Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2017

Electronic Supplementary Information (ESI)

- 1. NMR spectra of **PIP-TPE** and VT-NMR spectra of **protonated PIP-TPE**
- 2. Single Crystal X-ray Crystallography of PIP-TPE
- 3. Confocal images of **PIP-TPE** in H_2O
- 4. Fluorescence quantum yields of **PIP-TPE** in MeOH with different fractions of glycerol
- 5. Particle sizes of **PIP-TPE** in aqueous buffer solutions
- 6. Viscosity measurement
- 7. Live cell and Fixed cell fluorescent imaging of **PIP-TPE** in Hela cells
- 8. MTT of **PIP-TPE**
- 9. Photostability of **PIP-TPE**
- 10. Theoretical calculations of **PIP-TPE**, protonated **PIP-TPE** and **PIP-TPE** in bulk

1. NMR spectra of PIP-TPE and VT-NMR spectra of protonated PIP-TPE

Figure S1 (a) $^1\mathrm{H}\text{-NMR}$ (400.132 MHz, CDCl_3/TMS) and (b) $^{13}\mathrm{C}\text{-NMR}$ (100.632 MHz, CDCl_3/TMS) of PIP-TPE

(**c**) -35 °C

Figure S2 VT-¹H NMR of protonated PIP-TPE (400.132 MHz, CDCl₃)

-12.59

2. Single Crystal X-ray Crystallography of PIP-TPE

Compound	PIP-TPE
CCDC No.	1555412
empirical formula	$C_{36}H_{40}N_4$
formula weight	528.72
crystal dimensions, mm	0.25 imes 0.1 imes 0.08
crystal system	monoclinic
space group	$P2_1/c$
a/Å	13.1123(13)
b/Å	20.5840(16)
c/Å	11.2600(9)
α/°	90
β/°	99.391(9)
γ/°	90
Volume/Å ³	2998.4(5)
Ζ	4
$\rho_{calc}, mg/mm^3$	1.171
F(000)	1136.0
$\lambda/$ Å	MoK α ($\lambda = 0.71073$)
μ/mm^{-1}	0.069
temperature/K	100.00(10)
2θ range for data collection	6.544 to 51.992
reflections collected	17830
independent reflections. (R _{int})	5841 (0.1229)
data/restraints/parameters	5841/0/363
goodness-of-fit on F ²	1.000
R_{1}, WR_{2} [I>=2 σ (I)]	0.0679, 0.0990
R_1, wR_2 [all data]	0.1569, 0.1222
largest diff. peak/hole / e Å ⁻³	0.20/-0.23

 Table S1 The crystallographic details of the compound PIP-TPE

Figure S3 Crystal packing of PIP-TPE (piperazines and their neighboring phenyls are highlighted in red)

3. Confocal images of PIP-TPE in H₂O

Figure S4 Confocal image of **PIP-TPE** as amorphous particles in H₂O (50 μ M), Scale bar = 20 μ m.

4. Fluorescence quantum yields of PIP-TPE in MeOH with different fractions of glycerol

Figure S5 Photoluminescent intensity PL (A) and absolute fluorescence quantum yields \emptyset_{PL} (B) of **PIP-TPE** (10⁻⁵M) in MeOH with different fractions of glycerol; all data were collected under $\lambda_{ex} = 360$ nm at 25 °C.

5. Particle sizes of PIP-TPE in aqueous buffer solutions

The Particle sizes of **PIP-TPE** in aqueous buffer solutions were measured on a Zeta potential analyzer (Brookhaven, ZETAPLUS).

Figure S6 The particle sizes of PIP-TPE in aqueous buffer solutions of pH 0.85, 5.05 and 13.03

 $(0.8 \times 10^{-5} M)$ are 89 nm, 385 nm and 24.2µm, respectively.

6. Viscosity measurement

7. Live cell and Fixed cell fluorescent imaging of PIP-TPE in Hela cells

Live cell

Fixed cell

Figure S8 (A and C) Bright field and (B and D) fluorescent images of HeLa cells incubated with 1 μ M **PIP-TPE** for 15min then (A-B) without treatment or (C-D) with 2mL 4% PFA (paraformaldehyde) treatment for 15 min. Excitation wavelength: 330-385 nm; Scale bar = 20 μ m.

8. MTT of PIP-TPE

Figure S9 Cell viability of HeLa cells after incubation with different concentrations of PIP-TPE.

9. Photostability of PIP-TPE

For the photostability test, the cells were imaged by a confocal microscope (Zeiss Laser Scanning Confocal Microscope; LSM7 DUO) using ZEN 2009 software (Carl Zeiss). **PIP-TPE** was excited at 405 nm (2% laser power) and LysoTracker Red was excited at 560 nm (2% laser power).

Figure S10 The photostability of PIP-TPE and LysoTracker Red

10. Theoretical calculations of PIP-TPE, protonated PIP-TPE and PIP-TPE in bulk

Quantum mechanical calculations for the **PIP-TPE** single molecule in solution were performed at the DFT level of theory using B3LYP functional ^[1-4] and 6-31G(d) basis set as implemented in the D0.1 version of the Gaussian 09 software package. ^[5] The bulk solvent (water) effect has been modeled using the polarizable continuum model (PCM). ^[6] Possible static correlations in the system were modeled using Grimme's density functional empirical dispersion corrections as implemented in the D0.1 version of the Gaussian 09. ^[7] The equilibrium solvation method was employed for geometry optimization and vibrational frequency calculations. The solution-phase Hessian of S₀ was evaluated analytically at the DFT level indicated above and had no negative eigenvalues.

The photophysical properties of **PIP-TPE** in the aggregated state were analyzed using ONIOM(QM:MM) approach, an integrated quantum mechanics: molecular mechanics (QM:MM) method.^[8-11] In the two-layer ONIOM calculation the system was divided into two parts, a selected centrally located **PIP-TPE** molecule was treated by a DFT/TD-DFT (QM) method using B3LYP functional^[2-4, 12] while the packing surroundings in the crystal (40 **PIP-TPE** molecules) were treated by a low-level method, molecular mechanics (MM) method, the

Universal Force Feld (UFF).^[13] Geometry optimization, vibrational frequency and excited state calculations were performed using the 6-31G(d) basis set as implemented in the D0.1 version of Gaussian 09 software package. The solid-phase Hessian of S_0 was evaluated analytically at the DFT level, while that of S_1 was calculated numerically at the TD-DFT level. The electrostatic interactions in the model were calculated semiclassically incorporating the MM charges into the QM Hamiltonian (electronic embedding). ^[11,14] In our QM/MM model we neglect possible intermolecular excitonic couplings and assume that the intramolecular motions dominate the photophysical process.

During the QM/MM simulations, only the central **PIP-TPE** (QM) molecule was active for optimization, while all the surrounding **PIP-TPE** (MM) molecules remained rigid. No symmetry constraints were imposed during the optimizations in both solution and solid phases. The above PCM and QM/MM methods have been shown to be successful in dealing with varieties of AIEgens with both structure and excited-state decay rates. ^[15-16]

Figure S11 (a) Optimized 40-molecule **PIP-TPE** cluster with **PIP-TPE**_(bulk) molecule in the ground state calculated using ONIOM QM:MM model of with the high-level part of model shown using ball-and-stick representation, and the low-level part of the model using wire representation; (b) overlay of the optimized ground state (S₀) and first excited state (S₁) structures of **PIP-TPE**_(bulk) (green = S₀; red = S₁).

Figure S12 The HOMO (left) and LUMO (right) in **PIP-TPE**. Hydrogen atoms are omitted for clarity. HOMO and LUMO are depicted at *iso* value of 0.04.

Figure S13 The HOMO (left) and LUMO (right) of **PIP-TPEH**⁺_(soln); HOMO and LUMO are depicted at *iso* value of 0.04.

Figure S14 The HOMO (left) and LUMO (right) of **PIP-TPE**(bulk); Hydrogen atoms are omitted for clarity; HOMO and LUMO are depicted at *iso* value of 0.04.

Optimized Geometries

(1) S₀ geometry of PIP-TPE:

Н	8.553326	-4.939947	-0.583412
С	8.441546	-4.156319	0.174012
Η	8.553326	-4.939947	-0.583412
Η	8.738111	-4.570623	1.143887
Η	9.140668	-3.334923	-0.076379
Ν	7.051193	-3.721223	0.230072
С	6.846716	-2.707599	1.264005
С	5.374553	-2.316616	1.346374
Ν	4.892658	-1.828556	0.044673
С	3.672087	-1.125318	0.036358
С	3.483932	-0.031768	0.910047
С	2.309771	0.706892	0.894377
С	1.261041	0.406145	0.005610
С	-0.004760	1.189077	-0.003464
С	-0.018872	2.556911	0.003193
С	1.199243	3.370309	-0.278158
С	2.008899	3.100925	-1.395756
Η	1.748290	2.272735	-2.047618
С	3.135150	3.876037	-1.668507
Η	3.744634	3.651835	-2.540114
С	3.476018	4.941604	-0.830027
Η	4.354470	5.545305	-1.041287
С	2.673046	5.230187	0.276998
Η	2.926803	6.058516	0.933384
С	1.541667	4.458587	0.543421
Η	0.916399	4.692071	1.400792
С	-1.250934	3.345466	0.294852
С	-2.052951	3.051673	1.411873
Η	-1.777235	2.221207	2.054668
С	-3.190711	3.805684	1.695555
Η	-3.794027	3.562666	2.566421
С	-3.551117	4.874334	0.869098
Η	-4.438546	5.461588	1.089019
С	-2.755955	5.187175	-0.236873
Η	-3.024681	6.018110	-0.883952
С	-1.613107	4.436525	-0.514296
Η	-0.994251	4.689026	-1.370958
С	-1.252163	0.379281	-0.018057

С	-1.401656	-0.740425	0.821281
Η	-0.597579	-1.002971	1.503254
С	-2.563251	-1.499963	0.822691
Η	-2.651614	-2.322771	1.524927
С	-3.635588	-1.198418	-0.046075
С	-3.474027	-0.098488	-0.913006
Η	-4.245300	0.154413	-1.631064
С	-2.312813	0.670171	-0.887857
Η	-2.221972	1.511051	-1.568871
Ν	-4.818729	-1.958166	0.002377
С	-5.960484	-1.509545	-0.792985
Η	-5.805736	-1.707138	-1.868555
Н	-6.087272	-0.431432	-0.661513
С	-7.238633	-2.206476	-0.328006
Н	-7.472130	-1.874804	0.703640
Η	-8.068116	-1.892289	-0.971906
Ν	-7.103251	-3.659892	-0.403443
С	-8.339867	-4.332307	-0.023747
Н	-8.216161	-5.416319	-0.123113
Н	-9.151268	-4.016327	-0.688596
Η	-8.646079	-4.115830	1.018108
С	-5.979969	-4.089850	0.428038
Η	-5.870370	-5.177273	0.343959
Η	-6.150549	-3.850597	1.496917
С	-4.687603	-3.422388	-0.031993
Η	-3.872269	-3.740094	0.618682
Η	-4.450487	-3.757665	-1.056803
С	1.441538	-0.691755	-0.847609
С	2.617120	-1.440787	-0.842246
Η	2.696321	-2.285604	-1.516523
Η	0.643174	-0.969524	-1.530537
Η	2.201977	1.546788	1.573930
Η	4.277232	0.253970	1.593734
С	5.121309	-2.817040	-1.007973
С	6.598984	-3.202592	-1.059808
Η	6.737225	-3.977225	-1.822831
Η	7.190359	-2.317834	-1.369918
Η	4.840260	-2.383915	-1.972172
Η	4.512722	-3.725379	-0.850842
Н	4.783092	-3.192818	1.664914
Н	5.253407	-1.540458	2.103174
Н	7.452675	-1.800133	1.068933
Η	7.162448	-3.116505	2.230820

(2) S₀ geometry of PIP-TPEH⁺_(soln):

a. UV-vis calculation:

Excited State 1: Singlet-A 3.2557 eV 380.82 nm f=0.4960 <S**2>=0.000

142 ->143 0.70477

b. Optimized Geometry

Н	8.430775	-5.100743	-0.582951
С	8.366107	-4.284555	0.144997
Н	8.430775	-5.100743	-0.582951
Η	8.684288	-4.667993	1.120683
Η	9.078285	-3.494181	-0.161893
Ν	6.990678	-3.808554	0.229075
С	6.847952	-2.748994	1.226438
С	5.389325	-2.318070	1.344303
Ν	4.870335	-1.872133	0.041598
С	3.664477	-1.145249	0.045821
С	3.516133	-0.026188	0.895255
С	2.356132	0.734601	0.887010
С	1.281463	0.431941	0.030190
С	0.029691	1.235521	0.024821
С	0.026084	2.602139	0.012252
С	1.249340	3.403646	-0.280390
С	2.052776	3.117116	-1.397934
Η	1.784499	2.284055	-2.040442
С	3.182644	3.882655	-1.682471
Η	3.787562	3.646259	-2.553974
С	3.533190	4.953978	-0.855388
Η	4.414676	5.549911	-1.075754
С	2.736577	5.258619	0.251856
Η	2.998199	6.091640	0.899059
С	1.601009	4.497231	0.529717
Η	0.980001	4.743223	1.386680
С	-1.202577	3.400995	0.289387
С	-2.009387	3.127376	1.407841
Н	-1.738120	2.307813	2.066235
С	-3.145845	3.889641	1.674936
Η	-3.753093	3.662940	2.547408
С	-3.499296	4.945695	0.829863
Η	-4.385499	5.539430	1.036836
С	-2.698877	5.238431	-0.277999
Η	-2.962506	6.059752	-0.939205
С	-1.557376	4.480141	-0.538810
Н	-0.934127	4.716645	-1.396784

С	-1.229763	0.440210	0.025277
С	-1.407516	-0.634139	0.915473
Η	-0.625058	-0.864851	1.632756
С	-2.574237	-1.386935	0.917829
Η	-2.696987	-2.174276	1.655514
С	-3.604643	-1.125027	-0.005848
С	-3.423606	-0.069383	-0.915011
Η	-4.173211	0.153011	-1.665937
С	-2.261087	0.699625	-0.887100
Η	-2.145778	1.510923	-1.599209
Ν	-4.786441	-1.910546	0.031843
С	-5.917992	-1.465603	-0.772626
Η	-5.762457	-1.638571	-1.852378
Η	-6.071693	-0.393338	-0.629503
С	-7.198424	-2.158061	-0.318793
Η	-7.430160	-1.917192	0.720543
Η	-8.040879	-1.884155	-0.955818
Ν	-7.049511	-3.661432	-0.385266
С	-8.300950	-4.373809	0.037312
Η	-8.145122	-5.446596	-0.078271
Η	-9.121034	-4.038611	-0.598105
Η	-8.501252	-4.127640	1.080233
С	-5.841823	-4.097803	0.413283
Η	-5.736720	-5.176683	0.289093
Η	-6.059096	-3.865451	1.457831
С	-4.602114	-3.361073	-0.072973
Н	-3.766341	-3.684184	0.547487
Н	-4.371707	-3.660302	-1.111032
Н	-6.873001	-3.910146	-1.365899
С	1.422017	-0.691176	-0.797784
С	2.582555	-1.462552	-0.799218
Н	2.628522	-2.325726	-1.452737
Н	0.603817	-0.971663	-1.455622
H	2.280345	1.592527	1.548006
H	4.328878	0.262308	1.554294
C	5.043420	-2.903/22	-0.980254
C	6.508589	-3.328583	-1.064627
H	6.601642	-4.135124	-1.800939
H	/.1111/8	-2.4/226/	-1.428364
H	4.743139	-2.498808	-1.950835
H	4.41/88/	-5./89/56	-0.//1343
H H	4./89483	-5.104882	1./20913
п	J.J1J4UJ	-1.308/29	2.0/1/41
H H	/.408133	-1.803818	0.9/3130
н	1.18/892	-3.123943	2.19/9/3

(3) S₁ geometry of PIP-TPEH⁺_(soln):

Η	9.114386	-4.463417	-0.073077
С	9.030758	-3.415189	0.233603
Н	9.114386	-4.463417	-0.073077
Н	9.639233	-3.269667	1.132707
Η	9.453397	-2.786040	-0.573175
Ν	7.637715	-3.099628	0.528635
С	7.483700	-1.721453	0.989539
С	6.033477	-1.447648	1.374379
Ν	5.125890	-1.724884	0.251735
С	3.873108	-1.126990	0.215000
С	3.699270	0.229339	0.602308
С	2.471022	0.849055	0.523085
С	1.294696	0.168521	0.085319
С	0.037681	0.858046	0.008560
С	0.041001	2.342353	-0.029324
С	0.674387	2.992084	-1.150966
С	0.898003	2.278151	-2.365940
Н	0.537084	1.257399	-2.444702
С	1.537687	2.865443	-3.449620
Н	1.672824	2.292489	-4.363925
С	2.009430	4.182397	-3.373894
Н	2.516916	4.637048	-4.219989
С	1.832800	4.897977	-2.181038
Η	2.220532	5.910185	-2.094043
С	1.184900	4.323708	-1.095890
Η	1.107382	4.883532	-0.170159
С	-0.611182	3.047167	1.051825
С	-0.774304	2.423425	2.322668
Н	-0.360383	1.430596	2.472565
С	-1.424155	3.062128	3.370161
Н	-1.511996	2.559083	4.330197
С	-1.966464	4.343513	3.199672
Н	-2.481972	4.838302	4.017959
С	-1.849884	4.967617	1.950972
Η	-2.292238	5.948109	1.791317
С	-1.191494	4.339949	0.900505
H	-1.160429	4.825417	-0.069122
C	-1.243532	0.189538	-0.034783
C	-1.484038	-1.088651	0.547168
H	-0.683363	-1.590416	1.079829
C	-2.734744	-1.677636	0.526426
H	-2.879326	-2.627273	1.033434
C	-3.835264	-1.042828	-0.090006

С	-3.624934	0.233900	-0.647625
Η	-4.433778	0.762968	-1.139421
С	-2.375568	0.834353	-0.600324
Η	-2.248333	1.816883	-1.043915
Ν	-5.099204	-1.676645	-0.077558
С	-6.260573	-0.891646	-0.476792
Η	-6.303432	-0.729949	-1.568161
Η	-6.222373	0.089991	0.001225
С	-7.544803	-1.562469	-0.001570
Η	-7.568888	-1.640107	1.086973
Η	-8.423894	-1.018321	-0.350101
Ν	-7.642455	-2.974026	-0.534087
С	-8.904132	-3.660967	-0.098799
Η	-8.934976	-4.648616	-0.558780
Η	-9.755509	-3.063312	-0.424473
Η	-8.892572	-3.748230	0.987819
С	-6.406984	-3.759068	-0.152791
Η	-6.491525	-4.746589	-0.609729
Η	-6.422210	-3.852727	0.934888
С	-5.156079	-3.034368	-0.627925
Η	-4.295320	-3.614776	-0.294982
Η	-5.128402	-3.014708	-1.731620
Η	-7.664797	-2.914799	-1.559259
С	1.488780	-1.182224	-0.324358
С	2.722549	-1.804082	-0.265276
Η	2.790046	-2.836007	-0.588308
Η	0.653753	-1.740601	-0.732581
Η	2.388095	1.891320	0.814710
Η	4.552106	0.811698	0.933166
С	5.310548	-3.070231	-0.293006
С	6.780412	-3.318062	-0.633693
Η	6.889841	-4.355279	-0.969948
Η	7.068348	-2.660812	-1.478484
Η	4.728732	-3.170333	-1.211539
Η	4.960493	-3.833207	0.421910
Η	5.757968	-2.085898	2.230143
Η	5.938160	-0.409383	1.689588
Η	7.798775	-0.994068	0.214907
Η	8.117577	-1.565113	1.869661

(4) S_0 geometry of PIP-TPE_{(bulk}):

C 2.255700 -4.413300 11.498100

С	3.597200	-4.683500	11.414200
С	1.751200	-3.074300	11.916000
С	2.340800	-2.373600	12.983800
С	1.955600	-1.092000	13.336200
С	0.934800	-0.421700	12.627100
С	0.272600	-1.157500	11.626800
С	0.675500	-2.444400	11.273300
С	1.223900	-5.429500	11.146800
С	0.092800	-5.660700	11.950800
С	-0.865900	-6.610700	11.619600
С	-0.758100	-7.378000	10.436100
С	0.349400	-7.110000	9.602400
С	1.311500	-6.173300	9.961400
С	-0.361900	4.961000	13.799800
С	0.630400	1.381100	14.264100
С	0.770400	2.894600	14.352000
С	-0.273400	3.125400	12.226200
С	-0.373900	1.604700	12.080800
С	-4.760100	-11.020100	8.746400
С	-1.562700	-9.042400	8.824300
С	-2.454300	-10.277000	8.743600
С	-3.933700	-9.420100	10.356900
С	-3.088600	-8.161500	10.528800
С	4.652900	-3.626400	11.486600
С	4.610600	-2.486100	10.666600
С	5.584200	-1.494100	10.767000
С	6.618200	-1.620200	11.695700
С	6.701300	-2.766200	12.486300
С	5.738500	-3.767200	12.370900
С	4.148300	-6.065200	11.270600
С	3.816000	-7.084000	12.179500
С	4.406700	-8.342800	12.084700
С	5.324700	-8.614400	11.068700
С	5.675600	-7.610500	10.166700
С	5.103500	-6.345200	10.276800
Ν	0.641600	0.926800	12.877200
Ν	-0.338200	3.517400	13.632900
Ν	-1.697100	-8.371900	10.115900
Ν	-3.840600	-9.917600	8.993300
Η	3.141300	-2.844400	13.535900
Η	2.483300	-0.604600	14.147400
Η	-0.569900	-0.709300	11.122600
H	0.156300	-2.958200	10.469500
H	-0.037400	-5.093000	12.866500
Н	-1.692800	-6.761600	12.303400
Η	0.467700	-7.617900	8.655400

Η	2.145400	-5.997900	9.290300
Η	-1.237400	5.376900	13.291900
Η	-0.434500	5.208700	14.864200
Η	0.544400	5.454200	13.398900
Η	-0.324000	1.086800	14.724300
Η	1.435600	0.902000	14.812600
Η	1.755500	3.197000	13.948400
Η	0.741100	3.204100	15.402300
Η	-1.111900	3.584300	11.689200
Η	0.663800	3.472400	11.750800
Η	-0.242100	1.347400	11.027300
Η	-1.385400	1.294600	12.389400
Η	-5.784300	-10.639500	8.796400
Η	-4.600900	-11.408300	7.736400
Η	-4.651900	-11.855300	9.460900
Η	-1.809200	-8.361100	7.990000
Η	-0.525600	-9.358400	8.698700
Η	-2.089200	-11.046600	9.447900
Η	-2.394000	-10.695800	7.740200
Η	-4.975800	-9.165100	10.571600
Η	-3.613400	-10.191100	11.082000
Η	-3.113900	-7.866700	11.576900
Η	-3.550500	-7.350200	9.945200
Η	3.793800	-2.376300	9.960400
Η	5.529000	-0.614800	10.133000
Η	7.357900	-0.837400	11.805800
Η	7.512400	-2.862900	13.201800
Η	5.807000	-4.658300	12.988800
Η	3.102600	-6.875000	12.970300
Η	4.176300	-9.104800	12.823600
Н	5.794600	-9.590700	11.001200
Η	6.394700	-7.819200	9.382300
Η	5.389400	-5.558400	9.584900

(5) S_1 of PIP-TPE_(bulk).

a. PL calculation:

Excited State 1: Singlet 2.6320 eV 471.07 nm f=0.4194 <S**2>=0.000

142 ->143 -0.70627

b. Optimized geometry:

С	2.246700	-4.406100	11.486300
С	3.659300	-4.675500	11.368000
С	1.760300	-3.111500	11.952900
С	2.434800	-2.343900	12.943100
С	2.044100	-1.064400	13.286400
С	0.956400	-0.430600	12.643600
С	0.241200	-1.200100	11.700000
С	0.627400	-2.488700	11.365400
С	1.248800	-5.406000	11.110700
С	0.036600	-5.551100	11.839400
С	-0.923800	-6.488500	11.509400
С	-0.755100	-7.355200	10.394200
С	0.438600	-7.202100	9.645600
С	1.408500	-6.284600	10.007800
С	-0.350400	4.952400	13.797000
С	0.656100	1.377700	14.269100
С	0.790300	2.891800	14.354000
С	-0.268700	3.109900	12.231100
С	-0.366600	1.587800	12.094400
С	-4.770000	-11.003200	8.748100
С	-1.558200	-9.051200	8.805400
С	-2.457100	-10.281400	8.749800
С	-3.924300	-9.413400	10.358400
С	-3.083900	-8.151100	10.531400
С	4.652600	-3.600000	11.346100
С	4.488100	-2.395100	10.619000
С	5.427100	-1.373900	10.704200
С	6.520100	-1.487600	11.567800
С	6.717000	-2.673600	12.284800
С	5.816100	-3.719900	12.156700
С	4.208700	-6.022300	11.307300
С	3.731100	-7.114900	12.080600
С	4.325000	-8.368300	11.973100
С	5.343600	-8.608200	11.046400
С	5.807700	-7.553300	10.247100
С	5.269500	-6.286800	10.391400
Ν	0.660100	0.920700	12.883500
Ν	-0.323900	3.508100	13.636700
Ν	-1.703500	-8.322300	10.066900
Ν	-3.839800	-9.908000	8.994300
Η	3.285000	-2.782700	13.445200
Η	2.622300	-0.535400	14.036200
Н	-0.622100	-0.765400	11.216700
Η	0.076500	-3.017700	10.594500
Η	-0.129700	-4.920700	12.706400
Н	-1.799700	-6.563600	12.141200

Η	0.609800	-7.791200	8.757000
Η	2.297900	-6.191400	9.397100
Η	-1.229300	5.364200	13.291400
Η	-0.418400	5.204800	14.860700
Η	0.552600	5.446500	13.389400
Η	-0.296100	1.080400	14.733000
Η	1.463800	0.895100	14.811700
Η	1.772600	3.198200	13.947000
Η	0.761600	3.203600	15.403700
Η	-1.112800	3.564700	11.699100
Η	0.663700	3.456900	11.746600
Η	-0.246400	1.321200	11.041500
Η	-1.374500	1.278100	12.417000
Η	-5.790300	-10.613000	8.797800
Η	-4.613800	-11.393300	7.738500
Η	-4.668100	-11.838100	9.463600
Η	-1.786900	-8.392400	7.950500
Η	-0.523000	-9.378200	8.704900
Η	-2.097400	-11.042100	9.466300
Η	-2.396700	-10.717000	7.753700
Η	-4.964100	-9.158000	10.582300
Η	-3.599700	-10.186000	11.079900
Η	-3.076300	-7.885600	11.588100
Η	-3.570300	-7.328200	9.987300
Η	3.624900	-2.291600	9.970800
Η	5.302400	-0.473800	10.110100
Η	7.209100	-0.663400	11.695800
Η	7.565500	-2.758800	12.958300
Η	5.956300	-4.630200	12.731500
Η	2.950300	-6.941200	12.814100
Η	4.025900	-9.164800	12.646400
Η	5.796900	-9.590900	10.968700
Η	6.585400	-7.730500	9.511800
Η	5.627800	-5.473700	9.768300

References:

[1] A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.

[2] C. Lee, W. Yang and R.G. Parr, Phys. Rev. B, 1988, 37, 785-789.

[3] S. H. Vosko, L. Wilk and M. Nusair, Can. J. Phys., 1980, 58, 1200-1211.

[4] P. J. Stephens, F. J. Devlin, C. F. Chabalowski and M. J. Frisch, *J. Phys. Chem.*, 1994, **98**, 11623-11627.

[5] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A.

Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski and D. J. Fox. *EM64L-Gaussian 09, Revision D.01*. Gaussian, Inc., Wallingford CT, 2013.

[6] J. Tomasi, B. Mennucci and R. Cammi, Quantum Mechanical Continuum Solvation Models. *Chem. Rev.*, 2005, **105**, 2999-3094.

[7] S. Grimme, J Comput. Chem., 2004, 25, 1463-1473.

[8] F. Maseras and K. Morokuma, J. Comput. Chem., 1995, 16, 1170-1179.

[9] M. Svensson, S. Humbel, R. D. J. Froese, T. Matsubara, S. Sieber and K. Morokuma, *J. Phys. Chem.*, 1996, **100**, 19357-19363.

[10] S. Dapprich, I. Komáromi, K. S. Byun, K. Morokuma and M. J. Frisch, J. Mol. Struct. (THEOCHEM), 1999, 461, 1-23.

[11] T. Vreven, K. S. Byun, I. Komáromi, S. Dapprich, J. A. Jr. Montgomery, K. Morokuma and M. J. Frisch, *J. Chem. Theory Comput.*, 2006, **2**, 815-826.

[12] A. D. Becke, J. Chem. Phys., 1993, 98, 5648-5652.

[13] A. K. Rappe, C. J. Casewit, K. S. Colwell, W. A. GoddardIII and W. A. Skiff, *J. Am. Chem. Soc.*, 1992, **114**, 10024-10035.

[14] D. Bakowies and W. Thiel, J. Phys. Chem., 1996, 100, 10580-10594.

[15] Q. Y. Wu, C. M. Deng, Q. Peng, Y. L. Niu and Z. G. Shuai, Quantum Chemical Insights into the Aggregation Induced Emission Phenomena: A QM/MM Study for Pyrazine Derivatives. *J. Comput. Chem.*, 2012, **33**, 1862-1869.

[16] Q. Y. Wu, T. Zhang, Q. Peng, D. Wang and Z. G. Shuai, Aggregation Induced Blue-Shifted Emission-the Molecular Picture from a QM/MM Study. *Phys. Chem. Chem. Phys.*, 2014, **16**, 5545-5552.