PSA) at 4ng/mL threshold value plus Beckman Coulter Prostate Health Index (phi) screening test VERSUS Annual prostate cancer screening using PSA test at 4ng/mL threshold value IN Adult men aged 50-75 years	-14767	Cost-Saving	Nichol et al., 2012 (699)
Prostate specific antigen (PSA) at 4ng/mL threshold value plus Beckman Coulter Prostate Health Index (phi) screening test VERSUS Annual prostate cancer screening using PSA test at 4ng/mL threshold value IN Adult men aged 50-64 years	-20100	Cost-Saving	Nichol et al., 2012 (699)

Prostate specific antigen (PSA) at 4ng/mL threshold value plus Beckman Coulter Prostate Health Index (phi) screening test VERSUS Annual prostate cancer screening using PSA test at 4ng/mL threshold value IN Adult men aged 65-75 years	-34300	Cost-Saving	Nichol et al., 2012 (699)
Prostate specific antigen (PSA) plus Beckman Coulter Prostate Health Index (phi) screening test VERSUS Annual prostate cancer screening using PSA test IN Adult men aged 50-75 years	-14988	Cost-Saving	Nichol et al., 2012 (699)
Stereotactic beam radiation therapy (SBRT) VERSUS Intensity-modulated radiation therapy (IMRT) IN Men aged 70 years with low or intermediate-risk limited organ-confined prostate cancer		Cost-Saving	Hodges et al., 2012 (700)
Chemoprevention with finasteride beginning at age 50 until age 75 with a constant risk reduction across all tumor grades VERSUS No chemoprevention with finasteride IN US men aged 50 years	88805	98000	Stewart et al., 2012 (701)
Chemoprevention with finasteride beginning at age 50 until age 75 with tumor-grade specific treatment effects (risk of low-grade tumors decreased by 38.2% and the risk of intermediate- and high-grade tumors increased by 23% and 67%) VERSUS No chemoprevention with finasteride IN US men aged 50 years	142300	160000	Stewart et al., 2012 (701)
Intensity-modulated radiation therapy (IMRT) VERSUS Stereotactic body radiation therapy (SBRT) IN Males aged 65 years with localized prostate cancer who declined or were ineligible for surgery: healthcare perspective	-136583	Increases Costs, Decreases Health	Parthan et al., 2012 (702)
Proton bean therapy (PT) VERSUS Intensity-modulated radiation therapy (IMRT) IN Males aged 65 years with localized prostate cancer who declined or were ineligible for surgery: healthcare perspective	3634400	3800000	Parthan et al., 2012 (702)

Intensity-modulated radiation therapy (IMRT) VERSUS Stereotactic body radiation therapy (SBRT) IN Males aged 65 years with localized prostate cancer who declined or were ineligible for surgery: societal perspective	-166517	Increases Costs, Decreases Health	Parthan et al., 2012 (702)
Proton beam therapy (PT) VERSUS Stereotactic body radiation therapy (SBRT) IN Males aged 65 years with localized prostate cancer who declined or were ineligible for surgery: societal perspective	-931200	Increases Costs, Decreases Health	Parthan et al., 2012 (702)
Proton beam therapy (PT) VERSUS Intensity-modulated radiation therapy (IMRT) IN Males aged 65 years with localized prostate cancer who declined or were ineligible for surgery: societal perspective	3656900	3800000	Parthan et al., 2012 (702)
Proton beam therapy (PT) VERSUS stereotactic body radiation therapy (SBRT) IN Males aged 65 years with localized prostate cancer who declined or were ineligible for surgery: healthcare perspective	-890780	Increases Costs, Decreases Health	Parthan et al., 2012 (702)
Intensity-modulated radiation therapy VERSUS Stereotactic body radiation therapy IN US patients aged 70 years-old with prostate cancer		Increases Costs, Decreases Health	Hodges et al., 2012 (703)
Short-tandem repeat-based provenance testing of transrectal prostate biopsy specimens to rule out the presence of adenocarcinoma of the prostate VERSUS None IN Patients with prostate cancer	65570	72000	Pfeifer et al., 2012 (704)
Abiraterone + prednisolone VERSUS Prednisolone IN Patients with castration-resistant metastatic prostate cancer previously treated with docetaxel-containing regimen	81591	89000	Dyer et al., 2012 (705)

Abiraterone + prednisolone VERSUS Prednisolone IN Patients with castration-resistant metastatic prostate cancer previously treated with docetaxel-containing regimen and who received a previous course of chemotherapy	72249	78000	Dyer et al., 2012 (705)
Intensity-modulated radiotherapy (IMRT) VERSUS 3-dimensional conformal radiotherapy (3DCRT) IN UK men aged 70 years with localised prostate cancer (equal doses of radiotherapy to both IMRT and 3DCRT patients and same PSA progression rates for both cohorts)	150680	170000	Hummel et al., 2012 (706)
Intensity-modulated radiotherapy (IMRT) VERSUS 3-dimensional conformal radiotherapy (3DCRT) IN UK men aged 70 years with localised prostate cancer (same survival rates for both cohorts with difference of 15% in late gastrointestinal toxicity)	45120	50000	Hummel et al., 2012 (706)
Intensity-modulated radiotherapy (IMRT) VERSUS 3-dimensional conformal radiotherapy (3DCRT) IN UK men aged 70 years with localised prostate cancer (smaller difference between IMRT and 3DCRT in mean survival to PSA failure of 3.8 years)	7667	8500	Hummel et al., 2012 (706)
Intensity-modulated radiotherapy (IMRT) VERSUS 3-dimensional conformal radiotherapy (3DCRT) IN UK men aged 70 years with localised prostate cancer (difference between IMRT and 3DCRT in mean survival is 6.6 years)	-4256	Cost-Saving	Hummel et al., 2012 (706)
Intensity-modulated radiation therapy (IMRT) VERSUS Non-Robotic Stereotactic body radiotherapy (NR-SBRT) IN Patients aged over 65 years with low-risk prostate cancer (LRPCA)	591100	610000	Sher et al., 2012 (707)
Intensity-modulated radiation therapy (IMRT) VERSUS Robotic Stereotactic body radiotherapy (R-SBRT) IN Patients aged over 65 years with low-risk prostate cancer (LRPCA)	285000	290000	Sher et al., 2012 (707)
Denosumab (120mg monthly) VERSUS Zoledronic acid (4mg monthly) IN Specific disease- Bone-metastatic prostate cancer; Age- Adult; Gender- Male; Country- United States.	1058741	1100000	Snedecor et al., 2013 (708)

External-beam radiation therpay (EBRT) + brachytherapy (BT) VERSUS Active surveillance IN Specific disease- prostate cancer; Age- Adult; Gender- Male; Country- United States.	4313	4800	Cooperberg et al., 2013 (709)
Brachytherapy (BT) VERSUS Active surveillance IN Specific disease- prostate cancer; Age- Adult; Gender- Male; Country	3391	3700	Cooperberg et al., 2013 (709)
Three-dimensional conformal RT (3DCRT) VERSUS Active surveillance IN Specific disease- prostate cance; Age- Adult; Gender- Male; Country- United States.	3179	3500	Cooperberg et al., 2013 (709)
Intensity-modulated radiation therpay (IMRT) VERSUS Active surveillance IN Specific disease- prostate cancer; Age- Adult; Gender- Male; Country- United States.	6469	7100	Cooperberg et al., 2013 (709)
Open radical prostatectomy (ORP) VERSUS Active surveillance IN Specific disease- prostate cancer; Age- Adult; Gender- Male; Country- United States.	2749	3000	Cooperberg et al., 2013 (709)
Robot-assisted radical prostatectomy (RARP) VERSUS Active surveillance IN Specific disease- prostate cancer; Age- Adult; Gender- Male; Country- United States.	2668	2900	Cooperberg et al., 2013 (709)
Laprascopic assisted radical prostatectomy (LRP) VERSUS Active surveillance IN Specific disease- prostate cancer; Age- Adult; Gender- Male; Country- United States.	2792	3100	Cooperberg et al., 2013 (709)
Single-dose tamsulosin and dutasteride combination therapy VERSUS Tamsulosin monotherapy IN Specific disease- Benign prostatic hyperplasia; Age- 41 to 64 years, >=65 years; Gender- Male; Country- United Kingdom; Other- moderate to severe symptoms.	19603	21000	Walker et al., 2013 (710)
Robot-assisted prostatectomy VERSUS Laproscopic prostatectomy IN Specific disease- Localized prostate cancer; Age- 19 to 40 years, 41 to 64 years, Adult; Gender- Male; Country- United Kingdom.	26539	29000	Close et al., 2013 (711)

Degarelix 240/80 mg VERSUS Leuprolide 22.5 mg every 3 months IN Specific disease- Locally advanced prostate cancer; Age- Adult; Gender- Male; Country- United States.	245	260	Hatoum et al., 2013 (712)
Cabazitaxel VERSUS abiraterone IN Specific disease- Prostate Cancer; Age- Adult; Gender- Male; Country- United States.	955863	1000000	Zhong et al., 2013 (713)
Abiraterone VERSUS mitoxantrone IN Specific disease- Prostate Cancer; Age- Adult; Gender- Male; Country- United States.	91118	99000	Zhong et al., 2013 (713)
Mitoxantrone VERSUS Placebo IN Specific disease- Prostate Cancer; Age- Adult; Gender- Male; Country- United States.	100675	110000	Zhong et al., 2013 (713)
Prostate-specific antigen screening VERSUS None IN Healthy; Age- 41 to 64 years; Gender- Male; Country- Australia; Other- Average risk for prostate cancer.	302282	310000	Martin et al., 2013 (714)
Prostate-specific antigen screening VERSUS None IN Healthy; Age- 41 to 64 years; Gender- Male; Country- Australia; Other- High risk for prostate cancer.	114700	120000	Martin et al., 2013 (714)
Prostate-specific antigen screening VERSUS None IN Healthy; Age- 41 to 64 years; Gender- Male; Country- Australia; Other- Very high risk for prostate cancer.	31668	33000	Martin et al., 2013 (714)
Brachytherapy VERSUS Watchful waiting IN Specific disease- prostate cancer; Age-; Gender- Male; Country- United States; Other- localized, low-risk prostate cancer.	-12334	Increases Costs, Decreases Health	Hayes et al., 2013 (715)
Radical prostatectomy VERSUS Watchful waiting IN Specific disease- prostate cancer; Age-; Gender- Male; Country- United States; Other- localized, low-risk prostate cancer.	-12766	Increases Costs, Decreases Health	Hayes et al., 2013 (715)

Active surveillance VERSUS Watchful waiting IN Specific disease- prostate cancer; Age-; Gender- Male; Country- United States; Other- localized, low-risk prostate cancer.	-90435	Increases Costs, Decreases Health	Hayes et al., 2013 (715)
VERSUS watchful waiting IN Specific disease- prostate cancer; Age-; Gender- Male; Country- United States; Other- localized, low-risk prostate cancer.	-26282	Increases Costs, Decreases Health	Hayes et al., 2013 (715)
Intensity-modulated radiation therapy VERSUS Watchful waiting IN Specific disease- prostate cancer; Age-; Gender- Male; Country- United States; Other-localized, low-risk prostate cancer.	-38684	Increases Costs, Decreases Health	Hayes et al., 2013 (715)
VERSUS Watchful waiting IN Specific disease- prostate cancer; Age-; Gender- Male; Country- United States; Other- localized, low-risk prostate cancer.	-18117	Increases Costs, Decreases Health	Hayes et al., 2013 (715)
Active surveillance for prostate cancer VERSUS Watchful waiting IN Specific disease- prostate cancer; Age-; Gender- Male; Country- United States; Other-localized, low-risk prostate cancer.	-73413	Increases Costs, Decreases Health	Hayes et al., 2013 (715)
Dutasteride-tamsulosin combination VERSUS Tamsulosin IN Specific disease- Benign prostatic hyperplasia; Age- Adult; Gender- Male; Country-Canada.	25745	27000	Ismaila et al., 2013 (716)
Abiraterone VERSUS Placebo IN Specific disease- metastatic castration- resistant prostate cancer; Age- Adult; Gender- Male; Country- United States.	123430	130000	Wilson et al., 2013 (717)
Enzalutamide VERSUS Abiraterone IN Specific disease- metastatic castration-resistant prostate cancer; Age- Adult; Gender- Male; Country-United States.	437623	450000	Wilson et al., 2013 (717)

Cabazitaxel VERSUS Abiraterone IN Specific disease- metastatic castration- resistant prostate cancer; Age- Adult; Gender- Male; Country- United States.	351865	360000	Wilson et al., 2013 (717)
Magnetic resonance imaging VERSUS transrectal ultrasound–guided biopsy IN Healthy; Age- Adult; Gender- Male; Country- Netherlands.	449	470	de Rooij et al., 2013 (718)

Stomach Cancer

Description	Original US\$/QALY	2014US\$/QALY	Reference
VERSUS IN Singapore chinese men	27000	35000	Dan YY et al.,
between 50-70 years			2006 (719)

Uterine Cancer

Description	Original US\$/QALY	2014US\$/QALY	Reference
Surgical staging (HBSO and pelvic +/- para-aortic lymphadenectomy); Adjuvant radiotherapy (RT) administered according to final grade and stage; After staging, pelvic RT was indicated for Grades 1 and 2 if Stage IIB and for Grade 3 if Stage IC, IIA with >50% MI, or IIB VERSUS Hyterectomy and bilateral slapingo-oophorectomy (HBSO); Adjuvant radiotherapy (RT) administered according to final grade and stage; After HBSO, pelvic RT indicated fro Grades 1 and 2 if Stage IC, IIA with >50% myometrial invasion (MI) or IIB, and for Grade 3 if Stage IB, IC, IIA, or IIB IN Stage I, II endometrioid-type cancer; Grade 1	Dominated	Dominated	Kwon JS et al., 2007 (720)
Surgical staging (HBSO and pelvic +/- para-aortic lymphadenectomy); Adjuvant radiotherapy (RT) administered according to final grade and stage; After staging, pelvic RT was indicated for Grades 1 and 2 if Stage IIB and for Grade 3 if Stage IC, IIA with >50% MI, or IIB VERSUS Hyterectomy and	4000	5000	Kwon JS et al., 2007 (720)

bilateral slapingo-oophorectomy (HBSO); Adjuvant radiotherapy (RT) administered according to final grade and stage; After HBSO, pelvic RT indicated fro Grades 1 and 2 if Stage IC, IIA with >50% myometrial invasion (MI) or IIB, and for Grade 3 if Stage IB, IC, IIA, or IIB IN Stage I, II endometrioid-type cancer; Grade 2			
Surgical staging (HBSO and pelvic +/- para-aortic lymphadenectomy); Adjuvant radiotherapy (RT) administered according to final grade and stage; After staging, pelvic RT was indicated for Grades 1 and 2 if Stage IIB and for Grade 3 if Stage IC, IIA with >50% MI, or IIB VERSUS Hyterectomy and bilateral slapingo-oophorectomy (HBSO); Adjuvant radiotherapy (RT) administered according to final grade and stage; After HBSO, pelvic RT indicated fro Grades 1 and 2 if Stage IC, IIA with >50% myometrial invasion (MI) or IIB, and for Grade 3 if Stage IB, IC, IIA, or IIB IN Stage I, II endometrioid-type cancer; Grade 3	Dominated	Dominated	Kwon JS et al., 2007 (720)

Citations

1. Robinson et al. Cost-utility analysis of the GC versus MVAC regimens for the treatment of locally advanced or metastatic bladder cancer. Expert Rev Pharmacoecon Outcomes Res 2004; 4(1);27-38.

 Kulkarni et al. Cost-effectiveness analysis of immediate radical cystectomy versus intravesical Bacillus Calmette-Guerin therapy for high-risk, high-grade (T1G3) bladder cancer.. Cancer 2009; ();.
 Green et al. Cost-effective treatment of low-risk carcinoma not invading bladder muscle.. BJU Int 2012; ();.

4. Lee et al. Economic and humanistic consequences of preventable bladder tumor recurrences in nonmuscle invasive bladder cancer cases... J Urol 2012; 188(6);2114-9.

5. Wong et al. Outpatient laser ablation of non-muscle-invasive bladder cancer: is it safe, tolerable and cost-effective?. BJU Int 2013; 112(5);561-7.

6. Mehta et al. A cost-effectiveness and cost-utility analysis of radiosurgery vs. resection for singlebrain metastases.. Int J Radiat Oncol Biol Phys 1997; 39(2);445-54.

7. Medina et al. Children with headache suspected of having a brain tumor: a cost-effectiveness analysis of diagnostic strategies.. Pediatrics 2001; 108(2);255-63.

8. Chau et al. Cost-effectiveness of the bird"s nest filter for preventing pulmonary embolism among patients with malignant brain tumors and deep venous thrombosis of the lower extremities.. Support Care Cancer 2003; 11(12);795-9.

9. Lundkvist et al. Cost-effectiveness of proton radiation in the treatment of childhood medulloblastoma.. Cancer 2005; 103(4);793-801.

10. Martikainen et al. Economic evaluation of temozolomide in the treatment of recurrent glioblastoma multiforme.. Pharmacoeconomics 2005; 23(8);803-15.

11. Rogers et al. Carmustine implants for the treatment of newly diagnosed high-grade gliomas: a cost-utility analysis.. Pharmacoeconomics 2008; 26(1);33-44.

12. Lee et al. Outcomes and cost-effectiveness of gamma knife radiosurgery and whole brain radiotherapy for multiple metastatic brain tumors.. J Clin Neurosci 2009; 16(5);630-4.

13. Lal et al. Cost-effectiveness Analysis of a Randomized Study Comparing Radiosurgery With Radiosurgery and Whole Brain Radiation Therapy in Patients With 1 to 3 Brain Metastases.. Am J Clin Oncol 2011; ();.

14. Wu et al. Subgroup economic analysis for glioblastoma in a health resource-limited setting.. PLoS One 2012; 2(1);e34588.

15. Martino et al. Cost-utility of maximal safe resection of WHO grade II gliomas within eloquent areas.. Acta Neurochir (Wien) 2013; 155(1);41-50.

16. Messali et al. The cost-effectiveness of temozolomide in the adjuvant treatment of newly diagnosed glioblastoma in the United States.. Neuro Oncol 2013; 15(11);1532-42.

17. Mailhot Vega et al. Cost effectiveness of proton therapy compared with photon therapy in the management of pediatric medulloblastoma.. Cancer 2013; 119(24);4299-307.

18. Hillner et al. Efficacy and cost effectiveness of adjuvant chemotherapy in women with nodenegative breast cancer. A decision-analysis model.. N Engl J Med 1991; 324(3);160-8.

19. de Koning et al. Breast cancer screening and cost-effectiveness; policy alternatives, quality of life considerations and the possible impact of uncertain factors.. Int J Cancer 1991; 49(4);531-7.

20. Hillner et al. Efficacy and cost-effectiveness of autologous bone marrow transplantation in metastatic breast cancer. Estimates using decision analysis while awaiting clinical trial results.. JAMA 1992; 267(15);2055-61.

21. Hillner et al. A model of chemotherapy in node-negative breast cancer. J Natl Cancer Inst Monogr 1992; (11);143-9.

22. Hillner et al. Assessing the cost effectiveness of adjuvant therapies in early breast cancer using a decision analysis model.. Breast Cancer Res Treat 1993; 25(2);97-105.

23. Smith et al. The efficacy and cost-effectiveness of adjuvant therapy of early breast cancer in premenopausal women.. J Clin Oncol 1993; 11(4);771-6.

24. Desch et al. Should the elderly receive chemotherapy for node-negative breast cancer? A costeffectiveness analysis examining total and active life-expectancy outcomes.. J Clin Oncol 1993; 11(4);777-82.

25. Velanovich et al. Immediate biopsy versus observation for abnormal findings on mammograms: an analysis of potential outcomes and costs.. Am J Surg 1995; 170(4);327-32.

26. Boer et al. In search of the best upper age limit for breast cancer screening.. Eur J Cancer 1995; 31A(12);2040-3.

27. Hutton et al. A new decision model for cost-utility comparisons of chemotherapy in recurrent metastatic breast cancer.. Pharmacoeconomics 1996; 9 Suppl 2();42238.

29. Hristova et al. Effect of screening for cancer in the Nordic countries on deaths, cost and quality of life up to the year 2017. Acta Oncol 1997; 36 Suppl 9();21916.

30. Norum et al. Lumpectomy or mastectomy? Is breast conserving surgery too expensive?. Breast Cancer Res Treat 1997; 45(1);42199.

31. Liljegren et al. The cost-effectiveness of routine postoperative radiotherapy after sector resection and axillary dissection for breast cancer stage I. Results from a randomized trial.. Ann Oncol 1997; 8(8);757-63.

32. Grann et al. Decision analysis of prophylactic mastectomy and oophorectomy in BRCA1-positive or BRCA2-positive patients.. J Clin Oncol 1998; 16(3);979-85.

33. Hayman et al. Cost-effectiveness of routine radiation therapy following conservative surgery for early-stage breast cancer.. J Clin Oncol 1998; 16(3);1022-9.

34. Brown et al. Cost-utility model comparing docetaxel and paclitaxel in advanced breast cancer patients.. Anticancer Drugs 1998; 9(10);899-907.

35. Dranitsaris et al. Cost utility analysis of prophylactic pamidronate for the prevention of skeletal related events in patients with advanced breast cancer. Support Care Cancer 1999; 7(4);271-9.

36. Orr et al. A cost-effectiveness analysis of axillary node dissection in postmenopausal women with estrogen receptor-positive breast cancer and clinically negative axillary nodes.. Surgery 1999; 126(3);568-76.

37. Leung et al. Cost-utility analysis of chemotherapy using paclitaxel, docetaxel, or vinorelbine for patients with anthracycline-resistant breast cancer.. J Clin Oncol 1999; 17(10);3082-90.

38. Hrung et al. Cost-effectiveness of MR imaging and core-needle biopsy in the preoperative workup of suspicious breast lesions.. Radiology 1999; 213(1);39-49.

39. Tengs et al. The cost effectiveness of testing for the BRCA1 and BRCA2 breast-ovarian cancer susceptibility genes.. Dis. Manag. Clin. Outcomes 2000; 1();15-24.

40. Hillner et al. Pamidronate in prevention of bone complications in metastatic breast cancer: a cost-effectiveness analysis.. J Clin Oncol 2000; 18(1);72-9.

41. Hayman et al. Cost-effectiveness of adding an electron-beam boost to tangential radiation therapy in patients with negative margins after conservative surgery for early-stage breast cancer.. J Clin Oncol 2000; 18(2);287-95.

42. Grann et al. Prevention with tamoxifen or other hormones versus prophylactic surgery in BRCA1/2-positive women: a decision analysis.. Cancer J Sci Am 2000; 6(1);13-20.

43. Grann et al. Decision analysis of tamoxifen for the prevention of invasive breast cancer.. Cancer J 2000; 6(3);169-78.

44. Dranitsaris et al. Cost-utility analysis of second-line hormonal therapy in advanced breast cancer: a comparison of two aromatase inhibitors to megestrol acetate.. Anticancer Drugs 2000; 11(7);591-

601.

45. Dunscombe et al. A cost-outcome analysis of adjuvant postmastectomy locoregional radiotherapy in premenopausal node-positive breast cancer patients.. Int J Radiat Oncol Biol Phys 2000; 48(4);977-82.

46. Li et al. A cost--utility analysis comparing second-line chemotherapy schemes in patients with metastatic breast cancer. Anticancer Drugs 2001; 12(6);533-40.

47. Brown et al. Cost effectiveness of treatment options in advanced breast cancer in the UK.. Pharmacoeconomics 2001; 19(11);1091-102.

48. Armstrong et al. Cost-effectiveness of raloxifene and hormone replacement therapy in postmenopausal women: impact of breast cancer risk.. Obstet Gynecol 2001; 98(6);996-1003.
49. Hershman et al. Outcomes of tamoxifen chemoprevention for breast cancer in very high-risk women: a cost-effectiveness analysis.. J Clin Oncol 2002; 20(1);42263.

50. Karnon et al. Tamoxifen plus chemotherapy versus tamoxifen alone as adjuvant therapies for node-positive postmenopausal women with early breast cancer: a stochastic economic evaluation.. Pharmacoeconomics 2002; 20(14);119-37.

51. Lee et al. Decision-analytic model and cost-effectiveness evaluation of postmastectomy radiation therapy in high-risk premenopausal breast cancer patients.. J Clin Oncol 2002; 20(11);2713-25.

52. Malin et al. Using cost-effectiveness analysis to define a breast cancer benefits package for the uninsured.. Breast Cancer Res Treat 2002; 74(2);143-53.

53. Polsky et al. Economic evaluation of breast cancer treatment: considering the value of patient choice.. J Clin Oncol 2003; 21(6);1139-46.

54. Karnon et al. A stochastic economic evaluation of letrozole versus tamoxifen as a first-line hormonal therapy: for advanced breast cancer in postmenopausal patients.. Pharmacoeconomics 2003; 21(16);513-25.

55. Dranitsaris et al. Cost utility analysis of first-line hormonal therapy in advanced breast cancer: comparison of two aromatase inhibitors to tamoxifen.. Am J Clin Oncol 2003; 26(3);289-96.
56. Thoma et al. Cost-utility analysis comparing free and pedicled TRAM flap for breast reconstruction.. Microsurgery 2003; 23(4);287-95.

57. Karnon et al. A trial-based cost-effectiveness analysis of letrozole followed by tamoxifen versus tamoxifen followed by letrozole for postmenopausal advanced breast cancer.. Ann Oncol 2003; 14(11);1629-33.

58. Eckermann et al. The benefits and costs of tamoxifen for breast cancer prevention.. Aust N Z J Public Health 2003; 27(1);34-40.

59. Elkin et al. HER-2 testing and trastuzumab therapy for metastatic breast cancer: a cost-effectiveness analysis.. J Clin Oncol 2004; 22(5);854-63.

60. Cykert et al. Tamoxifen for breast cancer prevention: a framework for clinical decisions.. Obstet Gynecol 2004; 104(3);433-42.

61. Hillner et al. Benefit and projected cost-effectiveness of anastrozole versus tamoxifen as initial adjuvant therapy for patients with early-stage estrogen receptor-positive breast cancer. Cancer 2004; 101(6);1311-22.

62. Marchetti et al. Cost utility and budget impact of third-generation aromatase inhibitors for advanced breast cancer: a literature-based model analysis of costs in the Italian National Health Service.. Clin Ther 2004; 26(9);1546-61.

63. Naeim et al. Is adjuvant therapy for older patients with node (-) early breast cancer cost-effective?. Crit Rev Oncol Hematol 2005; 53(1);81-9.

64. Suh et al. Cost-effectiveness of radiation therapy following conservative surgery for ductal carcinoma in situ of the breast. Int J Radiat Oncol Biol Phys 2005; 61(4);1054-61.

65. De Cock et al. Cost-effectiveness of oral ibandronate compared with intravenous (i.v.) zoledronic acid or i.v. generic pamidronate in breast cancer patients with metastatic bone disease undergoing i.v. chemotherapy.. Support Care Cancer 2005; ();.

66. Lundkvist et al. Economic evaluation of proton radiation therapy in the treatment of breast cancer.. Radiother Oncol 2005; 75(2);179-85.

67. Verma et al. Capecitabine plus docetaxel combination therapy.. Cancer 2005; 103(12);2455-65. 68. Hornberger et al. Economic analysis of targeting chemotherapy using a 21-gene RT-PCR assay in lymph-node-negative, estrogen-receptor-positive, early-stage breast cancer.. Am J Manag Care 2005; 11(5);313-24.

69. De Cock et al. Cost-effectiveness of oral ibandronate versus IV zoledronic acid or IV pamidronate for bone metastases in patients receiving oral hormonal therapy for breast cancer in the United Kingdom.. Clin Ther 2005; 27(8);1295-310.

70. Lievens et al. Economic consequence of local control with radiotherapy: cost analysis of internal mammary and medial supraclavicular lymph node radiotherapy in breast cancer.. Int J Radiat Oncol Biol Phys 2005; 63(4);1122-31.

71. Naeim et al. Is Adjuvant Therapy for Older Patients with Node (+) Early Breast Cancercosteffective?*.. Breast Cancer Res Treat 2005; 94(2);95-103.

72. Gordon et al. A Cost-effectiveness Analysis of Two Rehabilitation Support Services for Women with Breast Cancer. Breast Cancer Res Treat 2005; 94(2);123-33.

73. Lundkvist et al. Proton therapy of cancer: potential clinical advantages and cost-effectiveness.. Acta Oncol 2005; 44(8);850-61.

74. Lønning et al. Comparing cost/utility of giving an aromatase inhibitor as monotherapy for 5 years versus sequential administration following 2-3 or 5 years of tamoxifen as adjuvant treatment for postmenopausal breast cancer. Ann Oncol 2006; 17(2);217-25.

75. Karnon et al. Cost effectiveness of extended adjuvant letrozole in postmenopausal women after adjuvant tamoxifen therapy: the UK perspective.. Pharmacoeconomics 2006; 24(3);237-50.

76. Rocchi et al. Anastrozole is cost-effective vs tamoxifen as initial adjuvant therapy in early breast cancer: Canadian perspectives on the ATAC completed-treatment analysis.. Support Care Cancer 2006; 14(9);917-27.

77. Botteman et al. Cost effectiveness of bisphosphonates in the management of breast cancer patients with bone metastases.. Ann Oncol 2006; 17(7);1072-82.

78. Plevritis et al. Cost-effectiveness of screening BRCA1/2 mutation carriers with breast magnetic resonance imaging.. JAMA 2006; 295(20);2374-84.

79. Limwattananon et al. Cost-effectiveness analysis of sequential paclitaxel adjuvant chemotherapy for patients with node positive primary breast cancer.. J Med Assoc Thai 2006; 89(5);690-8.

80. Stout et al. Retrospective cost-effectiveness analysis of screening mammography.. J Natl Cancer Inst 2006; 98(11);774-82.

81. Gil et al. Pharmacoeconomic analysis of adjuvant therapy with exemestane, anastrozole, letrozole or tamoxifen in postmenopausal women with operable and estrogen receptor-positive breast cancer.. Clin Transl Oncol 2006; 8(5);339-48.

82. Fagnoni et al. Clinical and economic impact of epoetin in adjuvant-chemotherapy for breast cancer.. Support Care Cancer 2006; 14(10);1030-7.

83. Delea et al. Cost-effectiveness of extended adjuvant letrozole therapy after 5 years of adjuvant tamoxifen therapy in postmenopausal women with early-stage breast cancer.. Am J Manag Care 2006; 12(7);374-86.

84. Moeremans et al. Cost-effectiveness of anastrozole compared to tamoxifen in hormone receptor-positive early breast cancer. Analysis based on the ATAC trial.. Int J Gynecol Cancer 2006; 16 Suppl 2();576-8.

85. Jeruss et al. Is intraoperative touch imprint cytology of sentinel lymph nodes in patients with breast cancer cost effective?. Cancer 2006; 107(10);2328-36.

86. El Ouagari et al. Cost-effectiveness of letrozole in the extended adjuvant treatment of women with early breast cancer.. Breast Cancer Res Treat 2007; 101(1);37-49.

87. Skedgel et al. Cost-utility of adjuvant hormone therapies for breast cancer in post-menopausal women: sequential tamoxifen-exemestane and upfront anastrozole.. Breast Cancer Res Treat 2007; 101(3);325-33.

88. Lundkvist et al. Cost-effectiveness of exemestane versus tamoxifen as adjuvant therapy for early-stage breast cancer after 2-3 years treatment with tamoxifen in Sweden.. Breast Cancer Res Treat 2007; 102(3);289-99.

89. Skedgel et al. Cost-utility of adjuvant hormone therapies with aromatase inhibitors in postmenopausal women with breast cancer: upfront anastrozole, sequential tamoxifen-exemestane and extended tamoxifen-letrozole.. Breast 2007; 16(3);252-61.

90. Locker et al. Cost-effectiveness analysis of anastrozole versus tamoxifen as primary adjuvant therapy for postmenopausal women with early breast cancer: a US healthcare system perspective. The 5-year completed treatment analysis of the ATAC ('Arimidex', Tamoxifen Alone or in Combination) trial.. Breast Cancer Res Treat 2007; 106(2);229-38.

91. Liberato et al. Cost effectiveness of adjuvant trastuzumab in human epidermal growth factor receptor 2-positive breast cancer.. J Clin Oncol 2007; 25(6);625-33.

92. Kurian et al. A cost-effectiveness analysis of adjuvant trastuzumab regimens in early HER2/neupositive breast cancer. J Clin Oncol 2007; 25(6);634-41.

93. Norman et al. The cost-utility of magnetic resonance imaging for breast cancer in BRCA1 mutation carriers aged 30-49.. Eur J Health Econ 2007; 8(2);137-44.

94. Norum et al. Trastuzumab in adjuvant breast cancer therapy. A model based cost-effectiveness analysis.. Acta Oncol 2007; 46(2);153-64.

95. Millar et al. Cost effectiveness of trastuzumab in the adjuvant treatment of early breast cancer: a lifetime model.. Pharmacoeconomics 2007; 25(5);429-42.

96. Delea et al. Cost-effectiveness of letrozole versus tamoxifen as initial adjuvant therapy in hormone receptor-positive postmenopausal women with early-stage breast cancer.. Clin Breast Cancer 2007; 7(8);608-18.

97. Risebrough et al. Cost-effectiveness of switching to exemestane versus continued tamoxifen as adjuvant therapy for postmenopausal women with primary breast cancer.. Cancer 2007; 110(3);499-508.

98. Garrison et al. Cost-effectiveness analysis of trastuzumab in the adjuvant setting for treatment of HER2-positive breast cancer. Cancer 2007; 110(3);489-98.

99. Wong et al. Cost effectiveness of mammography screening for Chinese women.. Cancer 2007; 110(4);885-95.

100. Mansel et al. Cost-effectiveness analysis of anastrozole vs tamoxifen in adjuvant therapy for early stage breast cancer in the United Kingdom: the 5-year completed treatment analysis of the ATAC ('Arimidex', Tamoxifen alone or in combination) trial.. Br J Cancer 2007; 97(2);152-61.

101. Thompson et al. Cost-effectiveness of switching to exemestane after 2 to 3 years of therapy with tamoxifen in postmenopausal women with early-stage breast cancer.. Value Health 2007; 10(5);367-76.

102. Younis et al. Adjuvant chemotherapy for breast cancer: a cost-utility analysis of FEC-D vs. FEC 100.. Breast Cancer Res Treat 2007; ();.

103. Kondo et al. Economic evaluation of 21-gene reverse transcriptase-polymerase chain reaction assay in lymph-node-negative, estrogen-receptor-positive, early-stage breast cancer in Japan.. Breast Cancer Res Treat 2007; ();.

104. Karnon et al. Cost utility analysis of early adjuvant letrozole or anastrozole versus tamoxifen in postmenopausal women with early invasive breast cancer: the UK perspective.. Eur J Health Econ 2008; 9(2);171-83.

105. Delea et al. Cost-effectiveness of letrozole versus tamoxifen as initial adjuvant therapy in postmenopausal women with hormone-receptor positive early breast cancer from a Canadian perspective.. Breast Cancer Res Treat 2008; 108(3);375-87.

106. Lidgren et al. Cost-effectiveness of HER2 testing and 1-year adjuvant trastuzumab therapy for early breast cancer. Ann Oncol 2008; 19(3);487-95.

107. Tosteson et al. Cost-effectiveness of digital mammography breast cancer screening. Ann Intern Med 2008; 148(1);42014.

108. Wolowacz et al. Docetaxel in combination with doxorubicin and cyclophosphamide as adjuvant treatment for early node-positive breast cancer: a cost-effectiveness and cost-utility analysis.. J Clin Oncol 2008; 26(6);925-33.

109. Rojnik et al. Probabilistic cost-effectiveness modeling of different breast cancer screening policies in Slovenia.. Value Health 2008; 11(2);139-48.

110. Marino et al. High-dose chemotherapy for patients with high-risk breast cancer: a clinical and economic assessment using a quality-adjusted survival analysis. Am J Clin Oncol 2008; 31(2);117-24. 111. Lee et al. Cost-effectiveness analysis of adjuvant therapy for node positive breast cancer in Korea: docetaxel, doxorubicin and cyclophosphamide (TAC) versus fluorouracil, doxorubicin and cyclophosphamide (FAC).. Breast Cancer Res Treat 2008; ();.

112. Au et al. Cost-effectiveness analysis of adjuvant docetaxel, doxorubicin, and cyclophosphamide (TAC) for node-positive breast cancer: modeling the downstream effects.. Breast Cancer Res Treat 2008; ();.

113. Lidgren et al. Cost-effectiveness of HER2 testing and trastuzumab therapy for metastatic breast cancer.. Acta Oncol 2008; 47(6);1018-28.

114. Holland et al. Cost-Effectiveness of Testing for Breast Cancer Susceptibility Genes.. Value Health 2008; ();.

115. Ramsey et al. Cost-Effectiveness of Primary versus Secondary Prophylaxis with Pegfilgrastim in Women with Early-Stage Breast Cancer Receiving Chemotherapy.. Value Health 2008; ();.

116. Melnikow et al. Tamoxifen for breast cancer risk reduction: impact of alternative approaches to quality-of-life adjustment on cost-effectiveness analysis.. Med Care 2008; 46(9);946-53.

117. Pandharipande et al. Staging MR lymphangiography of the axilla for early breast cancer: cost-effectiveness analysis.. AJR Am J Roentgenol 2008; 191(5);1308-19.

118. Sher et al. Partial-Breast Irradiation Versus Whole-Breast Irradiation for Early-Stage Breast Cancer: A Cost-Effectiveness Analysis.. Int J Radiat Oncol Biol Phys 2008; ();.

119. Cameron et al. Economic evaluation of fulvestrant as an extra step in the treatment sequence for ER-positive advanced breast cancer.. Br J Cancer 2008; 107(3);1984-90.

120. Dranitsaris et al. Economic analysis of albumin-bound paclitaxel for the treatment of metastatic breast cancer.. J Oncol Pharm Pract 2008; ();.

121. Thoma et al. A comparison of the superficial inferior epigastric artery flap and deep inferior epigastric perforator flap in postmastectomy reconstruction: A cost-effectiveness analysis.. Can J Plast Surg 2008; 16(2);77-84.

122. Le et al. Cost-effectiveness analysis of lapatinib in HER-2-positive advanced breast cancer. Cancer 2009; 115(3);489-98.

123. Lux et al. Cost-utility analysis for advanced breast cancer therapy in Germany: results of the fulvestrant sequencing model.. Breast Cancer Res Treat 2009; ();.

124. Moore et al. Cost-effectiveness of MRI compared to mammography for breast cancer screening in a high risk population.. BMC Health Serv Res 2009; 9();9.

125. Dedes et al. Bevacizumab in combination with paclitaxel for HER-2 negative metastatic breast cancer: an economic evaluation.. Eur J Cancer 2009; 45(8);1397-406.

126. Martín-Jiménez et al. Cost-effectiveness analysis of docetaxel (Taxotere) vs. 5-fluorouracil in combined therapy in the initial phases of breast cancer.. Clin Transl Oncol 2009; 11(1);41-7.

127. Taneja et al. Cost effectiveness of breast cancer screening with contrast-enhanced MRI in high-risk women.. J Am Coll Radiol 2009; 6(3);171-9.

128. Ahern et al. Cost-effectiveness analysis of mammography and clinical breast examination strategies: a comparison with current guidelines.. Cancer Epidemiol Biomarkers Prev 2009; 18(3);718-25.

129. Reis et al. Evaluation of a surveillance programme for women with a family history of breast cancer.. J Med Genet 2009; 46(5);319-23.

130. Reed et al. Cost effectiveness of ixabepilone plus capecitabine for metastatic breast cancer progressing after anthracycline and taxane treatment.. J Clin Oncol 2009; 27(13);2185-91.

131. Van Vlaenderen et al. Trastuzumab treatment of early stage breast cancer is cost-effective from the perspective of the Belgian health care authorities.. Acta Clin Belg 2009; 64(2);100-12. 132. Skedgel et al. The Cost-Utility of Sequential Adjuvant Trastuzumab in Women with Her2/Neu-Positive Breast Cancer: An Analysis Based On Updated Results from the HERA Trial.. Value Health 2009; ();.

133. Lyman et al. Cost-effectiveness of pegfilgrastim versus filgrastim primary prophylaxis in women with early-stage breast cancer receiving chemotherapy in the united states.. Clin Ther 2009; 31(5);1092-104.

134. Danova et al. Cost-effectiveness of pegfilgrastim versus six days of filgrastim for preventing febrile neutropenia in breast cancer patients.. Tumori 2009; 95(2);219-26.

135. Garrison Jr et al. The Economic Value of Innovative Treatments over the Product Life Cycle: The Case of Targeted Trastuzumab Therapy for Breast Cancer.. Value Health 2009; ();.

136. Liu et al. The economic value of primary prophylaxis using pegfilgrastim compared with filgrastim in patients with breast cancer in the UK.. Appl Health Econ Health Policy 2009; 7(3);193-205.

137. Benedict et al. An economic evaluation of docetaxel and paclitaxel regimens in metastatic breast cancer in the UK. Pharmacoeconomics 2009; 27(10);847-59.

138. Liubao et al. Cost-effectiveness analysis of adjuvant therapy for operable breast cancer from a Chinese perspective: doxorubicin plus cyclophosphamide versus docetaxel plus cyclophosphamide.. Pharmacoeconomics 2009; 27(10);873-86.

139. Madan et al. A Rapid-Response Economic Evaluation of the UK NHS Cancer Reform Strategy Breast Cancer Screening Program Extension via a Plausible Bounds Approach.. Value Health 2009; ();. 140. Cosler et al. Economic analysis of gene expression profile data to guide adjuvant treatment in women with early-stage breast cancer.. Cancer Invest 2009; 27(10);953-9.

141. Logman et al. Economic evaluation of zoledronic acid for the prevention of osteoporotic fractures in postmenopausal women with early-stage breast cancer receiving aromatase inhibitors in the UK.. Ann Oncol 2009; ();.

142. Marino et al. Cost-effectiveness of adjuvant docetaxel for node-positive breast cancer patients: results of the PACS 01 economic study.. Ann Oncol 2009; ();.

143. Chen et al. An economic evaluation of adjuvant trastuzumab therapy in HER2-positive early breast cancer.. Value Health 2009; 12 Suppl 3();S82-4.

144. Essers et al. Transferability of Model-Based Economic Evaluations: The Case of Trastuzumab for the Adjuvant Treatment of HER2-Positive Early Breast Cancer in the Netherlands.. Value Health 2010; ();.

145. Lee et al. Cost-effectiveness of breast MR imaging and screen-film mammography for screening

BRCA1 gene mutation carriers.. Radiology 2010; 254(3);793-800.

146. Mittmann et al. Cost effectiveness of tac versus fac in adjuvant treatment of node-positive breast cancer.. Curr Oncol 2010; 17(1);42201.

147. Author et al. Economic evaluation of intensive chemotherapy with prophylactic granulocyte colony-stimulating factor for patients with high-risk early breast cancer in Japan.. Clin Ther 2010; 32(2);311-26.

148. Retel et al. Cost-effectiveness of the 70-gene signature versus Sankt Gallen guidelines and Adjuvant Online for early breast cancer.. Eur J Cancer 2010; ();.

149. Blank et al. Human epidermal growth factor receptor 2 expression in early breast cancer patients: a Swiss cost-effectiveness analysis of different predictive assay strategies.. Breast Cancer Res Treat 2010; ();.

150. Baeten et al. Incorporating Equity-Efficiency Interactions in Cost-Effectiveness Analysis-Three Approaches Applied to Breast Cancer Control.. Value Health 2010; ();.

151. Lux et al. Cost-effectiveness analysis of anastrozole versus tamoxifen in adjuvant therapy for early-stage breast cancer - a health-economic analysis based on the 100-month analysis of the ATAC trial and the German health system.. Onkologie 2010; 33(4);155-66.

152. de Kok et al. Cost-effectiveness of a short stay admission programme for breast cancer surgery.. Acta Oncol 2010; 49(3);338-46.

153. Klang et al. Economic Implications of 21-Gene Breast Cancer Risk Assay from the Perspective of an Israeli-Managed Health-Care Organization.. Value Health 2010; ();.

154. Tsoi et al. Cost-effectiveness analysis of recurrence score-guided treatment using a 21-gene assay in early breast cancer. Oncologist 2010; 15(5);457-65.

155. Matter-Walstra et al. Trastuzumab beyond progression: a cost-utility analysis.. Ann Oncol 2010; ();.

156. Grann et al. Comparative effectiveness of screening and prevention strategies among BRCA1/2-affected mutation carriers.. Breast Cancer Res Treat 2010; ();.

157. Ivergård et al. Identifying cost-effective treatment with raloxifene in postmenopausal women using risk algorithms for fractures and invasive breast cancer.. Bone 2010; ();.

158. Delea et al. Cost-effectiveness of zoledronic acid plus endocrine therapy in premenopausal women with hormone-responsive early breast cancer. Clin Breast Cancer 2010; 10(4);267-74.

159. Lipsitz et al. Cost effectiveness of letrozole versus anastrozole in postmenopausal women with HR+ early-stage breast cancer.. Curr Med Res Opin 2010; 26(10);2315-28.

160. Kwon et al. Expanding the criteria for BRCA mutation testing in breast cancer survivors. J Clin Oncol 2010; 28(27);4214-20.

161. Haines et al. Multimodal exercise improves quality of life of women being treated for breast cancer, but at what cost? Randomized trial with economic evaluation.. Breast Cancer Res Treat 2010; 124(1);163-75.

162. Chang et al. Decision modelling of economic evaluation of intervention programme of breast cancer.. J Eval Clin Pract 2010; 16(6);1282-8.

163. Frías et al. Cost-effectiveness analyses of docetaxel versus paclitaxel once weekly in patients with metastatic breast cancer in progression following anthracycline chemotherapy, in Spain.. Clin Transl Oncol 2010; 12(10);692-700.

164. Kondo et al. Economic evaluation of the 21-gene signature (Oncotype DX([®])) in lymph nodenegative/positive, hormone receptor-positive early-stage breast cancer based on Japanese validation study (JBCRG-TR03).. Breast Cancer Res Treat 2010; ();.

165. Meng et al. Cost-effectiveness of MRI and PET imaging for the evaluation of axillary lymph node metastases in early stage breast cancer.. Eur J Surg Oncol 2011; 37(1);40-6.

166. B?s et al. Cost-effectiveness analysis of a low-fat diet in the prevention of breast and ovarian

cancer.. J Am Diet Assoc 2011; 111(1);56-66.

167. Kimman et al. Economic evaluation of four follow-up strategies after curative treatment for breast cancer: Results of an RCT.. Eur J Cancer 2011; ();.

168. Purmonen et al. Short-course adjuvant trastuzumab therapy in early stage breast cancer in Finland: Cost-effectiveness and value of information analysis based on the 5-year follow-up results of the FinHer Trial.. Acta Oncol 2011; 50(3);344-52.

169. Noah-Vanhoucke et al. Cost-effectiveness of chemoprevention of breast cancer using tamoxifen in a postmenopausal US population.. Cancer 2011; ();.

170. Hall et al. Updated cost-effectiveness analysis of trastuzumab for early breast cancer: a UK perspective considering duration of benefit, long-term toxicity and pattern of recurrence.. Pharmacoeconomics 2011; 29(5);415-32.

171. Bernard et al. A Canadian economic analysis of U.S. Oncology Adjuvant Trial 9735.. Curr Oncol 2011; 18(2);67-75.

172. Carles et al. Cost-effectiveness of early detection of breast cancer in Catalonia (Spain).. BMC Cancer 2011; 11();192.

173. Whyte et al. Cost-effectiveness of granulocyte colony-stimulating factor prophylaxis for febrile neutropenia in breast cancer in the United kingdom. Value Health 2011; 14(4);465-74.

174. Zendejas et al. Cost-Effectiveness of Contralateral Prophylactic Mastectomy Versus Routine Surveillance in Patients With Unilateral Breast Cancer.. J Clin Oncol 2011; ();.

175. Delea et al. Cost-effectiveness of lapatinib plus capecitabine in women with HER2+ metastatic breast cancer who have received prior therapy with trastuzumab.. Eur J Health Econ 2011; ();.

176. Schousboe et al. Personalizing mammography by breast density and other risk factors for breast cancer: analysis of health benefits and cost-effectiveness.. Ann Intern Med 2011; 155();42297. 177. Campbell et al. The cost-effectiveness of adjuvant chemotherapy for early breast cancer: A comparison of no chemotherapy and first, second, and third generation regimens for patients with differing prognoses.. Eur J Cancer 2011; 47();2517-30.

178. Vanderlaan et al. Cost-effectiveness of 21-gene assay in node-positive, early-stage breast cancer.. Am J Manag Care 2011; 17(7);455-64.

179. Younis et al. The cost-utility of adjuvant chemotherapy using docetaxel and cyclophosphamide compared with doxorubicin and cyclophosphamide in breast cancer.. Curr Oncol 2011; 18();e288-96. 180. Montero et al. A cost-benefit analysis of bevacizumab in combination with paclitaxel in the first-line treatment of patients with metastatic breast cancer.. Breast Cancer Res Treat 2011; ();.

181. Lux et al. Cost-Benefit Analysis of Endocrine Therapy in the Adjuvant Setting for Postmenopausal Patients with Hormone Receptor-Positive Breast Cancer, Based on Survival Data and Future Prices for Generic Drugs in the Context of the German Health Care System.. Breast Care (Basel) 2011; 6(5);381-389.

182. Ret?l et al. Head-to-head comparison of the 70-gene signature versus the 21-gene assay: cost-effectiveness and the effect of compliance.. Breast Cancer Res Treat 2012; ();.

183. Hall et al. Economic evaluation of genomic test-directed chemotherapy for early-stage lymph node-positive breast cancer.. J Natl Cancer Inst 2012; 104();56-66.

184. Cheng et al. Cost-utility analysis of adjuvant goserelin (Zoladex) and adjuvant chemotherapy in premenopausal women with breast cancer. BMC Cancer 2012; 12();33.

185. Hedden et al. Assessing the real-world cost-effectiveness of adjuvant trastuzumab in HER-2/neu positive breast cancer. Oncologist 2012; 17();164-71.

186. Kondo et al. Economic evaluation of the 70-gene prognosis-signature (MammaPrint(?)) in hormone receptor-positive, lymph node-negative, human epidermal growth factor receptor type 2-negative early stage breast cancer in Japan.. Breast Cancer Res Treat 2012; 133(2);.

187. Wu et al. Costs of trastuzumab in combination with chemotherapy for HER2-positive advanced

gastric or gastroesophageal junction cancer: an economic evaluation in the Chinese context.. Clin Ther 2012; 34();468-79.

188. Yang et al. Cost effectiveness of gene expression profiling for early stage breast cancer: A decision-analytic model.. Cancer 2012; 118(20);.

189. Wong et al. Optimizing resource allocation for breast cancer prevention and care among Hong Kong Chinese women.. Cancer 2012; 118(18);.

190. Lamond et al. Cost-utility of the 21-gene recurrence score assay in node-negative and node-positive breast cancer. Breast Cancer Res Treat 2012; 133(3);.

191. Ito et al. Cost effectiveness of fracture prevention in postmenopausal women who receive aromatase inhibitors for early breast cancer.. J Clin Oncol 2012; 30(13);1468-75.

192. Verry et al. Effectiveness and cost-effectiveness of sentinel lymph node biopsy compared with axillary node dissection in patients with early-stage breast cancer: a decision model analysis.. Br J Cancer 2012; 106();1045-52.

193. Snedecor et al. Cost-effectiveness of denosumab versus zoledronic Acid in the management of skeletal metastases secondary to breast cancer.. Clin Ther 2012; 34(6);1334-49.

194. Reed et al. Cost-effectiveness of the 21-gene recurrence score assay in the context of multifactorial decision making to guide chemotherapy for early-stage breast cancer.. Genet Med 2012; ();.

195. Gold et al. Cost effectiveness of new breast cancer radiotherapy technologies in diverse populations.. Breast Cancer Res Treat 2012; 136(1);221-9.

196. Doss et al. Lapatinib or trastuzumab in combination with an aromatase inhibitor for first-line treatment of metastatic hormone-receptor-positive breast cancer that overexpresses HER2.. Lancet Oncol 2012; 13(8);766-7.

197. Hannouf et al. Cost-effectiveness of a 21-gene recurrence score assay versus Canadian clinical practice in women with early-stage estrogen- or progesterone-receptor-positive, axillary lymph-node negative breast cancer.. BMC Cancer 2012; 12();447.

198. Bai et al. Economic evaluation of radiotherapy for early breast cancer after breast-conserving surgery in a health resource-limited setting.. Breast Cancer Res Treat 2012; 136(2);547-57.

199. Blohmer et al. Using the 21-gene assay to guide adjuvant chemotherapy decision-making in early-stage breast cancer: a cost-effectiveness evaluation in the German setting. J Med Econ 2013; 16(1);30-40.

200. Lopes et al. A cost effectiveness study of eribulin versus standard single-agent cytotoxic chemotherapy for women with previously treated metastatic breast cancer. Breast Cancer Res Treat 2013; 137(1);187-93.

201. Cott Chubiz et al. Cost-effectiveness of alternating magnetic resonance imaging and digital mammography screening in BRCA1 and BRCA2 gene mutation carriers.. Cancer 2013; 119(6);. 202. Shah et al. Cost-efficacy of acceleration partial-breast irradiation compared with whole-breast irradiation.. Breast Cancer Res Treat 2013; 138(1);127-35.

203. Refaat et al. Markov Model and Cost-Effectiveness Analysis of Bevacizumab in HER2-Negative Metastatic Breast Cancer.. Am J Clin Oncol 2013; ();.

204. Das et al. Economic evaluation of fulvestrant 500 mg versus generic nonsteroidal aromatase inhibitors in patients with advanced breast cancer in the United Kingdom.. Clin Ther 2013; 35(3);246-260.e5.

205. Alba et al. Cost-utility analysis of nanoparticle albumin-bound paclitaxel versus paclitaxel in monotherapy in pretreated metastatic breast cancer in Spain.. Expert Rev Pharmacoecon Outcomes Res 2013; 13(3);381-91.

206. Lazzaro et al. An Italian cost-effectiveness analysis of paclitaxel albumin (nab-paclitaxel) versus conventional paclitaxel for metastatic breast cancer patients: the COSTANza study.. Clinicoecon

Outcomes Res 2013; 5();125-35.

207. Davidson et al. A prospective clinical utility and pharmacoeconomic study of the impact of the 21-gene Recurrence Score? assay in oestrogen receptor positive node negative breast cancer.. Eur J Cancer 2013; ();.

208. Krishnan et al. A comparison of acellular dermal matrix to autologous dermal flaps in singlestage, implant-based immediate breast reconstruction: a cost-effectiveness analysis.. Plast Reconstr Surg 2013; 131(5);953-61.

209. Chatterjee et al. A comparison of free autologous breast reconstruction with and without the use of laser-assisted indocyanine green angiography: a cost-effectiveness analysis.. Plast Reconstr Surg 2013; 131(5);693e-701e.

210. Pharoah et al. Cost effectiveness of the NHS breast screening programme: life table model.. BMJ 2013; 346();f2618.

211. Holt et al. A decision impact, decision conflict and economic assessment of routine Oncotype DX testing of 146 women with node-negative or pNImi, ER-positive breast cancer in the U.K.. Br J Cancer 2013; 108(11);2250-8.

212. Ito et al. Cost-effectiveness of full coverage of aromatase inhibitors for Medicare beneficiaries with early breast cancer. Cancer 2013; 119(13);2494-502.

213. Garrison et al. Assessing the potential cost-effectiveness of retesting IHC0, IHC1+, or FISHnegative early stage breast cancer patients for HER2 status.. Cancer 2013; ();.

214. Alvarado et al. Cost-effectiveness analysis of intraoperative radiation therapy for early-stage breast cancer.. Ann Surg Oncol 2013; 20(9);2873-80.

215. Pataky et al. Cost-effectiveness of MRI for breast cancer screening in BRCA1/2 mutation carriers.. BMC Cancer 2013; 13();339.

216. Paulden et al. Cost-effectiveness of the 21-gene assay for guiding adjuvant chemotherapy decisions in early breast cancer.. Value Health 2013; 16(5);729-39.

217. McCowan et al. The value of high adherence to tamoxifen in women with breast cancer: a community-based cohort study.. Br J Cancer 2013; 109(5);1172-80.

218. Humphreys et al. Cost-effectiveness of an aprepitant regimen for prevention of chemotherapyinduced nausea and vomiting in patients with breast cancer in the UK.. Cancer Manag Res 2013; 5();215-24.

219. Souza et al. Is Age-targeted full-field digital mammography screening cost-effective in emerging countries? A micro simulation model.. Springerplus 2013; 2();366.

220. Retèl et al. Prospective cost-effectiveness analysis of genomic profiling in breast cancer.. Eur J Cancer 2013; 49(18);3773-9.

221. Delea et al. Cost-effectiveness of lapatinib plus letrozole in her2-positive, hormone receptor-positive metastatic breast cancer in Canada.. Curr Oncol 2013; 20(5);e371-87.

222. Grover et al. Comparing five alternative methods of breast reconstruction surgery: a costeffectiveness analysis.. Plast Reconstr Surg 2013; 132(5);709e-723e.

223. Folse et al. Cost-effectiveness of a genetic test for breast cancer risk.. Cancer Prev Res (Phila) 2013; 6(12);1328-36.

224. Delea et al. Cost-Effectiveness of Lapatinib plus Letrozole in Post-Menopausal Women with Hormone Receptor-and HER2-Positive Metastatic Breast Cancer.. Breast Care (Basel) 2013; 8(6);429-37.

225. Buendía et al. An economic evaluation of trastuzumab as adjuvant treatment of early HER2-positive breast cancer patients in Colombia.. Biomedica 2013; 33(3);411-7.

226. van Ineveld et al. Cost effectiveness of cervical cancer screening among elderly low-income women. Preventing Disease: Beyond the Rhetoric 1990; ();441-46.

227. Goldie et al. Cost effectiveness of human papillomavirus testing to augment cervical cancer

screening in women infected with the human immunodeficiency virus.. Am J Med 2001; 111(2);140-9.

228. Mandelblatt et al. Benefits and costs of using HPV testing to screen for cervical cancer.. JAMA 2002; 287(18);2372-81.

229. Kim et al. Cost-effectiveness of alternative triage strategies for atypical squamous cells of undetermined significance.. JAMA 2002; 287(18);2382-90.

230. Sanders et al. Cost-effectiveness of a potential vaccine for human papillomavirus.. Emerg Infect Dis 2003; 9(1);37-48.

231. Goldie et al. Projected clinical benefits and cost-effectiveness of a human papillomavirus 16/18 vaccine.. J Natl Cancer Inst 2004; 96(8);604-15.

232. Kulasingam et al. Adding a quadrivalent human papillomavirus vaccine to the UK cervical cancer screening programme: A cost-effectiveness analysis.. Cost Eff Resour Alloc 2008; 6();4.

233. Goldhaber-Fiebert et al. Cost-effectiveness of cervical cancer screening with human papillomavirus DNA testing and HPV-16,18 vaccination.. J Natl Cancer Inst 2008; 100(5);308-20.
234. Hadwin et al. Modelling the cost-effectiveness and capacity impact of changes to colposcopy referral guidelines for women with mild dyskaryosis in the UK Cervical Screening Programme.. BJOG 2008; 115(6);749-57.

235. Dasbach et al. The cost-effectiveness of a quadrivalent human papillomavirus vaccine in Taiwan.. Asian Pac J Cancer Prev 2008; 9(3);459-66.

236. Dasbach et al. Assessment of the cost-effectiveness of a quadrivalent HPV vaccine in Norway using a dynamic transmission model.. Expert Rev Pharmacoecon Outcomes Res 2008; 8(5);491-500.
237. Coupé et al. HPV16/18 vaccination to prevent cervical cancer in The Netherlands: model-based cost-effectiveness.. Int J Cancer 2009; 124(4);970-8.

238. Vijayaraghavan et al. Cost effectiveness of high-risk HPV DNA testing for cervical cancer screening in South Africa.. Gynecol Oncol 2009; 112(2);377-83.

239. Annemans et al. Cost-effectiveness evaluation of a quadrivalent human papillomavirus vaccine in Belgium.. Pharmacoeconomics 2009; 27(3);231-45.

240. Thiry et al. Cost-effectiveness of human papillomavirus vaccination in Belgium: do not forget about cervical cancer screening. Int J Technol Assess Health Care 2009; 25(2);161-70.

241. Elbasha et al. Age-Based Programs for Vaccination against HPV.. Value Health 2009; ();.242. Coupé et al. How to screen for cervical cancer after HPV16/18 vaccination in The Netherlands..

Vaccine 2009; 27(37);5111-9. 243. Colantonio et al. Cost-effectiveness analysis of a cervical cancer vaccine in five Latin American countries.. Vaccine 2009; 27(40);5519-29.

244. TOMBOLA Group et al. Options for managing low grade cervical abnormalities detected at screening: cost effectiveness study.. BMJ 2009; 339();b2549.

245. Sinanovic et al. The potential cost-effectiveness of adding a human papillomavirus vaccine to the cervical cancer screening programme in South Africa.. Vaccine 2009; 27(44);6196-202.

246. Chuck et al. Cost-Effectiveness of 21 Alternative Cervical Cancer Screening Strategies.. Value Health 2009; ();.

247. Kim et al. Cost effectiveness analysis of including boys in a human papillomavirus vaccination programme in the United States.. BMJ 2009; 339();b3884.

248. Kim et al. Cost-effectiveness of human papillomavirus vaccination and cervical cancer screening in women older than 30 years in the United States.. Ann Intern Med 2009; 151(8);538-45.

249. Dee et al. A cost-utility analysis of adding a bivalent or quadrivalent HPV vaccine to the Irish cervical screening programme.. Eur J Public Health 2009; ();.

250. Anonychuk et al. A cost-utility analysis of cervical cancer vaccination in preadolescent Canadian females.. BMC Public Health 2009; 9();401.

251. Oddsson et al. Cost-effectiveness of human papilloma virus vaccination in Iceland.. Acta Obstet Gynecol Scand 2009; 88(12);1411-6.

252. Liu et al. Cost-effectiveness of human papillomavirus vaccination for prevention of cervical cancer in Taiwan.. BMC Health Serv Res 2010; 10();11.

253. Dasbach et al. The cost effectiveness of a quadrivalent human papillomavirus vaccine (6/11/16/18) in Hungary.. J Med Econ 2010; 13(1);110-8.

254. Berkhof et al. The health and economic effects of HPV DNA screening in The Netherlands.. Int J Cancer 2010; ();.

255. Torre et al. The Health Technology Assessment of bivalent HPV vaccine Cervarix in Italy.. Vaccine 2010; 28(19);3379-84.

256. Konno et al. Cost-effectiveness analysis of prophylactic cervical cancer vaccination in Japanese women.. Int J Gynecol Cancer 2010; 22(7);385-92.

257. Olsen et al. Human papillomavirus transmission and cost-effectiveness of introducing quadrivalent HPV vaccination in Denmark.. Int J Technol Assess Health Care 2010; 26(2);183-91. 258. Torvinen et al. Cost effectiveness of prophylactic HPV 16/18 vaccination in Finland: results from a modelling exercise.. J Med Econ 2010; 13(2);284-94.

259. Demarteau et al. Modelling the economic value of cross- and sustained-protection in vaccines against cervical cancer. J Med Econ 2010; 13(2);324-38.

260. Balasubramanian et al. Accuracy and cost-effectiveness of cervical cancer screening by high-risk human papillomavirus DNA testing of self-collected vaginal samples.. J Low Genit Tract Dis 2010; 14(3);185-95.

261. Ezat et al. Cost-effectiveness of HPV vaccination in the prevention of cervical cancer in Malaysia.. Asian Pac J Cancer Prev 2010; 11(1);79-90.

262. Obradovic et al. Cost-effectiveness analysis of HPV vaccination alongside cervical cancer screening programme in Slovenia.. Eur J Public Health 2010; 20(4);415-21.

263. Vijayaraghavan et al. Cost-effectiveness of using human papillomavirus 16/18 genotype triage in cervical cancer screening.. Gynecol Oncol 2010; ();.

264. Vijayaraghavan et al. Cost-effectiveness of high-risk human papillomavirus testing for cervical cancer screening in Qu?bec, Canada.. Can J Public Health 2010; 101(3);220-5.

265. Melnikow et al. Surveillance after treatment for cervical intraepithelial neoplasia: outcomes, costs, and cost-effectiveness.. Obstet Gynecol 2010; 116(5);1158-70.

266. Scoggins et al. Cost effectiveness of a program to promote screening for cervical cancer in the Vietnamese-American population. Asian Pac J Cancer Prev 2010; 11(3);717-22.

267. Chow et al. Cost-effectiveness analysis of human papillomavirus DNA testing and Pap smear for cervical cancer screening in a publicly financed health-care system. Br J Cancer 2010; 103(12);1773-82.

268. Demarteau et al. A generally applicable cost-effectiveness model for the evaluation of vaccines against cervical cancer.. Int J Public Health 2010; ();.

269. Ezat et al. Comparative cost-effectiveness of HPV vaccines in the prevention of cervical cancer in Malaysia.. Asian Pac J Cancer Prev 2010; 11(4);943-51.

270. Accetta et al. Is human papillomavirus screening preferable to current policies in vaccinated and unvaccinated women? A cost-effectiveness analysis.. J Med Screen 2010; 17(4);181-9.

271. Lee et al. Cost-effectiveness of different human papillomavirus vaccines in Singapore.. BMC Public Health 2011; 11();203.

272. Praditsitthikorn et al. Economic evaluation of policy options for prevention and control of cervical cancer in Thailand.. Pharmacoeconomics 2011; 29();781-806.

273. Coup? et al. Impact of vaccine protection against multiple HPV types on the cost-effectiveness of cervical screening.. Vaccine 2012; ():.

274. Vok? et al. Modeling cost-effectiveness of cervical cancer screening in hungary.. Value Health 2012; 15();39-45.

275. de Kok et al. Primary screening for human papillomavirus compared with cytology screening for cervical cancer in European settings: cost effectiveness analysis based on a Dutch microsimulation model.. BMJ 2012; 344();e670.

276. de Bekker-Grob et al. Liquid-based cervical cytology using ThinPrep technology: weighing the pros and cons in a cost-effectiveness analysis.. Cancer Causes Control 2012; 23(8);1323-31.

277. Phippen et al. Cost effectiveness of concurrent gemcitabine and cisplatin with radiation followed by adjuvant gemcitabine and cisplatin in patients with stages IIB to IVA carcinoma of the cervix.. Gynecol Oncol 2012; 127(2);267-72.

278. Geisler et al. Treatment of advanced or recurrent cervical cancer with Cisplatin or Cisplatin containing regimens: a cost effective analysis.. J Cancer 2012; 3();454-8.

279. Lesnock et al. Upfront treatment of locally advanced cervical cancer with intensity modulated radiation therapy compared to four-field radiation therapy: a cost-effectiveness analysis.. Gynecol Oncol 2013; 129(3);574-9.

280. Phippen et al. Are supportive care-based treatment strategies preferable to standard chemotherapy in recurrent cervical cancer?. Gynecol Oncol 2013; 130(2);317-22.

281. Demarteau et al. Incremental cost-effectiveness evaluation of vaccinating girls against cervical cancer pre- and post-sexual debut in Belgium.. Vaccine 2013; ();.

282. Favato et al. A novel method to value real options in health care: the case of a multicohort human papillomavirus vaccination strategy.. Clin Ther 2013; 35(7);904-14.

283. Uusk?la et al. The epidemiological and economic impact of a quadrivalent human papillomavirus (hpv) vaccine in Estonia.. BMC Infect Dis 2013; 13();304.

284. Brisson et al. Comparative cost-effectiveness of the quadrivalent and bivalent human papillomavirus vaccines: A transmission-dynamic modeling study.. Vaccine 2013; ();.

285. Fonseca et al. Cost-effectiveness of the vaccine against human papillomavirus in the Brazilian Amazon region.. Rev Assoc Med Bras 2013; 59(5);442-51.

286. Kievit et al. Utility and cost of carcinoembryonic antigen monitoring in colon cancer follow-up evaluation. A Markov analysis.. Cancer 1990; 65(11);2580-7.

287. Smith et al. A cost-utility approach to the use of 5-fluorouracil and levamisole as adjuvant chemotherapy for Dukes' C colonic carcinoma.. Med J Aust 1993; 158(5);319-22.

288. Kievit et al. Detection of recurrence after surgery for colorectal cancer.. Eur J Cancer 1995; 31A(42193);1222-5.

289. Norum et al. Adjuvant chemotherapy (5-fluorouracil and levamisole) in Dukes' B and C colorectal carcinoma. A cost-effectiveness analysis.. Ann Oncol 1997; 8(1);65-70.

290. Norum et al. A cost-effectiveness approach to the Norwegian follow-up programme in colorectal cancer.. Ann Oncol 1997; 8(11);1081-7.

291. Bonistalli et al. Adjuvant chemotherapy in patients with resectable stage III colon cancer: lifetime cost-effectiveness and cost-utility analysis.. Cancer J Sci Am 1998; 11(1);39-47.

292. Whynes et al. Faecal occult blood screening for colorectal cancer: is it cost-effective?. Health Econ 1998; 7(1);21-9.

293. Robert et al. Cost of quality management and information provision for screening: colorectal cancer screening.. J Med Screen 2000; 7(1);31-4.

294. Ness et al. Cost-utility of one-time colonoscopic screening for colorectal cancer at various ages.. Am J Gastroenterol 2000; 95(7);1800-11.

295. Miller et al. Quality of life and cost effectiveness analysis of therapy for locally recurrent rectal cancer.. Dis Colon Rectum 2000; 43(12);1695-1701; discussion 1701-3.

296. Gazelle et al. Cost-effectiveness of hepatic metastasectomy in patients with metastatic

colorectal carcinoma: a state-transition Monte Carlo decision analysis.. Ann Surg 2003; 237(4);544-55.

297. van den Brink et al. Cost-utility analysis of preoperative radiotherapy in patients with rectal cancer undergoing total mesorectal excision: a study of the Dutch Colorectal Cancer Group.. J Clin Oncol 2004; 22(2);244-53.

298. Borie et al. Cost-effectiveness of Two Follow-up Strategies for Curative Resection of Colorectal Cancer: Comparative Study Using a Markov Model.. World J Surg 2004; ();.

299. Hur et al. The cost-effectiveness of aspirin versus cyclooxygenase-2-selective inhibitors for colorectal carcinoma chemoprevention in healthy individuals.. Cancer 2004; 101(1);189-97.

300. Borie et al. Cost-effectiveness of two follow-up strategies for curative resection of colorectal cancer: comparative study using a Markov model.. World J Surg 2004; 28(6);563-9.

301. Earle et al. Two schedules of second-line irinotecan for metastatic colon carcinoma.. Cancer 2004; 101(11);2533-9.

302. Gazelle et al. Metastatic colorectal carcinoma: cost-effectiveness of percutaneous radiofrequency ablation versus that of hepatic resection.. Radiology 2004; 233(3);729-39.
303. Uyl-de Groot et al. Immunotherapy with autologous tumor cell-BCG vaccine in patients with colon cancer: a prospective study of medical and economic benefits.. Vaccine 2005; 23(17-18);2379-87.

304. Hillner et al. Cost-effectiveness projections of oxaliplatin and infusional fluorouracil versus irinotecan and bolus fluorouracil in first-line therapy for metastatic colorectal carcinoma.. Cancer 2005; 104(9);1871-84.

305. Cassidy et al. Pharmacoeconomic analysis of adjuvant oral capecitabine vs intravenous 5-FU/LV in Dukes' C colon cancer: the X-ACT trial.. Br J Cancer 2006; 94(8);1122-9.

306. Eggington et al. Cost-effectiveness of oxaliplatin and capecitabine in the adjuvant treatment of stage III colon cancer. Br J Cancer 2006; 95(9);1195-201.

307. Tappenden et al. Option appraisal of population-based colorectal cancer screening programmes in England.. Gut 2007; 56(5);677-84.

308. Starling et al. Cost-effectiveness analysis of cetuximab/irinotecan vs active/best supportive care for the treatment of metastatic colorectal cancer patients who have failed previous chemotherapy treatment.. Br J Cancer 2007; 96(2);206-12.

309. Aballéa et al. Cost-effectiveness analysis of oxaliplatin compared with 5-fluorouracil/leucovorin in adjuvant treatment of stage III colon cancer in the US.. Cancer 2007; 109(6);1082-9.

310. Aballéa et al. An economic evaluation of oxaliplatin for the adjuvant treatment of colon cancer in the United Kingdom (UK).. Eur J Cancer 2007; 43(11);1687-93.

311. Nielsen et al. Cost-utility analysis of genetic screening in families of patients with germline MUTYH mutations.. BMC Med Genet 2007; 8();42.

312. Hayes et al. Is laparoscopic colectomy for cancer cost-effective relative to open colectomy?. ANZ J Surg 2007; 77(9);782-6.

313. Govindarajan et al. Use of colonic stents in emergent malignant left colonic obstruction: a Markov chain Monte Carlo decision analysis.. Dis Colon Rectum 2007; 50(11);1811-24.

314. Tappenden et al. The cost-effectiveness of bevacizumab in the first-line treatment of metastatic colorectal cancer in England and Wales.. Eur J Cancer 2007; 43(17);2487-94.

315. de Verteuil et al. Economic evaluation of laparoscopic surgery for colorectal cancer.. Int J Technol Assess Health Care 2007; 23(4);464-72.

316. Karuna et al. Cost-effectiveness of laparoscopy versus laparotomy for initial surgical evaluation and treatment of potentially resectable hepatic colorectal metastases: a decision analysis.. J Surg Oncol 2008; 97(5);396-403.

317. Di Costanzo et al. Capecitabine versus bolus fluorouracil plus leucovorin (folinic acid) as

adjuvant chemotherapy for patients with Dukes' C colon cancer : economic evaluation in an Italian NHS setting.. Clin Drug Investig 2008; 28(10);645-55.

318. Hisashige et al. Cost-effectiveness of adjuvant chemotherapy with uracil-tegafur for curatively resected stage III rectal cancer. Br J Cancer 2008; 99(8);1232-8.

319. Tumeh et al. A Markov model assessing the effectiveness and cost-effectiveness of FOLFOX compared with FOLFIRI for the initial treatment of metastatic colorectal cancer.. Am J Clin Oncol 2009; 32(1);49-55.

320. Gold et al. Cost effectiveness of pharmacogenetic testing for uridine diphosphate glucuronosyltransferase 1A1 before irinotecan administration for metastatic colorectal cancer.. Cancer 2009; ();.

321. Shiroiwa et al. Cost-effectiveness analysis of capecitabine compared with bolus 5-fluorouracil/lleucovorin for the adjuvant treatment of colon cancer in Japan.. Pharmacoeconomics 2009; 27(7);597-608.

322. Mittmann et al. Prospective cost-effectiveness analysis of cetuximab in metastatic colorectal cancer: evaluation of National Cancer Institute of Canada Clinical Trials Group CO.17 trial.. J Natl Cancer Inst 2009; 101(17);1182-92.

323. Jeyarajah et al. Prospective evaluation of a Colorectal Cancer Nurse Follow-up Clinic.. Colorectal Dis 2009; ();.

324. Mvundura et al. The cost-effectiveness of genetic testing strategies for Lynch syndrome among newly diagnosed patients with colorectal cancer.. Genet Med 2010; 9(10);93-104.

325. Attard et al. Cost-effectiveness of oxaliplatin in the adjuvant treatment of colon cancer in Canada.. Curr Oncol 2010; 17(1);17-24.

326. Saini et al. Surveillance Colonoscopy is Cost-Effective for Patients with Adenomas who are at High Risk for Colorectal Cancer.. Gastroenterology 2010; ():.

327. Howard et al. The value of new chemotherapeutic agents for metastatic colorectal cancer.. Arch Intern Med 2010; 170(6);537-42.

328. Lee et al. Cost effectiveness of CT colonography for UK NHS colorectal cancer screening of asymptomatic adults aged 60-69 years.. Appl Health Econ Health Policy 2010; 8(3);141-54.

329. Telford et al. The cost-effectiveness of screening for colorectal cancer.. CMAJ 2010; ();. 330. Heitman et al. Colorectal cancer screening for average-risk North Americans: an economic evaluation.. PLoS Med 2010; 7(11);e1000370.

331. Health Quality Ontario et al. KRAS Testing for Anti-EGFR Therapy in Advanced Colorectal Cancer: An Evidence-Based and Economic Analysis.. Ont Health Technol Assess Ser 2010; 10(25);17899.

332. Dranitsaris et al. Improving patient access to cancer drugs in India: Using economic modeling to estimate a more affordable drug cost based on measures of societal value.. Int J Technol Assess Health Care 2011; 27(1);23-30.

333. Ercolani et al. Effectiveness and cost-effectiveness of peri-operative versus post-operative chemotherapy for resectable colorectal liver metastases.. Eur J Cancer 2011; ();.

334. Blank et al. KRAS and BRAF Mutation Analysis in Metastatic Colorectal Cancer: A Costeffectiveness Analysis from a Swiss Perspective.. Clin Cancer Res 2011; 17();6338-46.

335. Hsu et al. Pharmacoeconomic analysis of capecitabine versus 5-fluorouracil/leucovorin as adjuvant therapy for stage III colon cancer in Taiwan.. Value Health 2011; 14();647-51.

336. Squires et al. Cost-effectiveness of aspirin, celecoxib, and calcium chemoprevention for colorectal cancer.. Clin Ther 2011; 33();1289-305.

337. De Smedt et al. A cost-effectiveness study of the community-based intervention '10 000 Steps Ghent'. Public Health Nutr 2011; ();42014.

338. Maeso et al. Esophageal Doppler monitoring during colorectal resection offers cost-effective

improvement of hemodynamic control.. Value Health 2011; 14();818-26.

339. Mullins et al. Comparative and cost-effectiveness of oxaliplatin-based or irinotecan-based regimens compared with 5-fluorouracil/leucovorin alone among US elderly stage IV colon cancer patients.. Cancer 2012; 118(12);.

340. Dan et al. Screening Based on Risk for Colorectal Cancer Is the Most Cost-Effective Approach.. Clin Gastroenterol Hepatol 2012; ();.

341. Manca et al. The Cost-Effectiveness of Different Chemotherapy Strategies for Patients with Poor Prognosis Advanced Colorectal Cancer (MRC FOCUS).. Value Health 2012; 15();22-31.

342. Hedden et al. Incremental cost-effectiveness of the pre- and post-bevacizumab eras of metastatic colorectal cancer therapy in British Columbia, Canada.. Eur J Cancer 2012; 48(13);. 343. Sharp et al. Cost-effectiveness of population-based screening for colorectal cancer: a

comparison of guaiac-based faecal occult blood testing, faecal immunochemical testing and flexible sigmoidoscopy.. Br J Cancer 2012; 106();805-16.

344. Whyte et al. Re-appraisal of the options for colorectal cancer screening in England.. Colorectal Dis 2012; 14(9);.

345. Shiroiwa et al. Cost-effectiveness of adjuvant FOLFOX therapy for stage III colon cancer in Japan based on the MOSAIC trial.. Value Health 2012; 15();255-60.

346. Wang et al. Influence of patient preferences on the cost-effectiveness of screening for lynch syndrome.. Am J Manag Care 2012; 18(5);e179-85.

347. Wang et al. Influence of patient preferences on the cost-effectiveness of screening for lynch syndrome.. J Oncol Pract 2012; 8(5);e24s-30s.

348. Jensen et al. Cost-effectiveness of laparoscopic vs open resection for colon and rectal cancer.. Dis Colon Rectum 2012; 55(10);1017-23.

349. Barouni et al. Markov's modeling for screening strategies for colorectal cancer. Asian Pac J Cancer Prev 2012; 13(10);5125-9.

350. Hornberger et al. A Multigene Prognostic Assay for Selection of Adjuvant Chemotherapy in Patients with T3, Stage II Colon Cancer: Impact on Quality-Adjusted Life Expectancy and Costs.. Value Health 2012; 15(8);1014-21.

351. Sharaf et al. Comparative Effectiveness and Cost-Effectiveness of Screening Colonoscopy vs. Sigmoidoscopy and Alternative Strategies.. Am J Gastroenterol 2013; 108(1);120-32.

352. Ayvaci et al. Cost-effectiveness of adjuvant FOLFOX and 5FU/LV chemotherapy for patients with stage II colon cancer.. Med Decis Making 2013; 33(4);521-32.

353. Hoyle et al. Cost-effectiveness of cetuximab, cetuximab plus irinotecan, and panitumumab for third and further lines of treatment for KRAS wild-type patients with metastatic colorectal cancer.. Value Health 2013; 16(2);288-96.

354. Dinh et al. Health Benefits and Cost-effectiveness of a Hybrid Screening Strategy for Colorectal Cancer.. Clin Gastroenterol Hepatol 2013; ();.

355. Michalopoulos et al. A cost-utility analysis of laparoscopic vs open treatment of colorectal cancer in a public hospital of the Greek National Health System.. J BUON 2013; 18();86-97.

356. van Gils et al. Real-World Cost-Effectiveness of Oxaliplatin in Stage III Colon Cancer: A Synthesis of Clinical Trial and Daily Practice Evidence.. Pharmacoeconomics 2013; 31(8);703-18.

357. Cronin et al. Cost-effectiveness of an advance notification letter to increase colorectal cancer screening. Int J Technol Assess Health Care 2013; 29(3);261-8.

358. Tappenden et al. Using whole disease modeling to inform resource allocation decisions: economic evaluation of a clinical guideline for colorectal cancer using a single model.. Value Health 2013; 16(4);542-53.

359. Ladabaum et al. Colorectal Cancer Screening with Blood-Based Biomarkers: Cost-Effectiveness of Methylated Septin 9 DNA vs. Current Strategies.. Cancer Epidemiol Biomarkers Prev 2013; ();.

360. Lawrence et al. Economic analysis of bevacizumab, cetuximab, and panitumumab with fluoropyrimidine-based chemotherapy in the first-line treatment of KRAS wild-type metastatic colorectal cancer (mCRC)... J Med Econ 2013; 16(12);1387-98.

361. Nebuloni et al. Modified FLOX as first-line chemotherapy for metastatic colorectal cancer patients in the public health system in Brazil: Effectiveness and cost-utility analysis.. Mol Clin Oncol 2013; 1(1);175-179.

362. Provenzale et al. A guide for surveillance of patients with Barrett's esophagus.. Am J Gastroenterol 1994; 89(5);670-80.

363. Provenzale et al. Barrett's esophagus: a new look at surveillance based on emerging estimates of cancer risk.. Am J Gastroenterol 1999; 94(8);2043-53.

364. Wallace et al. An analysis of multiple staging management strategies for carcinoma of the esophagus: computed tomography, endoscopic ultrasound, positron emission tomography, and thoracoscopy/laparoscopy.. Ann Thorac Surg 2002; 74(4);1026-32.

365. Rubenstein et al. The cost-effectiveness of biomarkers for predicting the development of oesophageal adenocarcinoma.. Aliment Pharmacol Ther 2005; 22(2);135-46.

366. Rao et al. Economic analysis of esophageal stenting for management of malignant dysphagia.. Dis Esophagus 2009; 22(4);337-47.

367. Inadomi et al. A cost-utility analysis of ablative therapy for Barrett's esophagus.. Gastroenterology 2009; 136(7);2101-2114.e1-6.

368. Pohl et al. Endoscopic versus surgical therapy for early cancer in Barrett's esophagus: a decision analysis.. Gastrointest Endosc 2009; ();.

369. Glimelius et al. Cost-effectiveness of palliative chemotherapy in advanced gastrointestinal cancer.. Ann Oncol 1995; 6(3);267-74.

370. Sarasin et al. Living donor liver transplantation for early hepatocellular carcinoma: A life-expectancy and cost-effectiveness perspective.. Hepatology 2001; 33(5);1073-9.

371. Arguedas et al. Screening for hepatocellular carcinoma in patients with hepatitis C cirrhosis: a cost-utility analysis.. Am J Gastroenterol 2003; 98(3);679-90.

372. Lin et al. Cost-effectiveness of screening for hepatocellular carcinoma in patients with cirrhosis due to chronic hepatitis C. Aliment Pharmacol Ther 2004; 19(11);1159-72.

373. Patel et al. Cost-effectiveness of hepatocellular carcinoma surveillance in patients with hepatitis C virus-related cirrhosis.. Clin Gastroenterol Hepatol 2005; 3(1);75-84.

374. Huse et al. Cost effectiveness of imatinib mesylate in the treatment of advanced gastrointestinal stromal tumours.. Clin Drug Investig 2007; 27(2);85-93.

375. van Vliet et al. Detection of distant metastases in patients with oesophageal or gastric cardia cancer: a diagnostic decision analysis.. Br J Cancer 2007; 97(7);868-76.

376. McKay et al. A cost-utility analysis of treatments for malignant liver tumours: a pilot project.. HPB (Oxford) 2007; 9(1);42-51.

377. Nouso et al. Cost-effectiveness of the surveillance program of hepatocellular carcinoma depends on the medical circumstances. J Gastroenterol Hepatol 2008; 23(3);437-44.

378. Xie et al. Cost-effectiveness analysis of Helicobacter pylori screening in prevention of gastric cancer in Chinese.. Int J Technol Assess Health Care 2008; 24(1);87-95.

379. Chabot et al. The challenge of conducting pharmacoeconomic evaluations in oncology using crossover trials: the example of sunitinib for gastrointestinal stromal tumour.. Eur J Cancer 2008; 44(7);972-7.

380. Thompson Coon et al. Surveillance of cirrhosis for hepatocellular carcinoma: a cost-utility analysis.. Br J Cancer 2008; 98(7);1166-75.

381. Xie et al. Cost effectiveness analysis of population-based serology screening and (13)C-Urea breath test for Helicobacter pylori to prevent gastric cancer: a markov model.. World J Gastroenterol

2008; 14(19);3021-7.

382. Andersson et al. Cost effectiveness of alternative surveillance strategies for hepatocellular carcinoma in patients with cirrhosis.. Clin Gastroenterol Hepatol 2008; 6(12);1418-24.

383. Paz-Ares et al. Cost-effectiveness analysis of sunitinib in patients with metastatic and/or unresectable gastrointestinal stroma tumours (GIST) after progression or intolerance with imatinib.. Clin Transl Oncol 2008; 10(12);831-9.

384. Wang et al. A cost-effectiveness analysis of adjuvant chemoradiotherapy for resected gastric cancer.. Gastrointest Cancer Res 2008; 2(2);57-63.

385. Robotin et al. Antiviral therapy for hepatitis B-related liver cancer prevention is more costeffective than cancer screening. J Hepatol 2009; 50(5);990-8.

386. Xie et al. Illustrating economic evaluation of diagnostic technologies: comparing Helicobacter pylori screening strategies in prevention of gastric cancer in Canada.. J Am Coll Radiol 2009; 6(5);317-23.

387. Greenblatt et al. Cost-effectiveness of prophylactic surgery for duodenal cancer in familial adenomatous polyposis.. Cancer Epidemiol Biomarkers Prev 2009; 18(10);2677-84.

388. Vitale et al. Use of sorafenib in patients with hepatocellular carcinoma before liver transplantation: a cost-benefit analysis while awaiting data on sorafenib safety.. Hepatology 2010; 51(1);165-73.

389. Shih et al. Cost-effectiveness analysis of a two-stage screening intervention for hepatocellular carcinoma in Taiwan.. J Formos Med Assoc 2010; 109(1);39-55.

390. Yeh et al. Cost-effectiveness of endoscopic surveillance of gastric ulcers to improve survival.. Gastrointest Endosc 2010; ():.

391. Chabot et al. How Do Cost-Effectiveness Analyses Inform Reimbursement Decisions for Oncology Medicines in Canada? The Example of Sunitinib for First-Line Treatment of Metastatic Renal Cell Carcinoma.. Value Health 2010; ();.

392. Yeh et al. Cost-effectiveness of treatment and endoscopic surveillance of precancerous lesions to prevent gastric cancer. Cancer 2010; 116(12);2941-53.

393. Botteman et al. Cost-effectiveness of zoledronic acid in the prevention of skeletal-related events in patients with bone metastases secondary to advanced renal cell carcinoma: application to France, Germany, and the United Kingdom.. Eur J Health Econ 2010; ();.

394. Paz-Ares et al. A cost-effectiveness analysis of sunitinib in patients with metastatic renal cell carcinoma intolerant to or experiencing disease progression on immunotherapy: perspective of the Spanish National Health System.. J Clin Pharm Ther 2010; 35(4);429-38.

395. Chang et al. Cost-effectiveness analysis of nephron sparing options for the management of small renal masses.. J Urol 2011; 185(5);1591-7.

396. Gupta et al. Endoscopy for upper GI cancer screening in the general population: a cost-utility analysis.. Gastrointest Endosc 2011; 74();610-624.e2.

397. Shiroiwa et al. Cost-effectiveness analysis of trastuzumab to treat HER2-positive advanced gastric cancer based on the randomised ToGA trial.. Br J Cancer 2011; 105();1273-8.

398. Landman et al. Which is more cost-effective under the MELD system: primary liver transplantation, or salvage transplantation after hepatic resection or after loco-regional therapy for hepatocellular carcinoma within Milan criteria?. HPB (Oxford) 2011; 13(1);783-91.

399. Zhou et al. Health economic assessment for screening of gastric cancer in a high risk population in northeastern china.. Chin J Cancer Res 2011; 23(1);21-4.

400. Hultman et al. Costs and clinical outcome of neoadjuvant systemic chemotherapy followed by cytoreductive surgery and hyperthermic intraperitoneal chemotherapy in peritoneal carcinomatosis from gastric cancer.. Acta Oncol 2012; 51();112-21.

401. Liu et al. Comparison of survival and quality of life of hepatectomy and thrombectomy using

total hepatic vascular exclusion and chemotherapy alone in patients with hepatocellular carcinoma and tumor thrombi in the inferior vena cava and hepatic vein.. Eur J Gastroenterol Hepatol 2012; 24();186-94.

402. Tanaka et al. Cost-effectiveness analysis on the surveillance for hepatocellular carcinoma in liver cirrhosis patients using contrast-enhanced ultrasonography.. Hepatol Res 2012; ();.

403. Cucchetti et al. Cost-effectiveness of semi-annual surveillance for hepatocellular carcinoma in cirrhotic patients of the Italian Liver Cancer population.. J Hepatol 2012; 56(5);1089-96.

404. Chang et al. Comparing endoscopy and upper gastrointestinal X-ray for gastric cancer screening in South Korea: a cost-utility analysis.. Asian Pac J Cancer Prev 2012; 13(6);2721-8.

405. Sanon et al. Cost-effectiveness of 3-years of adjuvant imatinib in gastrointestinal stromal tumors (GIST) in the United States.. J Med Econ 2013; 16(1);150-159.

406. Cammà et al. Cost-effectiveness of sorafenib treatment in field practice for patients with hepatocellular carcinoma.. Hepatology 2013; 57(3);1046-54.

407. Cucchetti et al. Cost-effectiveness of hepatic resection versus percutaneous radiofrequency ablation for early hepatocellular carcinoma.. J Hepatol 2013; 59(2);300-7.

408. Chongqing et al. Cost-Utility Analysis of the Newly Recommended Adjuvant Chemotherapy for Resectable Gastric Cancer Patients in the 2011 Chinese National Comprehensive Cancer Network (NCCN) Clinical Practice Guidelines in Oncology: Gastric Cancer.. Pharmacoeconomics 2013; ();.

409. Majer et al. Cost-effectiveness of 3-year vs 1-year adjuvant therapy with imatinib in patients with high risk of gastrointestinal stromal tumour recurrence in the Netherlands; a modelling study alongside the SSGXVIII/AIO trial.. J Med Econ 2013; ();.

410. Hisashige et al. Cost-effectiveness of adjuvant chemotherapy for curatively resected gastric cancer with S-1.. BMC Cancer 2013; 13();443.

411. Tan et al. Economic evaluation of first-line adjuvant chemotherapies for resectable gastric cancer patients in China.. PLoS One 2013; 8(12);e83396.

412. Zhou et al. A cost-effectiveness analysis evaluating endoscopic surveillance for gastric cancer for populations with low to intermediate risk.. PLoS One 2013; 8(12);e83959.

413. Weeks et al. Cost effectiveness of prophylactic intravenous immune globulin in chronic lymphocytic leukemia.. N Engl J Med 1991; 325(2);81-6.

414. Beard et al. The costs and benefits of bone marrow transplantation.. N Z Med J 1991; 104(916);303-5.

415. Uyl-de Groot et al. Cost-effectiveness of ABMT in comparison with CHOP chemotherapy in patients with intermediate- and high-grade malignant non-Hodgkin's lymphoma (NHL).. Bone Marrow Transplant 1995; 16(3);463-70.

416. Kattan et al. Cost-effectiveness of interferon-alpha and conventional chemotherapy in chronic myelogenous leukemia.. Ann Intern Med 1996; 125(7);541-8.

417. Norum et al. Treatment costs in Hodgkin's disease: a cost-utility analysis.. Eur J Cancer 1996; 32A(9);1510-7.

418. Hillner et al. Economic analysis of adjuvant interferon alfa-2b in high-risk melanoma based on projections from Eastern Cooperative Oncology Group 1684.. J Clin Oncol 1997; 15(6);2351-8.

419. Liberato et al. Cost-effectiveness of interferon alfa in chronic myelogenous leukemia.. J Clin Oncol 1997; 15(7);2673-82.

420. Nord et al. Cost-utility analysis of melphalan plus prednisone with or without interferon-alpha 2b in newly diagnosed multiple myeloma. Results from a randomised controlled trial.. Pharmacoeconomics 1997; 12(1);89-103.

421. Lee et al. The costs and cost-effectiveness of unrelated donor bone marrow transplantation for chronic phase chronic myelogenous leukemia.. Blood 1998; 92(11);4047-52.

422. Beck et al. Cytarabine added to interferon improves the cost-effectiveness of initial therapy for

patients with early chronic phase chronic myelogenous leukemia.. Leuk Lymphoma 2001; 41(42006);117-24.

423. Gulbrandsen et al. Cost-utility analysis of high-dose melphalan with autologous blood stem cell support vs. melphalan plus prednisone in patients younger than 60 years with multiple myeloma.. Eur J Haematol 2001; 66(5);328-36.

424. Wirt et al. Cost-Effectiveness of interferon alfa-2b added to chemotherapy for high-tumorburden follicular non-Hodgkin's lymphoma.. Leuk Lymphoma 2001; 40(42130);565-79.

425. Ng et al. Costs and effectiveness of staging and treatment options in early-stage Hodgkin's disease.. Int J Radiat Oncol Biol Phys 2001; 50(4);979-89.

426. Gordois et al. Cost-utility analysis of imatinib mesilate for the treatment of advanced stage chronic myeloid leukaemia.. Br J Cancer 2003; 89(4);634-40.

427. van Agthoven et al. A cost-utility analysis comparing intensive chemotherapy alone to intensive chemotherapy followed by myeloablative chemotherapy with autologous stem-cell rescue in newly diagnosed patients with stage II/III multiple myeloma; a prospective randomised phase III study.. Eur J Cancer 2004; 40(8);1159-69.

428. Reed et al. Cost-effectiveness of imatinib versus interferon-alpha plus low-dose cytarabine for patients with newly diagnosed chronic-phase chronic myeloid leukemia.. Cancer 2004; 101(11);2574-83.

429. Warren et al. Cost-utility analysis of imatinib mesylate for the treatment of chronic myelogenous leukemia in the chronic phase.. Clin Ther 2004; 26(11);1924-33.

430. Groot et al. Cost-effectiveness of rituximab (MabThera(R)) in diffuse large B-cell lymphoma in the Netherlands.. Eur J Haematol 2005; 74(3);194-202.

431. Hornberger et al. Cost utility in the United States of rituximab plus cyclophosphamide, doxorubicin, vincristine, and prednisone for the treatment of elderly patients with diffuse large B-cell lymphoma.. Cancer 2005; 103(8);1644-51.

432. Dalziel et al. Cost effectiveness of imatinib compared with interferon-alpha or hydroxycarbamide for first-line treatment of chronic myeloid leukaemia.. Pharmacoeconomics 2005; 23(5);515-26.

433. Best et al. Cost-effectiveness analysis of rituximab combined with chop for treatment of diffuse large B-cell lymphoma.. Value Health 2005; 8(4);462-70.

434. Guadagnolo et al. Cost-effectiveness analysis of computerized tomography in the routine follow-up of patients after primary treatment for Hodgkin's disease.. J Clin Oncol 2006; 24(25);4116-22.

435. Scott et al. Economic evaluation of third-line treatment with alemtuzumab for chronic lymphocytic leukaemia.. Clin Drug Investig 2007; 27(11);755-64.

436. Hornberger et al. Economic evaluation of rituximab plus cyclophosphamide, vincristine and prednisolone for advanced follicular lymphoma.. Leuk Lymphoma 2008; 49(2);227-36.

437. Reed et al. Updated estimates of survival and cost effectiveness for imatinib versus interferonalpha plus low-dose cytarabine for newly diagnosed chronic-phase chronic myeloid leukaemia.. Pharmacoeconomics 2008; 26(5);435-46.

438. Kasteng et al. Cost-effectiveness of maintenance rituximab treatment after second line therapy in patients with follicular lymphoma in Sweden.. Acta Oncol 2008; 47(6);1029-36.

439. Hayslip et al. Cost-effectiveness of extended adjuvant rituximab for US patients aged 65-70 years with follicular lymphoma in second remission.. Clin Lymphoma Myeloma 2008; 8(3);166-70.
440. Fagnoni et al. Cost effectiveness of high-dose chemotherapy with autologous stem cell support as initial treatment of aggressive non-Hodgkin's lymphoma.. Pharmacoeconomics 2009; 27(1);55-68.
441. Lyman et al. Cost-effectiveness of pegfilgrastim versus 6-day filgrastim primary prophylaxis in patients with non-Hodgkin's lymphoma receiving CHOP-21 in United States.. Curr Med Res Opin

2009; 25(2);401-11.

442. Guest et al. Cost-effectiveness of pentostatin compared with cladribine in the management of hairy cell leukemia in the United Kingdom.. Clin Ther 2009; 31 Pt 2();2398-415.

443. Chen et al. Cost-effectiveness study comparing imatinib with interferon-alpha for patients with newly diagnosed chronic-phase (CP) chronic myeloid leukemia (CML) from the Chinese public health-care system perspective (CPHSP). Value Health 2009; 12 Suppl 3();S85-8.

444. Deconinck et al. Cost effectiveness of rituximab maintenance therapy in follicular lymphoma: long-term economic evaluation.. Pharmacoeconomics 2010; 28(1);35-46.

445. Ray et al. An Evaluation of the Cost-Effectiveness of Rituximab in Combination with Chemotherapy for the First-Line Treatment of Follicular Non-Hodgkin's Lymphoma in the UK.. Value Health 2010; ();.

446. Johnston et al. Cost-Effectiveness of the Addition of Rituximab to CHOP Chemotherapy in First-Line Treatment for Diffuse Large B-Cell Lymphoma in a Population-Based Observational Cohort in British Columbia, Canada.. Value Health 2010; ();.

447. Ghatnekar et al. Cost-effectiveness of dasatinib versus high-dose imatinib in patients with Chronic Myeloid Leukemia (CML), resistant to standard dose imatinib--a Swedish model application.. Acta Oncol 2010; 49(6);851-8.

448. Tolley et al. Cost effectiveness of deferasirox compared to desferrioxamine in the treatment of iron overload in lower-risk, transfusion-dependent myelodysplastic syndrome patients.. J Med Econ 2010; 13(3);559-70.

449. Hornberger et al. The Cost-Effectiveness of Bortezomib in Relapsed/Refractory Multiple Myeloma: Swedish Perspective.. Eur J Haematol 2010; ();.

450. Ryynänen et al. Treatment of follicular non-Hodgkin's lymphoma with or without rituximab: cost-effectiveness and value of information based on a 5-year follow-up.. Ann Oncol 2010; ();.

451. Grima et al. Modelled cost-effectiveness of high cut-off haemodialysis compared to standard haemodialysis in the management of myeloma kidney.. Curr Med Res Opin 2010; ();.

452. Pan et al. Economic analysis of decitabine versus best supportive care in the treatment of intermediate- and high-risk myelodysplastic syndromes from a US payer perspective.. Clin Ther 2010; 32(14);2444-56.

453. M?ller et al. Cost-effectiveness of novel relapsed-refractory multiple myeloma therapies in Norway: lenalidomide plus dexamethasone vs bortezomib.. J Med Econ 2011; 14();690-7.

454. Doss et al. NICE guidance on bortezomib and thalidomide for first-line treatment of multiple myeloma.. Lancet Oncol 2011; 12();837-8.

455. Hoyle et al. Cost-effectiveness of dasatinib and nilotinib for imatinib-resistant or -intolerant chronic phase chronic myeloid leukemia.. Value Health 2011; 14();1057-67.

456. Hornberger et al. Cost-effectiveness of adding rituximab to fludarabine and cyclophosphamide for the treatment of previously untreated chronic lymphocytic leukemia.. Leuk Lymphoma 2012; 53();225-34.

457. Delea et al. Cost-effectiveness of zoledronic acid vs clodronic acid for newly-diagnosed multiple myeloma from the United Kingdom healthcare system perspective.. J Med Econ 2012; 15();454-64. 458. Chan et al. Cost-utility analysis of primary prophylaxis versus secondary prophylaxis with granulocyte colony-stimulating factor in elderly patients with diffuse aggressive lymphoma receiving curative-intent chemotherapy.. J Clin Oncol 2012; 30();1064-71.

459. Pink et al. Mechanism-based approach to the economic evaluation of pharmaceuticals: pharmacokinetic/pharmacodynamic/pharmacoeconomic analysis of rituximab for follicular lymphoma.. Pharmacoeconomics 2012; 30(5);413-29.

460. Kymes et al. Economic evaluation of plerixafor for stem cell mobilization.. Am J Manag Care 2012; 18();33-41.

461. Soini et al. Economic evaluation of sequential treatments for follicular non-hodgkin lymphoma.. Clin Ther 2012; 34();915-925.e2.

462. Brown et al. Lenalidomide for multiple myeloma: cost-effectiveness in patients with one prior therapy in England and Wales.. Eur J Health Econ 2012; ();.

463. Hornberger et al. Cost-effectiveness of rituximab as maintenance therapy in patients with follicular non-Hodgkin lymphoma after responding to first-line rituximab plus chemotherapy.. Leuk Lymphoma 2012; 53(12);2371-7.

464. Woods et al. Bendamustine versus chlorambucil for the first-line treatment of chronic
lymphocytic leukemia in England and Wales: a cost-utility analysis.. Value Health 2012; 15(5);759-70.
465. Lu et al. Cost-effectiveness of alemtuzumab for T-cell prolymphocytic leukemia.. Int J Technol
Assess Health Care 2012; 28(3);241-8.

466. Delea et al. Cost-effectiveness of zoledronic acid compared with clodronate in multiple myeloma.. Curr Oncol 2012; 19(6);e392-403.

467. Fragoulakis et al. Economic evaluation of therapies for patients suffering from relapsed-refractory multiple myeloma in Greece.. Cancer Manag Res 2013; 5();37-48.

468. Lathia et al. Cost-Effectiveness of Filgrastim and Pegfilgrastim as Primary Prophylaxis Against Febrile Neutropenia in Lymphoma Patients.. J Natl Cancer Inst 2013; 105(15);1078-1085.

469. Corso et al. Long term evaluation of the impact of autologous peripheral blood stem cell transplantation in multiple myeloma: a cost-effectiveness analysis.. PLoS One 2013; 8(9);e75047. 470. Crespo et al. Cost-effectiveness analysis of azacitidine in the treatment of high-risk

myelodysplastic syndromes in Spain.. Health Econ Rev 2013; 3(1);28.

471. Purmonen et al. Economic evaluation of sunitinib malate in second-line treatment of metastatic renal cell carcinoma in Finland.. Clin Ther 2008; 30(2);382-92.

472. Pandharipande et al. Radiofrequency ablation versus nephron-sparing surgery for small unilateral renal cell carcinoma: cost-effectiveness analysis.. Radiology 2008; 248(1);169-78.

473. Remák et al. Economic evaluation of sunitinib malate for the first-line treatment of metastatic renal cell carcinoma.. J Clin Oncol 2008; 26(24);3995-4000.

474. Hoyle et al. Cost-Effectiveness of Temsirolimus for First Line Treatment of Advanced Renal Cell Carcinoma.. Value Health 2009; ():.

475. Hoyle et al. Cost-Effectiveness of Sorafenib for Second-Line Treatment of Advanced Renal Cell Carcinoma.. Value Health 2009; ();.

476. Pandharipande et al. Renal mass biopsy to guide treatment decisions for small incidental renal tumors: a cost-effectiveness analysis.. Radiology 2010; 256(3);836-46.

477. Benedict et al. Economic evaluation of new targeted therapies for the first-line treatment of patients with metastatic renal cell carcinoma.. BJU Int 2011; ();.

478. Casciano et al. Economic Evaluation of Everolimus versus Sorafenib for the Treatment of Metastatic Renal Cell Carcinoma after Failure of First-Line Sunitinib.. Value Health 2011; 14();846-51. 479. Heilbrun et al. The cost-effectiveness of immediate treatment, percutaneous biopsy and active surveillance for the diagnosis of the small solid renal mass: evidence from a Markov model.. J Urol 2012; 187();39-43.

480. Calvo Aller et al. Cost-effectiveness evaluation of sunitinib as first-line targeted therapy for metastatic renal cell carcinoma in Spain.. Clin Transl Oncol 2012; 13();869-77.

481. Wu et al. Economic evaluation of first-line treatments for metastatic renal cell carcinoma: a cost-effectiveness analysis in a health resource-limited setting.. PLoS One 2012; 7();e32530.

482. Wong et al. Health benefits and costs of screening for colorectal cancer in people on dialysis or who have received a kidney transplant.. Nephrol Dial Transplant 2013; 28(4);.

483. Kilonzo et al. Pazopanib for the first-line treatment of patients with advanced and/or metastatic renal cell carcinoma : a NICE single technology appraisal.. Pharmacoeconomics 2013;

31(1);15-24.

484. Bhan et al. Active Surveillance, Radiofrequency Ablation, or Cryoablation for the Nonsurgical Management of a Small Renal Mass: A Cost-Utility Analysis.. Ann Surg Oncol 2013; ();.

485. Mihajlovic et al. Cost-effectiveness of everolimus for second-line treatment of metastatic renal cell carcinoma in Serbia.. Clin Ther 2013; 35(12);1909-22.

486. Goodwin et al. Cost-effectiveness of cancer chemotherapy: an economic evaluation of a randomized trial in small-cell lung cancer.. J Clin Oncol 1988; 6(10);1537-47.

487. Colice et al. Cost-effectiveness of head CT in patients with lung cancer without clinical evidence of metastases.. Chest 1995; 108(5);1264-71.

488. Raab et al. The effect of a patient's risk-taking attitude on the cost effectiveness of testing strategies in the evaluation of pulmonary lesions.. Chest 1997; 111(6);1583-90.

489. Berthelot et al. Decision framework for chemotherapeutic interventions for metastatic nonsmall-cell lung cancer.. J Natl Cancer Inst 2000; 92(16);1321-9.

490. Coy et al. The cost-effectiveness and cost-utility of high-dose palliative radiotherapy for advanced non-small-cell lung cancer.. Int J Radiat Oncol Biol Phys 2000; 48(4);1025-33.

491. Esnaola et al. Outcomes and cost-effectiveness of alternative staging strategies for non-small-cell lung cancer.. J Clin Oncol 2002; 20(1);263-73.

492. Tai et al. Prophylactic cranial irradiation revisited: cost-effectiveness and quality of life in small-cell lung cancer.. Int J Radiat Oncol Biol Phys 2002; 52(1);68-74.

493. Mahadevia et al. Lung cancer screening with helical computed tomography in older adult smokers: a decision and cost-effectiveness analysis.. JAMA 2003; 289(3);313-22.

494. Gould et al. Cost-effectiveness of alternative management strategies for patients with solitary pulmonary nodules.. Ann Intern Med 2003; 138(9);724-35.

495. Ferguson et al. Sleeve lobectomy or pneumonectomy: optimal management strategy using decision analysis techniques.. Ann Thorac Surg 2003; 76(6);1782-8.

496. Ferguson et al. Optimal management when unsuspected N2 nodal disease is identified during thoracotomy for lung cancer: cost-effectiveness analysis.. J Thorac Cardiovasc Surg 2003; 126(6);1935-42.

497. Manser et al. Cost-effectiveness analysis of screening for lung cancer with low dose spiral CT (computed tomography) in the Australian setting.. Lung Cancer 2005; 48(2);171-85.

498. Lievens et al. CHART in lung cancer: economic evaluation and incentives for implementation.. Radiother Oncol 2005; 75(2);171-8.

499. Hayashi et al. Should mediastinoscopy actually be incorporated into the FDG PET strategy for patients with non-small cell lung carcinoma?. Ann Nucl Med 2005; 19(5);393-8.

500. Kent et al. Cost effectiveness of chest computed tomography after lung cancer resection: a decision analysis model.. Ann Thorac Surg 2005; 80(4);1215-22; discussion 1222-3.

501. Dooms et al. Cost-utility analysis of chemotherapy in symptomatic advanced nonsmall cell lung cancer.. Eur Respir J 2006; 27(5);895-901.

502. van den Hout et al. Cost-utility analysis of short- versus long-course palliative radiotherapy in patients with non-small-cell lung cancer. J Natl Cancer Inst 2006; 98(24);1786-94.

503. Uyl-de Groot et al. Cost-effectiveness of hypothetical new cancer drugs in patients with advanced small-cell lung cancer: results of a markov chain model.. Ther Clin Risk Manag 2006; 2(3);317-23.

504. Cordony et al. Cost-effectiveness of pemetrexed plus cisplatin: malignant pleural mesothelioma treatment in UK clinical practice.. Value Health 2008; 11(1);42106.

505. Carlson et al. Comparative clinical and economic outcomes of treatments for refractory non-small cell lung cancer (NSCLC).. Lung Cancer 2008; 61(3);405-15.

506. Whynes et al. Could CT screening for lung cancer ever be cost effective in the United Kingdom?.

Cost Eff Resour Alloc 2008; 6();5.

507. Carlson et al. The Potential Clinical and Economic Outcomes of Pharmacogenomic Approaches to EGFR-Tyrosine Kinase Inhibitor Therapy in Non-Small-Cell Lung Cancer.. Value Health 2008; ();. 508. Araújo et al. An economic analysis of erlotinib, docetaxel, pemetrexed and best supportive care as second or third line treatment of non-small cell lung cancer.. Rev Port Pneumol 2008; 14(6);803-827.

509. Gray et al. Lung cancer deaths from indoor radon and the cost effectiveness and potential of policies to reduce them.. BMJ 2009; 338();a3110.

510. Slatore et al. Cost-effectiveness of a smoking cessation program implemented at the time of surgery for lung cancer. J Thorac Oncol 2009; 4(4);499-504.

511. van Loon et al. 18FDG-PET-CT in the follow-up of non-small cell lung cancer patients after radical radiotherapy with or without chemotherapy: an economic evaluation.. Eur J Cancer 2010; 46(1);110-9.

512. Asukai et al. Cost-effectiveness analysis of pemetrexed versus docetaxel in the second-line treatment of non-small cell lung cancer in Spain: results for the non-squamous histology population.. BMC Cancer 2010; 10();26.

513. Lewis et al. Cost-effectiveness of Erlotinib versus Docetaxel for Second-line Treatment of Advanced Non-small-cell Lung Cancer in the United Kingdom.. J Int Med Res 2010; 38(1);42268.

514. Grutters et al. The cost-effectiveness of particle therapy in non-small cell lung cancer: Exploring decision uncertainty and areas for future research.. Cancer Treat Rev 2010; ():.

515. Hartwell et al. Topotecan for relapsed small cell lung cancer: A systematic review and economic evaluation.. Cancer Treat Rev 2010; ();.

516. Gordon et al. Within a smoking-cessation program, what impact does genetic information on lung cancer need to have to demonstrate cost-effectiveness?. Cost Eff Resour Alloc 2010; 8();18.

517. Joerger et al. Addition of cetuximab to first-line chemotherapy in patients with advanced non-small-cell lung cancer: a cost-utility analysis.. Ann Oncol 2010; ():.

518. Schreyögg et al. Cost-effectiveness of hybrid PET/CT for staging of non-small cell lung cancer.. J Nucl Med 2010; 51(11);1668-75.

519. Vergnenegre et al. Cost-effectiveness of second-line chemotherapy for non-small cell lung cancer: an economic, randomized, prospective, multicenter phase III trial comparing docetaxel and pemetrexed: the GFPC 05-06 study.. J Thorac Oncol 2011; 6(1);161-8.

520. Sher et al. Cost-Effectiveness Analysis of Stereotactic Body Radiotherapy and Radiofrequency Ablation for Medically Inoperable, Early-Stage Non-Small Cell Lung Cancer.. Int J Radiat Oncol Biol Phys 2011; ();.

521. Taylor et al. Cost Effectiveness of Interventions to Reduce Relapse to Smoking Following Smoking Cessation.. Addiction 2011; ();.

522. Tsuchiya et al. Pharmacoeconomic analysis of consolidation therapy with pemetrexed after first-line chemotherapy for non-small cell lung cancer.. Lung Cancer 2011; ();.

523. Joshi et al. Cost-effectiveness of zoledronic acid in the management of skeletal metastases in patients with lung cancer in France, Germany, Portugal, the Netherlands, and the United kingdom.. Clin Ther 2011; 33(3);291-304.e8.

524. Borget et al. Comparative cost-effectiveness of three strategies for guiding second-line erlotinib initiation in non small-cell lung cancer: a French prospective multicenter study (ERMETIC Project Part 3).. Eur Respir J 2011; ();.

525. de Lima Lopes et al. Cost-effectiveness of epidermal growth factor receptor mutation testing and first-line treatment with gefitinib for patients with advanced adenocarcinoma of the lung.. Cancer 2011; ();.

526. McMahon et al. Cost-effectiveness of computed tomography screening for lung cancer in the

United States.. J Thorac Oncol 2011; 7(10);1841-8.

527. Goulart et al. A trial-based assessment of the cost-utility of bevacizumab and chemotherapy versus chemotherapy alone for advanced non-small cell lung cancer. Value Health 2011; 14();836-45.

528. Dickson et al. Erlotinib Monotherapy for the Maintenance Treatment of Non-Small Cell Lung Cancer after Previous Platinum-Containing Chemotherapy: A NICE Single Technology Appraisal.. Pharmacoeconomics 2011; 29();1051-62.

529. Wu et al. Cost-effectiveness of adding rh-endostatin to first-line chemotherapy in patients with advanced non-small-cell lung cancer in China.. Clin Ther 2011; 33();1446-55.

530. Thongprasert et al. Cost-effectiveness analysis of cisplatin plus etoposide and carboplatin plus paclitaxel in a phase III randomized trial for non-small cell lung cancer.. Asia Pac J Clin Oncol 2011; 7();369-75.

531. Matter-Walstra et al. Cost-effectiveness of maintenance pemetrexed in patients with advanced nonsquamous-cell lung cancer from the perspective of the swiss health care system. Value Health 2012; 15();65-71.

532. Thongprasert et al. Cost-utility and budget impact analyses of gefitinib in second-line treatment for advanced non-small cell lung cancer from Thai payer perspective.. Asia Pac J Clin Oncol 2012; 8();53-61.

533. Atherly et al. The cost-effectiveness of screening lung cancer patients for targeted drug sensitivity markers.. Br J Cancer 2012; 106();1100-6.

534. Dillon et al. NICE guidance on erlotinib for first-line treatment of EGFR-TK mutation-positive advanced or metastatic non-small-cell lung cancer. Lancet Oncol 2012; 13(8);764-5.

535. Handorf et al. Cost effectiveness of personalized therapy for first-line treatment of stage IV and recurrent incurable adenocarcinoma of the lung.. J Oncol Pract 2012; 8(5);267-74.

536. Zeng et al. Cost-effectiveness of continuation maintenance pemetrexed after cisplatin and pemetrexed chemotherapy for advanced nonsquamous non-small-cell lung cancer: estimates from the perspective of the Chinese health care system.. Clin Ther 2013; 35(1);54-65.

537. Zhu et al. Gene-guided gefitinib switch maintenance therapy for patients with advanced EGFR mutation-positive non-small cell lung cancer: an economic analysis.. BMC Cancer 2013; 13();39.

538. Shah et al. Cost-effectiveness of stereotactic body radiation therapy versus surgical resection for stage I non-small cell lung cancer.. Cancer 2013; ();.

539. Villanti et al. A cost-utility analysis of lung cancer screening and the additional benefits of incorporating smoking cessation interventions.. PLoS One 2013; 8(8);e71379.

540. Shmueli et al. Cost-effectiveness of baseline low-dose computed tomography screening for lung cancer: the Israeli experience.. Value Health 2013; 16(6);922-31.

541. Akbari Sari et al. The Cost-Utility Analysis of PET-Scan in Diagnosis and Treatment of Non-Small Cell Lung Carcinoma in Iran.. Iran J Radiol 2013; 10(2);61-7.

542. Nelson et al. A comparison of individualized treatment guided by VeriStrat with standard of care treatment strategies in patients receiving second-line treatment for advanced non-small cell lung cancer: A cost-utility analysis.. Lung Cancer 2013; 82(3);461-8.

543. Ramaekers et al. Cost effectiveness of modified fractionation radiotherapy versus conventional radiotherapy for unresected non-small-cell lung cancer patients.. J Thorac Oncol 2013; 8(10);1295-307.

544. Mooney et al. Life-long screening of patients with intermediate-thickness cutaneous melanoma for asymptomatic pulmonary recurrences: a cost-effectiveness analysis.. Cancer 1997; 80(6);1052-64.

545. Freedberg et al. Screening for malignant melanoma: A cost-effectiveness analysis.. J Am Acad Dermatol 1999; 41(5 Pt 1);738-45.

546. Lafuma et al. Economic analysis of adjuvant therapy with interferon alpha-2a in stage II malignant melanoma.. Eur J Cancer 2001; 37(3);369-75.

547. Wilson et al. Modelling the cost-effectiveness of sentinel lymph node mapping and adjuvant interferon treatment for stage II melanoma.. Melanoma Res 2002; 12(6);607-17.

548. Crott et al. Cost-utility of adjuvant high-dose interferon alpha therapy in stage III cutaneous melanoma in Quebec.. Value Health 2004; 7(4);423-32.

549. Dixon et al. Quality of life and cost-effectiveness of interferon-alpha in malignant melanoma: results from randomised trial.. Br J Cancer 2006; 94(4);492-8.

550. Losina et al. Visual screening for malignant melanoma: a cost-effectiveness analysis.. Arch Dermatol 2007; 143(1);21-8.

551. Cormier et al. Cost effectiveness of adjuvant interferon in node-positive melanoma.. J Clin Oncol 2007; 25(17);2442-8.

552. Morton et al. The Cost-Effectiveness of Sentinel Node Biopsy in Patients with Intermediate Thickness Primary Cutaneous Melanoma.. Ann Surg Oncol 2008; ();.

553. Hirst et al. Lifetime cost-effectiveness of skin cancer prevention through promotion of daily sunscreen use.. Value Health 2012; 15();261-8.

554. Barzey et al. Ipilimumab in 2nd line treatment of patients with advanced melanoma: a cost-effectiveness analysis.. J Med Econ 2013; 16(2);202-12.

555. Wilson et al. The cost-effectiveness of a novel SIAscopic diagnostic aid for the management of pigmented skin lesions in primary care: a decision-analytic model.. Value Health 2013; 16(2);356-66. 556. Kansal et al. Cost-effectiveness of a FISH assay for the diagnosis of melanoma in the USA.. Expert Rev Pharmacoecon Outcomes Res 2013; 13(3);371-80.

557. Beale et al. Vemurafenib for the treatment of locally advanced or metastatic BRAF V600 mutation-positive malignant melanoma: a NICE single technology appraisal.. Pharmacoeconomics 2013; 31(12);1121-9.

558. Hollenbeak et al. The cost-effectiveness of fluorodeoxyglucose 18-F positron emission tomography in the N0 neck.. Cancer 2001; 92(9);2341-8.

559. Vidal-Trecan et al. Managing toxic thyroid adenoma: a cost-effectiveness analysis.. Eur J Endocrinol 2002; 146(3);283-94.

560. van der Meij et al. Cost-effectiveness of screening for the possible development of cancer in patients with oral lichen planus.. Community Dent Oral Epidemiol 2002; 30(5);342-51.

561. Vidal-Trecan et al. Radioiodine or surgery for toxic thyroid adenoma: dissecting an important decision. A cost-effectiveness analysis.. Thyroid 2004; 14(11);933-45.

562. Blamey et al. Using recombinant human thyroid-stimulating hormone for the diagnosis of recurrent thyroid cancer.. ANZ J Surg 2005; 75(42006);42297.

563. Mernagh et al. Cost-effectiveness of using recombinant human TSH prior to radioiodine ablation for thyroid cancer, compared with treating patients in a hypothyroid state: the German perspective.. Eur J Endocrinol 2006; 155(3);405-14.

564. Brown et al. An Economic Evaluation of Cetuximab Combined with Radiotherapy for Patients with Locally Advanced Head and Neck Cancer in Belgium, France, Italy, Switzerland, and the United Kingdom.. Value Health 2008; ();.

565. Yen et al. The cost-utility analysis of 18-fluoro-2-deoxyglucose positron emission tomography in the diagnosis of recurrent nasopharyngeal carcinoma.. Acad Radiol 2009; 16(1);54-60.

566. Parthan et al. Cost utility of docetaxel as induction chemotherapy followed by chemoradiation in locally advanced squamous cell carcinoma of the head and neck.. Head Neck 2009; 31(10);1255-62.

567. Mernagh et al. Cost-Effectiveness of Using Recombinant Human Thyroid-Stimulating Hormone before Radioiodine Ablation for Thyroid Cancer: The Canadian Perspective.. Value Health 2009; ();.

568. Sher et al. Cost-effectiveness of CT and PET-CT for determining the need for adjuvant neck dissection in locally advanced head and neck cancer.. Ann Oncol 2009; ();.

569. Wang et al. To stimulate or withdraw? A cost-utility analysis of recombinant human thyrotropin versus thyroxine withdrawal for radioiodine ablation in patients with low-risk differentiated thyroid cancer in the United States. J Clin Endocrinol Metab 2010; 95(4);1672-80.

570. Higgins et al. What treatment for early-stage glottic carcinoma among adult patients: CO2 endolaryngeal laser excision versus standard fractionated external beam radiation is superior in terms of cost utility?. Laryngoscope 2011; 121(1);116-34.

571. Dedhia et al. The cost-effectiveness of community-based screening for oral cancer in high-risk males in the United States: A Markov decision analysis approach.. Laryngoscope 2011; 121(5);952-60.

572. Chan et al. Cost effectiveness of cetuximab concurrent with radiotherapy for patients with locally advanced head and neck cancer in Taiwan: a decision-tree analysis.. Clin Drug Investig 2011; 31();717-26.

573. Li et al. Cost-Effectiveness of a Novel Molecular Test for Cytologically Indeterminate Thyroid Nodules.. J Clin Endocrinol Metab 2011; ();.

574. Ret?l et al. A cost-effectiveness analysis of a preventive exercise program for patients with advanced head and neck cancer treated with concomitant chemo-radiotherapy.. BMC Cancer 2011; 11();475.

575. Liberato et al. Adding docetaxel to cisplatin and fluorouracil in patients with unresectable head and neck cancer: a cost-utility analysis.. Ann Oncol 2012; 23(7);.

576. Yong et al. Cost-effectiveness of intensity-modulated radiotherapy in oropharyngeal cancer.. Clin Oncol (R Coll Radiol) 2012; 24(7);532-8.

577. Hannouf et al. Cost-effectiveness of adding cetuximab to platinum-based chemotherapy for first-line treatment of recurrent or metastatic head and neck cancer.. PLoS One 2012; 7(6);e38557. 578. Heller et al. Cost-effectiveness analysis of repeat fine-needle aspiration for thyroid biopsies

read as atypia of undetermined significance.. Surgery 2012; 152(3);423-30.

579. Najafzadeh et al. Cost-effectiveness of using a molecular diagnostic test to improve preoperative diagnosis of thyroid cancer.. Value Health 2012; 15(8);1005-13.

580. Ramaekers et al. Protons in Head-and-Neck Cancer: Bridging the Gap of?Evidence.. Int J Radiat Oncol Biol Phys 2013; 85(5);.

581. Zanocco et al. Routine on-site evaluation of specimen adequacy during initial ultrasoundguided fine needle aspiration of thyroid nodules: a cost-effectiveness analysis.. Ann Surg Oncol 2013; 20(8);2462-7.

582. Govers et al. Management of the NO neck in early stage oral squamous cell cancer: A modeling study of the cost-effectiveness.. Oral Oncol 2013; 49(8);771-7.

583. Zanocco et al. Cost Effectiveness of Intraoperative Pathology Examination during Diagnostic Hemithyroidectomy for?Unilateral Follicular Thyroid Neoplasms.. J Am Coll Surg 2013; ();.

584. Lee et al. Cost-Effectiveness of Minimally Invasive Versus Open Esophagectomy for Esophageal Cancer.. Ann Surg Oncol 2013; ();.

585. Kohler et al. Two-year and lifetime cost-effectiveness of intensity modulated radiation therapy versus 3-dimensional conformal radiation therapy for head-and-neck cancer. Int J Radiat Oncol Biol Phys 2013; 87(4);683-9.

586. Zanocco et al. Routine prophylactic central neck dissection for low-risk papillary thyroid cancer: a cost-effectiveness analysis.. Surgery 2013; 154(6);1148-55; discussion 1154-5.

587. Sarasin et al. Management and prevention of thromboembolic events in patients with cancerrelated hypercoagulable states: a risky business.. J Gen Intern Med 1993; 8(9);476-86.

588. Zbrozek et al. Pharmacoeconomic analysis of ondansetron versus metoclopramide for cisplatin-

induced nausea and vomiting.. Am J Hosp Pharm 1994; 51(12);1555-63.

589. Goldie et al. The costs, clinical benefits, and cost-effectiveness of screening for cervical cancer in HIV-infected women.. Ann Intern Med 1999; 130(2);97-107.

590. Goldie et al. The clinical effectiveness and cost-effectiveness of screening for anal squamous intraepithelial lesions in homosexual and bisexual HIV-positive men.. JAMA 1999; 281(19);1822-9.

591. Cremieux et al. Cost effectiveness, quality-adjusted life-years and supportive care. Recombinant human erythropoietin as a treatment of cancer-associated anaemia.

Pharmacoeconomics 1999; 16(5 Pt 1);459-72.

592. Kievit et al. Diagnosis and treatment of adrenal incidentaloma. A cost-effectiveness analysis.. Endocrinol Metab Clin North Am 2000; 29(1);69-90, viii-ix.

593. Goldie et al. Cost-effectiveness of screening for anal squamous intraepithelial lesions and anal cancer in human immunodeficiency virus-negative homosexual and bisexual men.. Am J Med 2000; 108(8);634-41.

594. van den Hout et al. Single- versus multiple-fraction radiotherapy in patients with painful bone metastases: cost-utility analysis based on a randomized trial.. J Natl Cancer Inst 2003; 95(3);222-9. 595. Hollingworth et al. Rapid magnetic resonance imaging for diagnosing cancer-related low back pain.. J Gen Intern Med 2003; 18(4);303-12.

596. Barton et al. Utility-adjusted analysis of the cost of palliative radiotherapy for bone metastases.. Australas Radiol 2003; 47(3);274-8.

597. Aujesky et al. Cost-effectiveness of low-molecular-weight heparin for secondary prophylaxis of cancer-related venous thromboembolism.. Thromb Haemost 2005; 93(3);592-9.

598. Cho et al. Socioeconomic costs of open surgery and gamma knife radiosurgery for benign cranial base tumors.. Neurosurgery 2006; 58(5);866-73; discussion 866-73.

599. Dranitsaris et al. Dalteparin versus warfarin for the prevention of recurrent venous thromboembolic events in cancer patients: a pharmacoeconomic analysis.. Pharmacoeconomics 2006; 24(6);593-607.

600. Graves et al. Cost-effectiveness analyses and modelling the lifetime costs and benefits of health-behaviour interventions.. Chronic Illn 2006; 2(2);97-107.

601. Lordick et al. Health outcomes and cost-effectiveness of aprepitant in outpatients receiving antiemetic prophylaxis for highly emetogenic chemotherapy in Germany.. Eur J Cancer 2007; 43(2);299-307.

602. Moore et al. Cost-effectiveness of aprepitant for the prevention of chemotherapy-induced nausea and vomiting associated with highly emetogenic chemotherapy.. Value Health 2007; 10(1);23-31.

603. Annemans et al. Cost-effectiveness analysis of aprepitant in the prevention of chemotherapyinduced nausea and vomiting in Belgium.. Support Care Cancer 2007; ();.

604. Annemans et al. Health economic evaluation of controlled and maintained physical exercise in the prevention of cardiovascular and other prosperity diseases.. Eur J Cardiovasc Prev Rehabil 2007; 14(6);815-24.

605. Eldar-Lissai et al. Economic analysis of prophylactic pegfilgrastim in adult cancer patients receiving chemotherapy.. Value Health 2008; 11(2);172-9.

606. Karnon et al. Cost-utility analysis of screening high-risk groups for anal cancer. J Public Health (Oxf) 2008; 30(3);293-304.

607. Borg et al. The cost-effectiveness of treatment with erythropoietin compared to red blood cell transfusions for patients with chemotherapy induced anaemia: a Markov model.. Acta Oncol 2008; 47(6);1009-17.

608. Konski et al. Economic Analysis of Radiation Therapy Oncology Group 97-14: Multiple Versus Single Fraction Radiation Treatment of Patients With Bone Metastases.. Am J Clin Oncol 2009; ();.

609. Chen et al. Cost Effectiveness and Screening Interval of Lipid Screening in Hodgkin's Lymphoma Survivors.. J Clin Oncol 2009; ():.

610. Olden et al. Treatment of malignant pleural effusion: PleuRx catheter or talc pleurodesis? A cost-effectiveness analysis.. J Palliat Med 2010; 13(1);59-65.

611. Klarenbach et al. Economic evaluation of erythropoiesis-stimulating agents for anemia related to cancer.. Cancer 2010; 116(13);3224-32.

612. Soini et al. Trabectedin in the treatment of metastatic soft tissue sarcoma: cost-effectiveness, cost-utility and value of information.. Ann Oncol 2010; ():.

613. Dinh et al. Health benefits and cost-effectiveness of primary genetic screening for lynch syndrome in the general population.. Cancer Prev Res (Phila) 2011; 4(1);42269.

614. Roth et al. Cost-Effectiveness of Gemcitabine + Cisplatin vs. Gemcitabine Monotherapy in Advanced Biliary Tract Cancer. J Gastrointest Cancer 2011; ();.

615. Vissers et al. An economic evaluation of short-acting opioids for treatment of breakthrough pain in patients with cancer.. Value Health 2011; 14(2);274-81.

616. Cunio Machado Fonseca et al. Economic evaluation of clodronate and zoledronate in patients diagnosed with metastatic bone disease from the perspective of public and third party payors in Brazil.. Clin Ther 2011; 33();1769-1780.e2.

617. Woods et al. Raltitrexed plus cisplatin is cost-effective compared with pemetrexed plus cisplatin in patients with malignant pleural mesothelioma.. Lung Cancer 2012; 75();261-7.

618. Lazenby et al. A Cost-Effectiveness Analysis of Anal Cancer Screening in HIV-Positive Women.. J Low Genit Tract Dis 2012; 16(3);.

619. Stopeck et al. Cost-effectiveness of denosumab vs zoledronic acid for prevention of skeletalrelated events in patients with solid tumors and bone metastases in the United States.. J Med Econ 2012; ():.

620. Furlan et al. The combined use of surgery and radiotherapy to treat patients with epidural cord compression due to metastatic disease: a cost-utility analysis.. Neuro Oncol 2012; 14(5);631-40. 621. Puri et al. Treatment of Malignant Pleural Effusion: A Cost-Effectiveness Analysis.. Ann Thorac Surg 2012; 94(2);.

622. Pishko et al. Anticoagulation in ambulatory cancer patients with no indication for prophylactic or therapeutic anticoagulation. A cost-effectiveness analysis from a U.S. perspective.. Thromb Haemost 2012; 108(2);.

623. Papatheofanis et al. Cost-utility analysis of the cyberknife system for metastatic spinal tumors.. Neurosurgery 2009; 64(2 Suppl);A73-83.

624. Athanasakis et al. Cost-effectiveness of varenicline versus bupropion, nicotine-replacement therapy, and unaided cessation in Greece.. Clin Ther 2012; 34(8);1803-14.

625. Jones et al. Rehabilitation in Advanced, Progressive, Recurrent Cancer: A Randomized Controlled Trial.. J Pain Symptom Manage 2012; ();.

626. Hornberger et al. Cost-effectiveness of gene-expression profiling for tumor-site origin.. Value Health 2013; 16();46-56.

627. Assoumou et al. Cost-effectiveness of surveillance strategies after treatment for high-grade anal dysplasia in high-risk patients.. Sex Transm Dis 2013; 40(4);298-303.

628. Luttjeboer et al. Cost-effectiveness of the prophylactic HPV vaccine: An application to the Netherlands taking non-cervical cancers and cross-protection into account.. Vaccine 2013; ();.

629. Corrie et al. Is community treatment best? a randomised trial comparing delivery of cancer treatment in the hospital, home and GP surgery.. Br J Cancer 2013; 109(6);1549-55.

630. Guest et al. Cost effectiveness of first-line treatment with doxorubicin/ifosfamide compared to trabectedin monotherapy in the management of advanced soft tissue sarcoma in Italy, Spain, and sweden.. Sarcoma 2013; 2013();725305.

631. Johal et al. Mifamurtide for high-grade, resectable, nonmetastatic osteosarcoma following surgical resection: a cost-effectiveness analysis.. Value Health 2013; 16(8);1123-32.

632. Bennett et al. Cost-utility assessment of amifostine as first-line therapy for ovarian cancer.. Am J Manag Care 1998; 10(5);64-72.

633. Messori et al. Treatments for newly diagnosed advanced ovarian cancer: analysis of survival data and cost-effectiveness evaluation. Anticancer Drugs 1998; 9(6);491-502.

634. Limat et al. From randomised clinical trials to clinical practice : a pragmatic cost-effectiveness analysis of Paclitaxel in first-line therapy for advanced ovarian cancer.. Pharmacoeconomics 2004; 22(17);633-41.

635. Bristow et al. Centralization of care for patients with advanced-stage ovarian cancer: a cost-effectiveness analysis.. Cancer 2007; 109(8);1513-22.

636. Bristow et al. Intraperitoneal cisplatin and paclitaxel versus intravenous carboplatin and paclitaxel chemotherapy for Stage III ovarian cancer: a cost-effectiveness analysis.. Gynecol Oncol 2007; 106(3);476-81.

637. Kwon et al. Cost-effectiveness analysis of prevention strategies for gynecologic cancers in Lynch syndrome.. Cancer 2008; 113(2);326-35.

638. Havrilesky et al. Cost effectiveness of intraperitoneal compared with intravenous chemotherapy for women with optimally resected stage III ovarian cancer: a Gynecologic Oncology Group study.. J Clin Oncol 2008; 26(25);4144-50.

639. Greving et al. Is centralization of ovarian cancer care warranted? A cost-effectiveness analysis.. Gynecol Oncol 2009; 113(1);68-74.

640. Rubinstein et al. Cost-effectiveness of population-based BRCA1/2 testing and ovarian cancer prevention for Ashkenazi Jews: a call for dialogue.. Genet Med 2009; 11(9);629-39.

641. Yang et al. A cost-effectiveness analysis of prophylactic surgery versus gynecologic surveillance for women from hereditary non-polyposis colorectal cancer (HNPCC) Families.. Fam Cancer 2011; ();. 642. Havrilesky et al. Cost-effectiveness of combination versus sequential docetaxel and carboplatin for the treatment of platinum-sensitive, recurrent ovarian cancer.. Cancer 2011; ();.

643. Lesnock et al. Consolidation paclitaxel is more cost-effective than bevacizumab following upfront treatment of advanced epithelial ovarian cancer.. Gynecol Oncol 2011; ();.

644. Uppal et al. Prolonged postoperative venous thrombo-embolism prophylaxis is cost-effective in advanced ovarian cancer patients.. Gynecol Oncol 2012; 127(3);631-7.

645. Kwon et al. Prophylactic salpingectomy and delayed oophorectomy as an alternative for BRCA mutation carriers.. Obstet Gynecol 2013; 121(1);14-24.

646. Graves et al. The cost-effectiveness of total laparoscopic hysterectomy compared to total abdominal hysterectomy for the treatment of early stage endometrial cancer.. BMJ Open 2013; 3(4);.

647. Lowery et al. Cost-effectiveness of early palliative care intervention in recurrent platinum-resistant ovarian cancer.. Gynecol Oncol 2013; ();.

648. Fisher et al. Cost-Effectiveness of Trabectedin Plus Pegylated Liposomal Doxorubicin for the Treatment of Women with Relapsed Platinum-Sensitive Ovarian Cancer in the UK: Analysis Based on the Final Survival Data of the OVA-301 Trial.. Value Health 2013; 16(4);507-16.

649. Havrilesky et al. How much is another randomized trial of lymph node dissection in endometrial cancer worth? A value of information analysis.. Gynecol Oncol 2013; ();.

650. Lee et al. Cost-utility analysis for platinum-sensitive recurrent ovarian cancer therapy in South Korea: results of the polyethylene glycolated liposomal doxorubicin/carboplatin sequencing model.. Clinicoecon Outcomes Res 2013; 5();297-307.

651. Barnett et al. Cost effectiveness of alternative strategies for incorporating bevacizumab into the primary treatment of ovarian cancer. Cancer 2013; ();.

652. Arguedas et al. Biliary stents in malignant obstructive jaundice due to pancreatic carcinoma: a cost-effectiveness analysis.. Am J Gastroenterol 2002; 97(4);898-904.

653. Krzyzanowska et al. Using economic analysis to evaluate the potential of multimodality therapy for elderly patients with locally advanced pancreatic cancer. Int J Radiat Oncol Biol Phys 2007; 67(1);211-8.

654. Rubenstein et al. A clinical and economic evaluation of endoscopic ultrasound for patients at risk for familial pancreatic adenocarcinoma.. Pancreatology 2007; 7(42130);514-25.

655. Huang et al. Consensus Guidelines in the Management of Branch Duct Intraductal Papillary Mucinous Neoplasm: A Cost-Effectiveness Analysis.. Dig Dis Sci 2009; ();.

656. Ljungman et al. Cost-Utility Estimation of Surgical Treatment of Pancreatic Carcinoma Aimed at Cure.. World J Surg 2010; ();.

657. Murphy et al. Cost-effectiveness of modern radiotherapy techniques in locally advanced pancreatic cancer.. Cancer 2011; ();.

658. Casciano et al. Cost-effectiveness of everolimus vs sunitinib in treating patients with advanced, progressive pancreatic neuroendocrine tumors in the United States.. J Med Econ 2012; 15Suppl1();55-64.

659. Abbott et al. Cost-effectiveness of Treatment Strategies for Pancreatic Head Adenocarcinoma and Potential Opportunities for Improvement.. Ann Surg Oncol 2012; 19(12);3659-67.

660. Abbott et al. The Cost-Effectiveness of Neoadjuvant Chemoradiation is Superior to a Surgery-First Approach in the Treatment of Pancreatic Head Adenocarcinoma.. Ann Surg Oncol 2013; ();. 661. Ljungman et al. Cost-utility estimations of palliative care in patients with pancreatic

adenocarcinoma: a retrospective analysis.. World J Surg 2013; 37(8);1883-91.

662. Tam et al. Cost-effectiveness of systemic therapies for metastatic pancreatic cancer.. Curr Oncol 2013; 20(2);e90-e106.

663. Ghatnekar et al. Modelling the benefits of early diagnosis of pancreatic cancer using a biomarker signature.. Int J Cancer 2013; ();.

664. Goodnough et al. Efficacy and cost-effectiveness of autologous blood predeposit in patients undergoing radical prostatectomy procedures.. Urology 1994; 44(2);226-31.

665. Bennett et al. Cost-effective models for flutamide for prostate carcinoma patients: are they helpful to policy makers?. Cancer 1996; 77(9);1854-61.

666. Gottlieb et al. The prostate: decreasing cost-effectiveness of biopsy with advancing age.. Invest Radiol 1996; 31(2);84-90.

667. Langlotz et al. Cost-effectiveness of endorectal magnetic resonance imaging for the staging of prostate cancer.. Acad Radiol 1996; 3 Suppl 1();S24-7.

668. Bloomfield et al. Economic evaluation of chemotherapy with mitoxantrone plus prednisone for symptomatic hormone-resistant prostate cancer: based on a Canadian randomized trial with palliative end points.. J Clin Oncol 1998; 16(6);2272-9.

669. Jager et al. Prostate cancer staging: should MR imaging be used?--A decision analytic approach.. Radiology 2000; 215(2);445-51.

670. Bayoumi et al. Cost-effectiveness of androgen suppression therapies in advanced prostate cancer.. J Natl Cancer Inst 2000; 92(21);1731-9.

671. Calvert et al. Effectiveness and cost-effectiveness of prognostic markers in prostate cancer.. Br J Cancer 2003; 88(1);31-5.

672. Reed et al. Cost-effectiveness of zoledronic acid for the prevention of skeletal complications in patients with prostate cancer. J Urol 2004; 171(4);1537-42.

673. Moeremans et al. Cost-effectiveness analysis of bicalutamide (Casodex) for adjuvant treatment of early prostate cancer.. Value Health 2004; 7(4);472-81.

674. Konski et al. Radiotherapy is a cost-effective palliative treatment for patients with bone

metastasis from prostate cancer.. Int J Radiat Oncol Biol Phys 2004; 60(5);1373-8.

675. Penson et al. The cost-effectiveness of combined androgen blockade with bicalutamide and luteinizing hormone releasing hormone agonist in men with metastatic prostate cancer.. J Urol 2005; 174(2);547-52; discussion 552.

676. Zeliadt et al. Lifetime implications and cost-effectiveness of using finasteride to prevent prostate cancer.. Am J Med 2005; 118(8);850-7.

677. Konski et al. Economic analysis of a phase III clinical trial evaluating the addition of total androgen suppression to radiation versus radiation alone for locally advanced prostate cancer (Radiation Therapy Oncology Group protocol 86-10).. Int J Radiat Oncol Biol Phys 2005; 63(3);788-94. 678. Ramsey et al. Is combined androgen blockade with bicalutamide cost-effective compared with combined androgen blockade with flutamide?. Urology 2005; 66(4);835-9.

679. Konski et al. Cost-effectiveness of intensity-modulated radiation therapy.. Expert Rev Pharmacoecon Outcomes Res 2005; 5(2);137-40.

680. Konski et al. Long-term hormone therapy and radiation is cost-effective for patients with locally advanced prostate carcinoma.. Cancer 2006; 106(1);51-7.

681. Konski et al. Using decision analysis to determine the cost-effectiveness of intensity-modulated radiation therapy in the treatment of intermediate risk prostate cancer.. Int J Radiat Oncol Biol Phys 2006; 66(2);408-15.

682. Kobayashi et al. Prostate cancer screening strategies with re-screening interval determined by individual baseline prostate-specific antigen values are cost-effective.. Eur J Surg Oncol 2007; 33(6);783-9.

683. Konski et al. Is proton beam therapy cost effective in the treatment of adenocarcinoma of the prostate?. J Clin Oncol 2007; 25(24);3603-8.

684. Lazzaro et al. Economic evaluation of different hormonal therapies for prostate cancer. Final results from the Quality of Life Antiandrogen Blockade Italian Observational Study (QuABIOS).. Arch Ital Urol Androl 2007; 79(3);104-7.

685. Svatek et al. Cost-effectiveness of prostate cancer chemoprevention: a quality of life-years analysis.. Cancer 2008; 112(5);1058-65.

686. Quigley et al. Prostate tumor alignment and continuous, real-time adaptive radiation therapy using electromagnetic fiducials: Clinical and cost-utility analyses.. Urol Oncol 2008; ();.

687. Zubek et al. Cost effectiveness of risk-prediction tools in selecting patients for immediate post-prostatectomy treatment. Mol Diagn Ther 2009; 13(1);31-47.

688. Bergman et al. Caring for the Uninsured with Prostate Cancer: A Comparison of Four Policy Alternatives in California.. J Community Health 2009; ();.

689. Earnshaw et al. Cost Effectiveness of 5-Alpha Reductase Inhibitors for the Prevention of Prostate Cancer in Multiple Patient Populations.. Pharmacoeconomics 2010; ();.

690. Ito et al. Cost-effectiveness of fracture prevention in men who receive androgen deprivation therapy for localized prostate cancer.. Ann Intern Med 2010; 152(10);621-9.

691. Svatek et al. Cost Utility of Prostate Cancer Chemoprevention with Dutasteride in Men with an elevated PSA.. Cancer Prev Res (Phila) 2010; ();.

692. Reed et al. Effects of family history and genetic polymorphism on the cost-effectiveness of chemoprevention with finasteride for prostate cancer.. J Urol 2011; 185(3);841-7.

693. Carter et al. Cost effectiveness of zoledronic acid in the management of skeletal metastases in hormone-refractory prostate cancer patients in France, Germany, Portugal, and the Netherlands.. J Med Econ 2011; ():.

694. Hohw? et al. A short-term cost-effectiveness study comparing robot-assisted laparoscopic and open retropubic radical prostatectomy.. J Med Econ 2011; 14(4);403-9.

695. Glazener et al. Urinary incontinence in men after formal one-to-one pelvic-floor muscle training

following radical prostatectomy or transurethral resection of the prostate (MAPS): two parallel randomised controlled trials.. Lancet 2011; 378();328-37.

696. Kattan et al. Cost effectiveness of chemoprevention for prostate cancer with dutasteride in a high-risk population based on results from the REDUCE clinical trial.. Appl Health Econ Health Policy 2011; 9();305-15.

697. Lu et al. Cost-effectiveness analysis of degarelix for advanced hormone-dependent prostate cancer.. BJU Int 2011; ();.

698. Lyth et al. A decision support model for cost-effectiveness of radical prostatectomy in localized prostate cancer.. Scand J Urol Nephrol 2012; 46();19-25.

699. Bjerklund Johansen et al. Cost-effectiveness of combination therapy for treatment of benign prostatic hyperplasia: a model based on the findings of the Combination of Avodart and Tamsulosin trial.. BJU Int 2012; ();.

700. Nichol et al. Cost-effectiveness of Prostate Health Index for prostate cancer detection.. BJU Int 2012; 110(3);.

701. Hodges et al. Cost-effectiveness analysis of SBRT versus IMRT: an emerging initial radiation treatment option for organ-confined prostate cancer.. Am J Manag Care 2012; 18(5);e186-93. 702. Stewart et al. Does variation in either age at start of therapy or duration of therapy make chemoprevention with finasteride cost-effective?. Prostate Cancer Prostatic Dis 2012; 15(4);380-5. 703. Parthan et al. Comparative cost-effectiveness of stereotactic body radiation therapy versus intensity-modulated and proton radiation therapy for localized prostate cancer.. Front Oncol 2012; 2();81.

704. Hodges et al. Cost-effectiveness analysis of stereotactic body radiation therapy versus intensity-modulated radiation therapy: an emerging initial radiation treatment option for organ-confined prostate cancer.. J Oncol Pract 2012; 8(3Suppl);e31s-7s.

705. Pfeifer et al. Development of a decision-analytic model for the application of STR-based provenance testing of transrectal prostate biopsy specimens.. Value Health 2012; 15(6);860-7. 706. Dyer et al. NICE guidance on abiraterone for castration-resistant metastatic prostate cancer previously treated with a docetaxel-containing regimen.. Lancet Oncol 2012; 13(8);762-3.

707. Hummel et al. A model of the cost-effectiveness of intensity-modulated radiotherapy in comparison with three-dimensional conformal radiotherapy for the treatment of localised prostate cancer.. Clin Oncol (R Coll Radiol) 2012; 24(10);e159-67.

708. Sher et al. Cost-effectiveness Analysis of SBRT Versus IMRT for Low-risk Prostate Cancer.. Am J Clin Oncol 2012; ();.

709. Snedecor et al. Denosumab versus zoledronic acid for treatment of bone metastases in men with castration-resistant prostate cancer: A cost-effectiveness analysis.. J Med Econ 2013; 16(1);19-29.

710. Cooperberg et al. Primary treatments for clinically localised prostate cancer: a comprehensive lifetime cost-utility analysis.. BJU Int 2013; 111(3);.

711. Walker et al. Cost-effectiveness of single-dose tamsulosin and dutasteride combination therapy compared with tamsulosin monotherapy in patients with benign prostatic hyperplasia in the UK.. BJU Int 2013; 112(5);638-46.

712. Close et al. Comparative Cost-effectiveness of Robot-assisted and Standard Laparoscopic Prostatectomy as Alternatives to Open Radical Prostatectomy for Treatment of Men with Localised Prostate Cancer: A Health Technology Assessment from the Perspective of the UK National Health Service.. Eur Urol 2013; 64(3);361-9.

713. Hatoum et al. Cost-effectiveness analysis comparing degarelix with leuprolide in hormonal therapy for patients with locally advanced prostate cancer. Expert Rev Pharmacoecon Outcomes Res 2013; 13(2);261-70.

714. Zhong et al. Therapeutic options in docetaxel-refractory metastatic castration-resistant prostate cancer: a cost-effectiveness analysis.. PLoS One 2013; 8(5);e64275.

715. Martin et al. Risk assessment to guide prostate cancer screening decisions: a cost-effectiveness analysis.. Med J Aust 2013; 198(10);546-50.

716. Hayes et al. Observation versus initial treatment for men with localized, low-risk prostate cancer: a cost-effectiveness analysis.. Ann Intern Med 2013; 158(12);853-60.

717. Ismaila et al. Cost-effectiveness of dutasteride-tamsulosin combination therapy for the treatment of symptomatic benign prostatic hyperplasia: A Canadian model based on the CombAT trial.. Can Urol Assoc J 2013; 7();E393-401.

718. Wilson et al. New therapeutic options in metastatic castration-resistant prostate cancer: Can cost-effectiveness analysis help in treatment decisions?. J Oncol Pharm Pract 2013; ();.

719. de Rooij et al. Cost-effectiveness of Magnetic Resonance (MR) Imaging and MR-guided Targeted Biopsy Versus Systematic Transrectal Ultrasound-Guided Biopsy in Diagnosing Prostate Cancer: A Modelling Study from a Health Care Perspective.. Eur Urol 2013; ();.

720. Dan et al. Endoscopic screening for gastric cancer.. Clin Gastroenterol Hepatol 2006; 4(6);709-16.

721. Kwon et al. Cost-effectiveness analysis of treatment strategies for Stage I and II endometrial cancer.. J Obstet Gynaecol Can 2007; 29(2);131-9.