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Statistical analyses. 

The data — A total of 427 MS patients were included in the current study. Of those, 87.8% 

completed the trial. Dropouts occurred i) immediately after randomization to treatment vs. 

control group (14), ii) after completed treatment but before 6-month follow-up (30 patients in 

the treatment group), and iii) after completion of the baseline questionnaires but before 6-

month follow-up (8 patients in the control group). Here, we consider two dropout groups: 

dropout group 1 missing both baseline and 6-month follow-up questionnaire responses, and 

dropout group 2 missing 6-month follow-up questionnaire responses, only (see table 1). 

Besides dropout, missing data occurred in the EQ-VAS score for the first 80 patients included 

in the study. A single patient (id nr 1036, Control) had missing data for all questionnaire 

responses at baseline.   

At baseline, the data for patient i consisted of the following baseline characteristics: 1) the 

group variable Τ indicating whether the patient received treatment (Τ = 1) or was part of the 

control group (Τ = 0), a set C of six clinical observations, 2) a set D of two demographic 

variables (sex and age), 3) a variable l for center where patient i was randomized (Ry or 

Haslev), and 4) the time t for entering the study (in weeks since trial commencement). 

Furthermore, a set Y0 of six numerical measurement outcome (index score) variables: the 

FAMS score, the MSIS-29Phys and MSIS-29Psyc scores, the EQ-VAS score, the EQ-5D-5L score  

and the 15D score. A corresponding set Y6 was obtained at 6-month follow-up. Furthermore, 

for the treatment group, 1 month follow-up (Y1, immediately after discharge) and 2 month 

follow-up (Y2) data were collected for selected scores. Clinical data at baseline consisted of the 

EDSS score, MS-type (RR, SP, PP), a variable indicating first-time treatment (yes or no), time 

since diagnosis (in years), reported time since appearance of first symptoms (in years), and a 

variable indicating whether immuno-treatment was received or not. In all analyses, the 

numeric variables time, age, EDSS, time since diagnosis and reported time since appearance 



of first symptoms were converted to factor variables, as this allows for modelling non-linear 

relationships between in- and output. The following factor levels were used: Time - (0, 13], 

(13, 26], …, (117, 130] weeks since trial start; Age - (20, 40], (40, 50], (50, 60], (60, 65] 

years; EDSS - [0-3.5], [4-5.5], [6-6.5], [7-7.5]; Time since diagnosis - (0, 2], (2, 5], (5, 10], 

(10, 15], (15, 50] years; Reported time since appearance of first symptoms - (0, 5], (5, 10], 

(10, 20], (20, 50] years.  

Dropout analysis — In order to investigate, whether dropout occurred at different frequencies 

in the control vs. treatment group, we modelled the i’th patient’s membership in either the 

complete case group (z = 0), dropout group 1 (z = 1) or dropout group 2 (z = 2) as a function of 

treatment and baseline characteristics using a multinomial logit model (Faraway 2011):  

Pr(𝑍𝑖 = 0, 𝑍𝑖 = 1,  𝑍𝑖 = 2) =  η−1(𝛽0 +  𝛽1𝑡𝑖 + 𝛽2𝑙𝑖 + ∑ 𝛽𝐽𝑗𝐷𝑗,𝑖
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 where η−1 is the inverse logit function. Here, 𝛽𝑡 is the coefficient for the treatment effect and 

𝛽𝐽𝑗 is the coefficient matrix for the j’th demographic variable. We used a step-wise backward 

model reduction strategy to reach at a minimal adequate model containing only significant 

model terms at a 5% significance level. Estimated model coefficients were log-transformed in 

order to obtain estimates of odd ratios for comparisons of group memberships.   

Results — The dropout analysis indicated that dropout occurred at significantly different rates 

in the treatment and control groups (p = 0.0004) with dropouts immediately after 

randomization (group 1 dropouts) occurring at a higher rate in the control group 

(treatment/control odds ratios = 0.59, 95% c.i. = [0.19, 1.88]), while dropouts after ended 

treatment (group 2 dropouts) occurred at a higher rate in the treatment group 

(treatment/control odds ratios = 4.20, 95% c.i. = [1.83, 9.63]). Furthermore, MS-type (p = 

0.037) and age (p = 0.012) were found to have a significant impact on dropout probabilities, 

with MS-type PP increasing the odds of dropout with a factor of 4.72 (95% c.i. = [1.10, 

20.21]) for group 1 dropouts and 2.68 (95% c.i. = [1.02, 7.07]) for group 2 dropouts, when 



compared to MS-type RR. Concerning age, dropout frequencies were highest for the youngest 

age group (20 to 40 years). See Table S1 for more details.  

 

Table S1: Estimated odd ratios and their 95%-confidence intervals.    

 Dropout group 

 1  2 

Intercept 0.022 (0.003,0.160) 0.005 (0.001,0.048) 

Treatment 0.592 (0.186,1.883) 4.198 (1.830,9.628) 

Age (20, 40]. 3.749 (0.493,28.51) 9.213 (0.965,87.922) 

Age (40, 50] 2.59 (0.437,15.346) 7.742 (0.899,66.685) 

Age (50, 60] 0.237 (0.019,2.909) 7.284 (0.880,60.26) 

MS-type SP 0.816 (0.185,3.597) 0.957 (0.412,2.221) 

MS-type PP 4.718 (1.101,20.213) 2.679 (1.016,7.067) 

 

Exploratory Factor Analysis (EFA) — We conducted an EFA using all non-missing, centered and 

variance-standardized measurement outcomes at baseline (Y0) in order to extract latent and 

uncorrelated signals among the outcomes. We used the Varimax rotation. Using the estimated 

loadings at baseline, factor scores for factor 1 and 2 were obtained for all patients with non-

missing measurement outcome data at baseline and 6-month follow-up, and the scores were 

added to the appropriate sets Y0 and Y6.    

Results — A priori, we expected the variables in Y to be associated, each being a manifestation 

of common underlying concepts related to perceived health and disease status. This was 

confirmed by pairwise comparisons of variables within Y0 using Pearson’s correlations (Table 

S2). An initial EFA indicated a high uniqueness of the EQ-VAS score (Table S2) and, hence, in 

combination with EQVAS having a high proportion of missing data at baseline (21.6%), the 

EQ-VAS score was excluded from the EFA. A mere of two latent factors were identified (Table 



S2). This is supported both by sequential chi-square tests using maximum likelihood (2 

factors, p = 0.112) and by means of visual inspection using the parallel analysis method 

described in Reise et al. (2000). The two factors explained a total of 67.5% of the variance in 

Y0, with factor 1 alone accounting for 57.4% of the variance. High absolute loadings (>0.75) on 

factor 1 were found for FAMS and MSIS29Psyc, while factor 2 is defined by moderate absolute 

loadings (0.6 – 0.7) of EQ-5D-5L and MSIS29Psyc, with 15D loading with comparable strength 

(0.58, 0.59) on both factors (Table S2).  

Table S2: Pairwise Pearson correlations and Exploratory Factor Analysis (EFA) results for the 

baseline index scores. All Pearson correlations are highly significant (p < 3.1×10-8). 

   EFA results 

 Pearson correlation coefficients (95% confidence limits) 
Unique-

nessa, I 

Unique-

nessaII 

Loadingsb, II 

 
FAMS 15D EQ5D5L 

MSIS29-

Psyc 

MSIS29-

Phys 
EQVAS 

Factor 

1 

Factor

2 

FAMS 
 

0.70 0.46 -0.77 -0.56 0.42 0.22 0.22 0.77 0.43 

15D (0.64,0.74) 
 

0.56 -0.62 -0.59 0.40 0.31 0.33 0.58 0.59 

EQ5D5L (0.39,0.54) (0.49,0.62) 
 

-0.32 -0.55 0.35 0.47 0.46 0.24 0.7 

MSIS29-

Psyc 
(-0.8,-0.72) (-0.67,-0.55) (-0.41,-0.24) 

 
0.41 -0.30 0.14 0.15 -0.91 -0.16 

MSIS29-

Phys 
(-0.61,-0.48) (-0.63,-0.49) (-0.6,-0.46) (0.31,0.48) 

 
-0.39 0.43 0.46 -0.33 -0.65 

EQVAS (0.33,0.51) (0.31,0.49) (0.25,0.44) (-0.39,-0.2) (-0.47,-0.29) 
 

0.74  
  

a
: Uniqueness describes the amount of variation not explained by the EFA. 

b
: Loading indicates the association of a score with the latent factor.

I
: 

Initial EFA including EQVAS, n = 335. 
II
: EFA excluding EQVAS due to its high uniqueness, n = 412.  

Intention-to-treat (ITT) statistical analyses — In order to make valid inference on the 

population of interest, the effect of missing data and dropouts must be addressed (White et al. 

2012). We followed the strategy proposed by White et al. (2012) and performed three 

analyses: I) (Main analysis) a multiple model-based imputation strategy under the assumption 

that data are missing at random (MAR) conditionally on modelled baseline characteristics and 

index score data. II) A sensitivity analysis based on multiple random imputation of the index 

score data. III) An available case analysis (ACA, i.e. complete-case analysis within each index 

score).  While strategy I seeks to find an honest estimate of the treatment effect under the 

plausible assumption of MAR, strategy II is in favor of the null hypothesis of no treatment 

effect and provides a conservative bound on the estimated standard errors by polluting the 

data with noise proportional to the frequency of missing data. Strategy III is expected to yield 



biased estimates and standard errors and is carried out here only for the reason of reference. 

Under all strategies, the bootstrap (1000 iterations) was used in order to estimate the mean 

and 95% confidence interval (CI) for all parameters of interest. P-values were calculated by 

comparing the estimated t-value to the bootstrap t-value distribution under the null hypothsis 

of no treatment effect resulted from shuffling group membership. For strategy I) we used 

multiple random forest imputation (Shah et al. 2014). Under strategy II, missing data were 

imputed by randomly sampling with replacement from the observed data without taking group 

membership into account. 

Under all three strategies, the following models were used at each bootstrap iteration.  

i) In order to estimate adjusted population means for the treatment and control group at 

baseline for each variable h in Yo, we modelled 𝑌0,ℎ for patient i using the following linear mixed 

effects model: 

𝑌0,ℎ,𝑖 =  𝛽0 +  ∑ 𝛽𝐽𝑗𝐷𝑗,𝑖
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+  𝛽𝑡𝛵𝑖 +  𝑡𝜏[𝑖] + 𝑙𝜆[𝑖] + 𝑒𝑖 

where 𝑡𝜏[𝑖] is the time class 𝜏 that patient i belongs to. Time, locality and residual errors were 

modelled as uncorrelated random effects, 𝑡𝜏~𝑁(0, 𝜎𝑡
2), 𝑙𝜆~𝑁(0, 𝜎𝑙

2) and 𝑒𝑖 ~𝑁(0, 𝜎𝑒
2). C and D are 

the sets of clinical and demographic variables. 

ii)  In order to estimate for the treatment group the change in Yh from baseline over discharge 

and 2-months follow-up to 6-month follow-up, we modelled the change in Yh for patient i 

relative to the baseline, ∆𝑌0→𝑔,ℎ, where g indicates the g’th follow-up time, as a function of 

follow-up time G and baseline characteristics using the following linear mixed effects model:   

∆𝑌0→𝑔,ℎ,𝑖 =  𝛽0 + 𝛽1𝐺𝑔,𝑖 + 𝛽2𝑡𝑔,𝑖 + 𝛽3𝑙𝑔,𝑖 + ∑ 𝛽𝐽𝑗𝐷𝑗,𝑖
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where the individual patients and residual errors were modelled as uncorrelated random 

effects 𝑖~𝑁(0, 𝜎𝑖
2) and 𝑒𝑔,𝑖 ~𝑁(0, 𝜎𝑒

2). 



iii) In order to investigate the treatment effect (T) at 6-months follow-up on each variable h in 

Y we modelled the change in Yh for patient i from baseline to 6-months follow-up, e.g., 

∆𝑌0→6,ℎ =  𝑌6,ℎ −  𝑌0,ℎ, as a function of 𝑌0,ℎ, treatment and baseline characteristics using the 

following linear mixed effects model:   

∆𝑌0→6,ℎ,𝑖 =  𝛽0 +  𝛽1𝑌′
0,ℎ,𝑖 + ∑ 𝛽𝐽𝑗𝐷𝑗,𝑖
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where 𝑡𝜏[𝑖] is the time class 𝜏 that patient i belongs to. Time, locality and residual errors were 

modelled as uncorrelated random effects, 𝑡𝜏~𝑁(0, 𝜎𝑡
2), 𝑙𝜆~𝑁(0, 𝜎𝑙

2) and 𝑒𝑖 ~𝑁(0, 𝜎𝑒
2). 𝑌′0,ℎ stands for 

the score at baseline, but recoded as a factor variable of 20%-quantile classes. The inclusion of 

𝑌′0,ℎ seeks to model the ceiling and flooring effect of the bounded scores that by definition 

show an increased probability for changes toward zero.  

In all instances, we used a step-wise backward model reduction strategy to reach at a minimal 

adequate model containing only significant model terms at a 5% significance level. However, T 

and 𝑌′0 were forced to be retained in the model during this procedure.  

Least-square means (i.e. covariate- and imbalance adjusted, model-predicted means, Lenth 

2016) were calculated for the treatment groups and follow-up times. 

We used standard visualization techniques for checking of model assumptions.   

All statistical analyses were carried out using the R environment (R Core Group 2017), with 

mixed effects models fit using the packages lme4 (Bates et al. 2015) and lmerTest 

(Kuznetsova et al. 2016), Least-square means calculated using package lsmeans (Lenth 

2016), and random forest imputations done using package  randomForestSRC (Liaw & Wiener 

2002), with function impute() using default settings.   
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