Cost-effective generation of precise label-free quantitative proteomes in high-throughput by microLC and data-independent acquisition

Jakob Vowinckel^{1,3*}, Aleksej Zelezniak^{1,4*}, Roland Bruderer³, Michael Mülleder^{1,2} Lukas Reiter³, and Markus Ralser^{1,2+}

- ¹ Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, 80 Tennis Court Rd, Cambridge CB2 1GA, UK
- ² The Molecular Biology of Metabolism Laboratory, The Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
- ³ Biognosys AG, Wagistrasse 21, CH-8952 Schlieren, Switzerland

⁴ Department of Biology and Biological Engineering, Chalmers University of Technology, Kemigården 10, SE-412 96, Göteborg, Sweden

- + To whom correspondence should be addressed. markus.ralser@crick.ac.uk, Tel +44 1223 761346
- These authors contributed equally to this work.

Suppl. Fig. 1. Accumulation time in microLC-SWATH on a TripleTOF5600

Precursor and product intensities, exemplified by the yeast *SSB1* peptide SSNITISNAVGR, were determined at 3 µl/min flow rate in SWATH acquisition. Accumulation times 40 - 75 ms do not have a significant impact on signal intensity of precursors (solid line) or products (shaded lines). Number of quantifiable proteins in microLC-MS is not reduced by accumulation time down to 40 ms (inset).

Suppl. Fig. 2. Distribution of peptide precursors in the yeast proteome.

Precursors identified in the sample fractionation SWATH library approach were plotted according to their mass-to-charge ratio and coloured according to the number of amino acids. 26868 out of 32754 peptides (82 %) are between 400 and 850 m/z, while 31408 (96 %) are between 400 and 1250 m/z.

Suppl. Fig. 3. Yeast protein quantification from microLC-SWATH using 29 x 16 m/z isolation windows.

A yeast tryptic digest was analysed using microLC (25 cm x 0.3 mm Triart-C18, 3 µl/min, 60 min gradient) and coupled to a TripleTOF5600 MS operating in SWATH mode by repeated injection of 10 µg yeast proteome digest (9x). Isolation windows were chosen as 29x16 m/z, with 40 ms accumulation time and a mass range of 400-850 m/z.

Data was processed with Spectronaut v8.0 using SWATH libraries generated a) by sample fractionation (*frac*) or b) sample exhaustion (*exh*), c) using a publicly accessible spectral library (*Biognosys library*, Spectronaut repository), or with a library generated by DIA-Umpire. Library a) allowed quantification of 1422 proteins, while 1157 proteins could be quantified using library b). The public library (c) did quantify 1118, and DIA-Umpire, that uses correlation patterns to create a library directly out of the SWATH data, 890 proteins. Spectral libraries (except the one obtained from Spectronaut repository) were generated according to Schubert et al.^{[1](https://paperpile.com/c/96QPO2/02uk)}

Suppl. Fig. 4. Yeast peptide quantification from microLC-SWATH using 34 x 25 m/z isolation windows.

A yeast tryptic digest was analysed using microLC (25 cm x 0.3 mm Triart-C18, 3 µl/min, 60 min gradient) and coupled to a TripleTOF5600 MS operating in SWATH mode by repeated injection of 10 µg yeast proteome digest (9x). Isolation windows were chosen as 34x25 m/z, with 100 ms accumulation time and a mass range of 400-1250 m/z. Data was processed with Spectronaut v8.0 using SWATH libraries generated a) by sample fractionation (*frac*) or b) sample exhaustion (*exh*), c) using a publicly accessible spectral library (*Biognosys library*, Spectronaut repository), or with a library generated by DIA-Umpire. Library a) allowed quantification of 8824 peptides, while 6866 peptides could be quantified using library b). The public library (c) did quantify 8283, and DIA-Umpire, that uses correlation patterns to create a library directly out of the SWATH data, 6132 peptides. Spectral libraries (except the one obtained from Spectronaut repository) were generated according to Schubert et al.^{[1](https://paperpile.com/c/96QPO2/02uk)}

Suppl. Fig. 5. Yeast peptide quantification from microLC-SWATH using 29 x 16 m/z isolation windows.

A yeast tryptic digest was analysed using microLC (25 cm x 0.3 mm Triart-C18, 3 µl/min, 60 min gradient) and coupled to a TripleTOF5600 MS operating in SWATH mode by repeated injection of 10 µg yeast proteome digest (9x). Isolation windows were chosen as 29x16 m/z, with 40 ms accumulation time and a mass range of 400-850 m/z.

Data was processed with Spectronaut v8.0 using SWATH libraries generated a) by sample fractionation (*frac*) or b) sample exhaustion (*exh*), c) using a publicly accessible spectral library (*Biognosys library*, Spectronaut repository), or with a library generated by DIA-Umpire. Library a) allowed quantification of 6598 peptides, while 5673 peptides could be quantified using library b). The public library (c) did quantify 6518, and DIA-Umpire, that uses correlation patterns to create a library directly out of the SWATH data, 4841 peptides. Spectral libraries (except the one obtained from Spectronaut repository) were generated according to Schubert et al.^{[1](https://paperpile.com/c/96QPO2/02uk)}

Suppl. Fig. 6. Technical variability of yeast peptide quantification is low in microLC-SWATH-MS irrespective of data extraction

Fold change variability of 765 peptide precursors present in all data sets was compared throughout nine replicates. Median coefficients of variation are between 7.3 % and 8.4 % for libraries generated using respectively fractionation and exhaustion approach, 8.8 % for an unrelated yeast library, and 7 % for a library generated by DIA-Umpire. Spectral libraries (except the one obtained from Spectronaut repository) were generated according to Schubert et al.^{[1](https://paperpile.com/c/96QPO2/02uk)}

Suppl. Fig. 7. Human peptide quantification from microLC-SWATH data.

A tryptic digest of a whole-cell protein extract from human K562 cells was analysed using microLC (25 cm x 0.3 mm Triart-C18, 3 µl/min, 60 min gradient) and coupled to a TripleTOF5600 MS operating in SWATH mode by repeated injection of 3 µg digest (6x). Data was processed with Spectronaut v8.0 using a SWATH library obtained from the SWATHAtlas repository [2](https://paperpile.com/c/96QPO2/KRIlb) (*10k library*), or using SWATH libraries generated by repeated analysis of HEK293 or HeLa cell extracts (Spectronaut repository). Data analysis using a rich library allows quantification of 20508 peptides, while 9256 peptides can be quantified using a HEK293 and 12272 using a HeLa library, respectively.

Suppl. Fig. 8. Technical variability of human peptide quantification is low in microLC-SWATH-MS irrespective of data extraction Fold change variability of 6722 peptide precursors present in all data sets compared throughout the nine replicates. Median coefficients of variation of signal intensities are between 5.8 and 6.5 %, for all libraries.

- **Suppl. Fig. 9. Direct correlation of peptide intensities between two human samples reveals no negative bias towards low intensity peptides** Correlation of peptide intensities of two human samples is linear (R^2 = 0.98), and correlation is equally good for high and low intensity peptides over five orders of magnitude.
- **Suppl. Fig. 10. Coefficients of variation show little bias towards low intensity peptides** Coefficients of variation of peptide intensities of six human samples is low (mean 3-10 %) for peptides with intensities >1000 cps, and only marginally elevated for lower peptides (mean 8-12 %). Inset: Coefficients of variation of peptide intensities of six human samples.
- **Suppl. Fig. 11. Library size is associated to quantification precision.** Protein identifications in a spectral library generated by sample fractionation (green; 3896 proteins) or using DIA-UMPIRE approach (violet; 853 proteins) were plotted against absolute protein abundances (log scale) reported by two independent datasets (Kulak et al. 2014^{[3](https://paperpile.com/c/96QPO2/JHBo)}; Ghaemmaghami et al. 2003^{[4](https://paperpile.com/c/96QPO2/SNmK)}). DIA-Umpire library indeed captures highly abundant proteins.
- **Suppl. Fig. 12. Total precursor intensities before and after batch correction** Combined intensities of all precursors varies with experimental batches, and is equalled out by batch correction.
- **Suppl. Fig. 13. Protein fold change standard deviation is reduced by batch correction** Protein fold change was calculated from three most abundant peptides of the representative ZRP1_YEAST protein quantified in two yeast strains in 9

replicates (3 batches). After batch correction, variability is considerably reduced.

Supplementary Tables

Suppl. table 1: Data sets included in this study

Suppl. table 2: Chromatographic gradients

Suppl. table 3: SWATH isolation windows

34x25 m/z regime

- (1) Schubert, O. T.; Gillet, L. C.; Collins, B. C.; Navarro, P.; [Rosenberger,](http://paperpile.com/b/96QPO2/02uk) G.; Wolski, W. E.; Lam, H.; Amodei, D.; Mallick, P.; MacLean, B.; [Aebersold,](http://paperpile.com/b/96QPO2/02uk) R. *Nat. [Protoc.](http://paperpile.com/b/96QPO2/02uk)* **[2015](http://paperpile.com/b/96QPO2/02uk)**[,](http://paperpile.com/b/96QPO2/02uk) *[10](http://paperpile.com/b/96QPO2/02uk)* [\(3\),](http://paperpile.com/b/96QPO2/02uk) [426–441.](http://paperpile.com/b/96QPO2/02uk)
- (2) [Rosenberger,](http://paperpile.com/b/96QPO2/KRIlb) G.; Koh, C. C.; Guo, T.; Röst, H. L.; Kouvonen, P.; Collins, B. C.; Heusel, M.; Liu, Y.; Caron, E.; [Vichalkovski,](http://paperpile.com/b/96QPO2/KRIlb) A.; Faini, M.; Schubert, O. T.; Faridi, P.; Ebhardt, H. A.; Matondo, M.; Lam, H.; Bader, S. L.; [Campbell,](http://paperpile.com/b/96QPO2/KRIlb) D. S.; Deutsch, E. W.; Moritz, R. L.; Tate, S.; [Aebersold,](http://paperpile.com/b/96QPO2/KRIlb) R. *Sci [Data](http://paperpile.com/b/96QPO2/KRIlb)* **[2014](http://paperpile.com/b/96QPO2/KRIlb)**[,](http://paperpile.com/b/96QPO2/KRIlb) *[1](http://paperpile.com/b/96QPO2/KRIlb)*, [140031.](http://paperpile.com/b/96QPO2/KRIlb)
- (3) Kulak, N. A.; Pichler, G.; Paron, I.; [Nagaraj,](http://paperpile.com/b/96QPO2/JHBo) N.; Mann, M. *Nat. [Methods](http://paperpile.com/b/96QPO2/JHBo)* **[2014](http://paperpile.com/b/96QPO2/JHBo)**[,](http://paperpile.com/b/96QPO2/JHBo) *[11](http://paperpile.com/b/96QPO2/JHBo)* [\(3\),](http://paperpile.com/b/96QPO2/JHBo) [319–324.](http://paperpile.com/b/96QPO2/JHBo)
- (4) [Ghaemmaghami,](http://paperpile.com/b/96QPO2/SNmK) S.; Huh, W.-K.; Bower, K.; Howson, R. W.; Belle, A.; Dephoure, N.; O'Shea, E. K.; [Weissman,](http://paperpile.com/b/96QPO2/SNmK) J. S. *[Nature](http://paperpile.com/b/96QPO2/SNmK)* **[2003](http://paperpile.com/b/96QPO2/SNmK)**[,](http://paperpile.com/b/96QPO2/SNmK) *[425](http://paperpile.com/b/96QPO2/SNmK)* (6959), [737–741.](http://paperpile.com/b/96QPO2/SNmK)