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1. Regression model description  

 

Statistical methods to determine the relationship between natural environmental exposures and suicide 

mortality are numerous, with Bayesian ecological regressions standing out,1–3 particularly when 

studying risk and protective factors from a spatial standpoint.4–11 

 

Bayesian generalized linear models with random effects were fitted. For the data model, we assumed 

a Poisson distribution to model suicide counts as an outcome (Eq. 1)3. The relative suicide risk (𝜃𝑖) 

was modeled through a set of risk and protective factors (𝑥𝑖𝑝) in the process model, whereas area-

specific effects were further decomposed additively into a spatially structured (𝑢𝑖) and an unstructured 

(𝑣𝑖) component (Eq. 2). Such a model can smooth the relative (residual) suicide risk by sharing 

information across spatial units (i.e., municipalities).2,12 The model is given by:  

 

𝑌𝑖~Poisson(𝐸𝑖𝜃𝑖)     (1) 

ln(𝜃𝑖) = 𝛽1 + 𝛽2𝑥𝑖 + … + 𝛽𝑝𝑥𝑖𝑝 + 𝑢𝑖 + 𝑣𝑖  (2) 
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𝑌𝑖 refers to the number of suicides in municipality 𝑖 (𝑖 = 1, … ,398) and 𝐸𝑖 is the age-adjusted 

indirectly standardized expected number of suicide cases. 𝜃𝑖 refers to the relative risk of having a 

suicide in area 𝑖. Besides adjusting for the covariates 𝑥𝑝, a structured random effect 𝑢𝑖 was included 

to model spatial dependence among adjacent areas while an unstructured random effect 𝑣𝑖 

incorporated area-specific heterogeneity.13 Omitting spatial dependence among adjacent areas, where 

present, would have severely biased the estimation of the regression parameters.2  

 

Prior distributions for the unknown random parameters were assigned as follows. For the fixed 

effects, 𝛽𝑝 diffuse priors based on normal distributions with mean zero and different precisions 

including 0.01, 0.001, and 0.0001 were investigated. The structured random effect 𝑢𝑖 followed an 

intrinsic conditional autoregressive prior. Adjacency was operationalized as first-order queen 

contiguity where areas are considered neighbors when they share a common topological point or 

boundary.5 Model robustness checks with an alternative neighbor specification, specifically the rook 

contiguity, was also carried out.14,15 For the unstructured random effect 𝑣𝑖 a normal prior with an 

exchangeable structure was chosen. Due to a lack of prior knowledge, non-informative priors based 

on a logged gamma distribution were specified for both 𝑢𝑖 and 𝑣𝑖.
12 To ease the prior specification, 

the structured effect was additionally scaled.16 As Bayesian models can be sensitive to prior 

specifications, sensitivity tests are obligatory.17 We tested a range of alternative log-gamma(𝑎;  𝑏) 

priors with a shape 𝑎 of 0.7, 1, and 1.3 as well as a precision 𝑏 of 0.005, 0.0005, and 0.00005.  

 

To obtain descriptive statistics of the marginal posterior distributions, Bayesian inference was carried 

out with the integrated nested Laplace approximation (INLA) approach.18 INLA is a highly accurate 

and computationally fast alternative to Markov chain Monte Carlo methods while supporting 

numerous complex models.19 The models were estimated with the R-INLA library (17.06.20) in R 

3.4.2 (64 bit).20 Relative risk estimates for 𝛽𝑝 were obtained through the posterior means accompanied 

by the 95% credibility intervals (CI) for parameter uncertainty. To evaluate alternative prior 

specifications and to compare different models with a different degree of adjustment, the Watanabe–
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Akaike information criterion (WAIC)21 and the deviance information criterion (DIC)22 were used. 

Both performance measures consider a penalty term adjusting for model complexity. Lower DIC and 

WAIC scores refer to a better model fit.  

 

2. Descriptive statistics  

 

Supplementary Table S1 reports descriptive statistics for the involved variables. Summary statistics 

and histograms were used to divide the environmental variables into three groups. Grouping the data 

is favorable by skewed distributions while permitting the analysis of dose–response relationships.  

 

Supplementary Table S1: Descriptive statistics of the variables 

 Minimum 25th 

percentile 

Median 75th 

percentile 

Maximum Category 

(%) 

Suicide cases 2005–14* 6.00 14.00 25.00 40.80 898.00  

Average population 

2005-14 

1,508 16,578 25,770 42,848 776,860  

Environmental variables:       

Green space: low      6 

Mid      69 

High       25 

Blue space: low      24 

Mid      55 

High      21 

Coastal proximity: low      25 

Mid      50 

High      25 

Covariates:       

Urbanicity: urban      27 

Rural      73 

Male (%) 46.78 49.19 49.78 50.23 52.25  

Divorce (%) 1.80 4.93 6.00 7.30 11.60  

Unemployed (%) 3.40 4.30 4.80 5.60 10.10  

Housing prices (in 

€1,000) 

116.00 182.00 216.00 252.80 565.00  

Supply of GPs (km) 0.40 0.80 1.00 1.30 2.90  

Orthodox Protestant (%) 0.00 0.10 0.20 1.36 33.40  

* Note that municipalities with ≤5 suicide cases were censored  
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3. Model diagnostics and sensitivity tests of the Bayesian regression 

 

Non-spatial regressions were initially fitted. Residual independence was not confirmed across the 

models by Moran’s I statistics (I: 0.146; p<0.001), supporting the application of spatially explicit 

models. In order to evaluate the sensitivity of different prior specifications, the fully adjusted model 2 

was re-estimated with the aforementioned priors. In total, 27 models were fitted for this sensitivity 

study. For the spatially structured (𝑢𝑖) and unstructured (𝑣𝑖) components, different priors with 

different shape 𝑎 and precision 𝑏 were tested. For the fixed effects, 𝛽𝑝 different precisions 𝑘 were 

tested. The model fits are shown in Supplementary Table S2. As indicated by the WAIC and DIC 

scores, the models showed minor variations in the goodness-of-fit with different prior specifications. 

The best fitting model (i.e., lowest WAIC score) was used in the paper.  

 

Supplementary Table S2: Goodness-of-fit measures associated with the fully adjusted model 2 and 

different prior specifications for the structured, unstructured, and fixed effects 

a  b  k  WAIC  DIC  

0.700  0.005  0.000  2,501.532  2,499.633  

0.700  0.005  0.001  2,501.534  2,499.633  

0.700  0.005  0.010  2,501.536  2,499.633  

1.000  0.005  0.010  2,502.711  2,499.868  

1.000  0.005  0.001  2,502.712  2,499.872  

1.000  0.005  0.000  2,502.720  2,499.871  

1.300  0.005  0.000  2,503.909  2,500.138  

1.300  0.005  0.010  2,503.914  2,500.138  

1.300  0.005  0.001  2,503.918  2,500.139  

0.700  0.000  0.010  2,507.779  2,501.400  

0.700  0.000  0.000  2,507.789  2,501.402  

0.700  0.000  0.001  2,507.801  2,501.407  

1.000  0.000  0.000  2,510.241  2,502.363  

1.000  0.000  0.010  2,510.252  2,502.369  

1.000  0.000  0.001  2,510.263  2,502.366  

0.700  0.000  0.000  2,510.696  2,502.267  

0.700  0.000  0.010  2,510.702  2,502.270  

0.700  0.000  0.001  2,510.708  2,502.272  

1.300  0.000  0.010  2,510.869  2,502.341  

1.300  0.000  0.000  2,510.870  2,502.342  
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1.300  0.000  0.001  2,510.871  2,502.342  

1.000  0.000  0.001  2,512.334  2,502.990  

1.000  0.000  0.000  2,512.341  2,502.993  

1.000  0.000  0.010  2,512.347  2,502.996  

1.300  0.000  0.010  2,513.635  2,503.439  

1.300  0.000  0.001  2,513.637  2,503.440  

1.300  0.000  0.000  2,513.639  2,503.440  

 

Supplementary Figure S3 shows the posterior densities of each fixed effect for the 9 best performing 

models in Table S2 with different alternative priors. The alternative priors showed very close 

agreement. 

 

 

Supplementary Figure S3: Posterior densities of the 9 best performing models (the first value refers to 

hyperparameter a, the second to b, and the third to k) 

 

Supplementary Figure S4 shows the posterior means along with the 95% CIs for the first 9 models. 

No significant differences were obtained. Supplementary Figure S5 plots the posterior marginal 

distribution of tau and sigma for the best fitting model, which is also used in the paper.  
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Supplementary Figure S4: Posterior means and 95% CIs for the first 9 best performing models (the 

first value refers to hyperparameter a, the second to b, and the third to k) 

 

 

Supplementary Figure S5: Posterior marginal distribution of tau and sigma for the best fitting model 
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We also tested model sensitivity concerning two neighborhood specifications (i.e., rook vs. queen 

adjacency). As indicated by the descriptive statistics of the neighborhood matrices (Table S6), both 

specifications are similar. Therefore, it was not surprising that switching between the queen and the 

rook case did not translate into substantial differences in the posterior distributions. We followed the 

majority of studies and utilized queen contiguity as adjacency definition.5,6,12  

 

Supplementary Table S6: Summary statistics of two neighborhood matrices 

 Rooks’s case Queen’s case 

Number of non-zero links 2,090 2,082 

Percentage of non-zero weights 1.319 1.314 

Average number of links 5.251 5.231 

 

The residual relative suicide risk of the fully adjusted model is shown in Figure S7 (left panel) next to 

the relative risk of the unadjusted model (right panel). Both maps show the sum of the structured and 

the unstructured effect.  

 

 

Supplementary Figure S7: Residual relative risk of the fully adjusted model (left panel) and the 

unadjusted model (right panel) per municipality  
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Supplementary Table S8: Model 2 with a green space–urbanicity interaction 

 Relative risk  2.5% CI 97.5% CI 

Intercept  1.163  1.016  1.331  

Green space (ref.=low): mid  0.864  0.770  0.969  

Green space: high  0.836  0.723  0.965  

Green space: mid × urban   1.122  0.968  1.300  

Green space: high × urban   1.057  0.851  1.310  

Urbanicity (ref.=rural): urban 0.870  0.763  0.992  

Blue space (ref.=low): mid  0.988  0.925  1.056  

Blue space: high  0.937  0.861  1.020  

Coastal proximity (ref.=low): mid 0.967  0.900  1.038  

Coastal proximity: high 0.930  0.821  1.050  

Male 0.981  0.952  1.011  

Divorce 1.038  0.990  1.088  

Unemployed 1.045  1.004  1.089  

Housing prices 1.003  0.966  1.042  

Supply of GPs 1.036  0.997  1.077  

Orthodox Protestant 0.926  0.894  0.959  
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