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N(0, σ2In), X is a p-dimensional design matrix and β is the corresponding

p regression coefficients. Here and throughout E represents the conditional

expectation of y given X.

1.1 Linear multiple regression after marginal associa-

tion screening

The gene score method (Purcell et al., 2009) and its multivariate generaliza-

tion (Warren et al., 2013) use upper-ranked SNPs in marginal association.

Given a cutoff value t > 0, linear multiple regression after marginal associ-

ation screening uses Xj satisfying Tj(y,X) > t in fitting multiple regression

model. Here Tj(y,X) denotes a test statistic for marginal association, taking

nonnegative value. The cutoff value t corresponds to quantile of null distribu-

tion of Tj(y,X) as in hypothesis test. Without loss of generality, assume that

a large value of Tj(y,X) indicates stronger marginal association. Examples

of Tj(y,X) include the squared Pearson’s correlation and the F -statistics.

Multiple regression after marginal association screening can be expressed by

µ̂i = XT
i β̂, β̂ =

 β̂A

β̂Ac

 =

 (XT
AXA)

−1XT
Ay

0

 ,

A = {j ∈ M : Tj(y,X) > t}. (1)

Note that the above procedure is similar to the sure independence screening

(Fan and Lv, 2008) which uses predictor variables upper-ranked in marginal
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association. The procedure (1) is feasible for p ≫ n data and is useful in

building predictive model.

1.2 Stein’s unbiased risk estimation and generalized

degrees of freedom

Predictive power largely depends on predictive model choice. We consider

unbiased model selection criterion such as the Mallows’ Cp and Akaike in-

formation criterion (AIC, Akaike, 1973) which are computationally efficient

alternatives to cross-validation. Those criteria attempt to correct the bias in

residuals of squared, or apparent error, (yi−µ̂i)
2, from the squared prediction

error (y0,i − µ̂i)
2, in which y0,i is an independent future observation from the

same distribution of yi given Xi. In other words, residuals become optimistic

because the data y are used twice for training (i.e. building predictive model)

and testing (i.e. evaluating predictive power of the model). We attempt to

select an optimal threshold t in (1) from a model selection perspective. If A

is deterministic with |A| < n, and yi ∼ N(µi, σ
2), the following well-known

unbiasedness holds:

E

{
n∑

i=1

(yi − µ̂i)
2 + 2σ2|A|

}
=

n∑
i=1

[
E{(µi − µ̂i)

2}+ σ2
]
, (2)

which leads to the Mallows’ Cp criterion. However, screening may violate the

unbiasedness property (2) since the screening process depends on y and hence

A is no longer deterministic (See Section 4 in this Supplementary Material).
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For a general modeling process µ̂ : y 7→ µ̂(y), a generalization of (2) is

given as follows:

E

[
n∑

i=1

{(yi − µ̂i)
2 + 2σ2cov(µ̂i, yi)}

]
=

n∑
i=1

[
E{(µi − µ̂i)

2}+ σ2
]
, (3)

where cov(µ̂i, yi) is referred to as a covariance penalty (Efron, 2004). If

A were deterministic, cov(µ̂i, yi) reduces to the degrees of freedom |A|, and

hence (3) coincides with (2). To apply (3), an unbiased estimator of cov(µ̂i, yi)

is needed, but no readily available such estimator is known for (1). Another

concern is the selection bias in regression coefficient estimates produced by

screening, which is referred to as the winner’s curse effect. Discontinuity in

y due to screening may also cause instability in prediction (Breiman, 1996).

For differentiable µ̂ in y, the Stein’s lemma (Stein, 1981) gives a conve-

nient formula

cov(µ̂i, yi) = E{∂iµ̂i(y)},

in which ∂i = ∂/∂yi. The above formula leads to the generalized degrees of

freedom (GDF) (Ye, 1998),

GDF =
n∑

i=1

∂iµ̂i(y), (4)

which allows Stein’s unbiased risk estimation (SURE), namely,

E

[
{

n∑
i=1

(yi − µ̂i)
2}+ 2σ2GDF

]
=

n∑
i=1

[
E{(µi − µ̂i)

2}+ σ2
]
. (5)
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In the following, we propose a smoothed version of marginal association

screening of (1). It is expected that the continuity in y makes the result-

ing prediction stable (Breiman, 1996). As a consequence, a Cp-type model

selection criterion can be obtained for data-dependent choice of an optimal

marginal association cutoff t.

1.3 Smooth-threshold multivariate genetic prediction

Here we introduce the smooth-thresholding which replaces the indicator func-

tion appeared in screening process by a continuous function (Ueki, 2009; Ueki

and Kawasaki, 2011). In view of the normal equations, it can be seen that β̂

in (1) satisfies, for j ∈ M ,

(1− D̂j){XT
j (Xβ̂ − y)}+ D̂jβ̂j = 0, (6)

or, in vector form,

(Ip − D̂){XT (Xβ̂ − y)}+ D̂β̂ = 0,

where D̂j = 1{Tj(y,X)≤t} and D̂ = diag(D̂j : j ∈ M). Obviously, for j ∈ Ac,

D̂j = 1 and (6) reduces to β̂j = 0, i.e. sparse solution; for j ∈ A, D̂j = 0 and

the above normal equation reduces to XT
A(XAβ̂A − y) = 0 because β̂Ac = 0.

This is the normal equation for the ordinary least-squares regression with

design matrix XA. The resulting prediction process forms µ̂(y) = XAβ̂A =
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XA(X
T
AXA)

−1XT
Ay, which is discontinuous function in y due to thresholding

in D̂j.

To smooth the prediction process µ̂, the expression (6) suggests to replace

the indicator function D̂j by a smooth function. Following to Ueki (2009),

D̂j = 1{Tj(y,X)≤t} is replaced by an adaptive lasso smooth-thresholding func-

tion

Ďj = min[1, {t/Tj(y,X)}
1+γ
2 ], (7)

where γ > 0 is a tuning parameter. This smooth-thresholding function is

chosen so as to be identical to the adaptive lasso estimator under the sim-

plest least-squares regression of y = β + ϵ (Ueki, 2009). Figure S1 depicts

the smooth-thresholding function and the resulting estimator in this simplest

setting. If Tj(y,X) ≤ t or j ∈ Ac, then Ďj = 1 giving zero regression coeffi-

cient; if Tj(y,X) > t or j ∈ A, Ďj < 1 giving nonzero regression coefficient.

Therefore, the condition for sparse solution with Ďj is the same as that with

D̂j. Note that Ďj is monotonically decreasing in Tj(y,X), making the re-

gression coefficients having large Tj(y,X) less penalized than the regression

coefficients having small Tj(y,X). From the fact that the winner’s curse

effect produces larger selection bias for small regression coefficient (Zhong

and Prentice, 2008), it is expected that the above feature of penalization

decreases the selection bias.

Our proposed estimation equations where D̂ is replaced by Ď are as
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follows:

(Ip − Ď){XT (Xβ̌ − y)}+ τĎβ̌ + λ(Ip − Ď)β̌ = 0, (8)

in which the solution is denoted by β̌. Here λ > 0 is a small constant to

ensure invertibility of matrix as in ridge penalization (See (10)). We empir-

ically found that introducing an additional tuning parameter τ > 0 which

controls the extent of penalization for coefficients for A improves prediction

performance. Recalling that A = {j ∈ M : Tj(y,X) > t}, the resulting

regression coefficients β̌ are written explicitly as follows:

 β̌A

β̌Ac

 =

 ǦA(I|A| − ĎA)X
T
Ay

0

 , (9)

and the prediction of yi turns out to be µ̌i(y) = XT
i β̌. Here ǦA = {(I|A| −

ĎA)(ΣAA + λI|A|) + τĎA}−1, Σ = XTX, and ΣAA = (Σjk)j∈A,k∈A. Alterna-

tively, from (8), the regression coefficient for the screened set in (9), β̌A, can

be considered as a solution to

XT
A(XAβ̌A − y) +WAβ̌A = 0, (10)

with WA = diag(Wj : j ∈ A) where Wj = λ + τĎj/(1 − Ďj), which is

equivalent to the following generalized ridge regression problem:

min
βA

{
||y −XAβA||2 +

∑
j∈A

β2
jWj

}
.
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Ridge weight for each predictor variable,Wj, represents uncertainty of marginal

association screening, which is used for penalizing each regression coefficient.

If the marginal association is very weak, we have Ďj ≈ 1 and large Wj, then

the corresponding regression coefficient is strongly shrunken towards zero. If

the marginal association is strong, we have Ďj ≈ 0 and Wj ≈ λ, then the

corresponding regression coefficient is less penalized.

1.4 GDF for smooth-threshold multivariate genetic pre-

diction

The Stein’s lemma is now applicable to µ̌i(y) to obtain a closed-form formula

for GDF as follows.

Proposition 1 The GDF for µ̌(y) (4) is equal to

n∑
i=1

XT
i ∂iβ̌ = tr(ǦAĽ

T
AXA) + tr{ǦA(I|A| − ĎA)ΣAA}, (11)

where ĽA is an n× |A| matrix whose (i, j)-element is (∂iĎj)m̌j. Here,

∂iĎj = −1 + γ

2

∂iTj(y,X)

Tj(y,X)
{t/Tj(y,X)}

1+γ
2 ,

and m̌j is the jth component of m̌ = {XTX−(τ−λ)Ip}β̌−XTy = −XT (y−

Xβ̌)− (τ − λ)β̌.

It is shown later that this is a special case of Proposition 2, and the

derivation is omitted. If ĎA ≈ O, then ǦA ≈ (XT
AXA)

−1, and the second
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term in the right-hand side of (16) reduces to

tr{ǦA(I|A| − ĎA)X
T
AXA} ≈ tr{XA(X

T
AXA)

−1XT
A} = rank(XA),

i.e., the usual degrees of freedom. On the other hand, the first term tr(ǦAĽ
T
AXA)

represents the effect of screening which does not appear in the multiple re-

gression with deterministic A.

If one includes unpenalized components in X such as intercept or co-

variates such as sex, age and body mass index, the formula of GDF is still

valid by setting ∂iĎj = 0 for index j corresponding to these unpenalized

components.

1.5 F -test screening

In SNP-GWAS, F -test can be used for testing association for quantitative

traits. Covariates, Z say, can be adjusted for in the F -test. Inclusion of

intercept only corresponds to Z being an n-vector of ones. F -statistic for jth

SNP is

Tj(y,X) =
(n− d)yT (P(Z,Xj) − PZ)y

yT (In − P(Z,Xj))y
=

(n− d)yTPX̃j
y

yT (In − PZ − PX̃j
)y
,

where d = rank(Z), PX denotes the projection onto column space of X and

X̃j = (In − PZ)Xj. Threshold t is the (1 − α)th quantile of F (1, n − d)-

distribution, q1−α say. Instead of the cutoff value t for Tj(y,X), the signifi-
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cance level α is considered as a tuning parameter to be optimized. There is

a one-to-one correspondence between α and t.

1.6 Cp-type criterion for smooth-threshold multivari-

ate genetic prediction

Using the expression (19) in Section 3 in this Supplementary Material, the

GDF for F -test screening is computed by applying Proposition 1. Denoting

the dependency of µ̌ on α explicitly, using (5), the proposed unbiased Cp-type

model selection criterion is as follows:

C(α) =
n∑

i=1

{yi − µ̌i(α)}2 + 2σ2GDF(α).

An optimal α is obtained by minimizing the above quantity within a range

of α for search. From (5), the expectation of the above criterion equals to∑n
i=1[E{(µi − µ̂i)

2} + σ2], and hence unbiased property holds. Therefore,

the selection bias in RSS due to screening is accounted for, and the model

selection with Cp-type criterion is expected to work properly. In principle,

the two tuning parameters (γ and τ) other than α may be selected by the

above criterion. However, from our experiences through simulations as well

as real data applications, we suggest using fixed γ and τ to achieve stable

predictive power. In particular, we suggest fixed γ = 1 and τ = n/
√
log n

throughout. As a consequence, we consider single tuning parameter α to be

optimized.
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In univariate case in Figure S1, the adaptive lasso smooth-thresholding

yields the adaptive lasso solution when τ = 1 (Ueki, 2009), and hence, we

interpret γ as that in the adaptive lasso. Existing works (Zou, 2006; Ueki,

2009) examined a few candidate parameters (e.g. γ ∈ {0.5, 1, 2}). Some

literature (e.g. Bühlmann and van de Geer (2011)) defines the adaptive lasso

by γ = 1. We also confirmed that, through simulations, γ = 1 generally

gives good performance. On the other hand, for τ parameter, Ueki (2009)

used τ = 1 for smooth-threshold estimating equation in p ≪ n setting. In

the genetic prediction in p ≫ n setting, through simulation studies, we ob-

served that τ > 1 was needed for stable prediction and estimation of the

Cp-type criterion. (One can use cross-validation instead of the Cp-type crite-

rion for tuning parameter selection if Cp estimation fails.) We consider that

ultrahigh-dimensionality required stronger penalization. A role of increasing

τ on the resultant estimate can be understood by the right panel of Figure S1.

Examining various candidate values for τ through simulation studies and real

data applications, we found that τ = n/
√
log n works well. We also found

that τ = nω with some ω ∈ (0, 1) generally gives good performance where

ω is a constant not close to the boundaries of (0, 1). For high-dimensional

data other than SNP-GWAS, there is a possibility that other choice of τ is

appropriate. Further works are needed on the choice of τ .

The Cp-type criterion contains σ2 which is often unknown. In such cases,

according to Theorem 3 of Ye (1998), the following surrogate of σ2 can be
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used,

σ̂2
1 =

1

n−GDF(α1)

n∑
i=1

{yi − µ̌i(α1)}2,

where α1 is a pre-specified threshold α that gives sufficiently complex model.

From simulation studies and real data applications, we found that α1 =

3n/(p log n) works well. If all test statistics Tj(y,X) follows their null dis-

tribution, the expected number of screened predictors at α1 = 3n/(p log n)

is 3n/ log n, which is the same order of the pre-specified number of screened

variables in sure independence screening (Fan and Lv, 2008; Fan et al., 2009).

2 Smooth-threshold multivariate genetic pre-

diction in generalized linear models

We give an extension of the above result for linear multiple regression to

generalized linear models. It includes logistic regression as a special case.

Suppose that n response variables y = (y1, . . . , yn)
T follow independently

from the generalized linear model p(yi; θi, ϕ) = exp[{yiθi − b(θi)}/a(ϕ) +

c(yi, ϕ)], where the canonical parameter θi, the dispersion parameter ϕ and

a(·), b(·) and c(·, ·) are scalar-valued functions specific to the corresponding

model. Throughout, a linear regression model with the canonical link b(µi) =

θi = Xiβ is considered, where µi = Eyi, or in vector forms, b(µ) = θ =

Xβ and µ = Ey. Then µ(θ) = b′(θ). Let the −2× loglikelihood function

excluding the term that is constant regardless of the models be q(y; t) =
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−2{yt − b(t)}/a(ϕ). For a modeling process θ̂ : y 7→ θ̂(y), as in the case of

the sum of squared residuals, the apparent error Q(y; θ̂) =
∑n

i=1 q{yi; θ̂i(y)}

is biased from Q(y0; θ̂) =
∑n

i=1 q{y0,i; θ̂i(y)} where y0,i is an independent

future observation from the same distribution of yi given Xi. Specifically,

the following optimism theorem (Efron, 2004; Augugliaro et al., 2013) holds:

EQ{µ; θ̂(y)} = E[Q{y; θ̂(y)}+ 2Ωϕ],

where Ωϕ = a(ϕ)−1tr[cov{θ̂(y), y}]. Hence, having an unbiased estimator of

Ωϕ, an unbiased estimator of EQ{µ; θ̂(y)} can be obtained from the apparent

error, and model selection can be carried out. However, the covariance in

Ωϕ depends on µ = Ey which is unknown. Following to Augugliaro et al.

(2013), one-term Taylor approximation of θ̂(y) around µ = Ey is applied:

Ωϕ ≈ a(ϕ)−1tr[cov{θ̂(µ) + ∂θ̂(µ)T (y − µ), y}] = a(ϕ)−1tr{∂θ̂(µ)Tvar(y)},

where ∂ = (∂i). In the generalized linear model, var(y) = a(ϕ)diag[b′′{θi(µ)}].

Unknown µ in ∂θ̂(µ) and in b′′{θi(µ)} are replaced, respectively, by y and

by the sufficiently complex estimator, θ̂1 say. The above approximation is

similar to that in Augugliaro et al. (2013) who used the maximum likelihood

estimator (MLE) on a saturated model. As a consequence, an approximate
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unbiased estimator of Ωϕ for the modeling process θ̂ : y 7→ θ̂(y) is as follows:

GDF =
n∑

i=1

b′′(θ̂1,i)Xi∂iβ̂, (12)

which we refer to as the GDF for the generalized linear model. We expect

that the following analogous identity to (5) approximately holds:

EQ{µ; θ̂(y)} ≈ E[Q{y; θ̂(y)}+ 2GDF]. (13)

2.1 Smooth-threshold multivariate genetic prediction

We introduce the smooth-threshold multivariate genetic prediction for gen-

eralized linear model. This is an extension of the method for multiple linear

regression described in previous sections. Let the statistic for screening be

Tj(y,X), in which Xj is included if Tj(y,X) > t for a given threshold t > 0.

Scale parameter a(ϕ) is considered as known quantity in the following. Then,

the estimator β̌ in the smooth-threshold multivariate genetic prediction is the

solution to the equation with respect to β:

0 = U(β) = (Ip − Ď)u(β) + τĎβ + λ(Ip − Ď)β, (14)

where u(β) = −XT{y − b′(Xβ)} is the score function and Ď is the same

quantity in (8) with the above Tj(y,X). As in the least-squares case, define

the screened set A = {j ∈ M : Tj(y,X) > t}. Then, Ďj = 1 for j ∈ Ac and
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we know that β̌Ac = 0 in advance of computing the solution, giving

0 = UA(βA) = (I|A| − ĎA)uA(βA) + τĎAβA + λ(I|A| − ĎA)βA,

and β̌Ac = 0. Here the subscript represents sub-vector with indexes in A. As

in (10), the regression coefficient for the screened set, β̌A, can be obtained

by generalized ridge regression problem,

uA(β̌A) +WAβ̌A = 0, (15)

with WA = diag(Wj : j ∈ A) where Wj = λ + τĎj/(1 − Ďj). The above

equation can be solved by the Newton–Raphson algorithm and no convex

optimization is needed.

To compute the GDF (12) for the smooth-threshold multivariate genetic

prediction in generalized linear model, a tractable expression of ∂iβ̌ is needed.

The following result gives a closed-form formula for the GDF.

Proposition 2 The GDF for θ̌(y) (12) is equal to

n∑
i=1

b′′(θ̂1,i)Xi∂iβ̂ = tr{ǦAĽ
T
Ab

′′(θ̂1)XA}+ tr{ǦA(I|A| − ĎA)X
T
Ab

′′(θ̂1)XA},

(16)

where ĽA is an n × |A| matrix whose (i, j)-element is (∂iĎj)m̌j, and m̌j is
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the jth component of m̌ = u(β̌)− (τ − λ)β̌. Here,

∂iĎj = −1 + γ

2

∂iTj(y,X)

Tj(y,X)
{t/Tj(y,X)}

1+γ
2 ,

and ǦA = [(I|A| − ĎA){XT
Ab

′′(Xβ̌)XA + I|A|}+ τĎA]
−1.

The derivation is given in Appendix. For Gaussian linear model with

canonical link, b(θ) = θ2/2. Then, b′(θ) = θ, b′′(θ) = 1, uj(β) = −XT
j (y −

Xβ), and uj(β̌) = XT
j Xβ̌ − XT

j y. Substituting these quantities, it can be

seen that the GDF given in Proposition 1 is a special case of the above

GDF in Proposition 2 for generalized linear model in Gaussian linear model.

Unpenalized components in X are treated in the same way in the multiple

linear regression case.

2.2 Score test screening

In SNP-GWAS for binary traits, a score test for marginal association screen-

ing is considered. Adjustment for covariates Z can be easily incorporated,

where Z is assumed to be an n × d matrix. Inclusion of intercept only cor-

responds to Z being an n-vector of ones. Given a p-value cutoff α ∈ (0, 1),

two-sided score test statistic for screening SNPs is

Tj(y,X) = u2
j/vj,
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where uj = −XT
j (y−µ̂), µ̂ = b′(Zγ̂), vj = XT

j ŴXj−(XT
j ŴZ)(ZT ŴZ)−1(ZT ŴXj),

γ̂ is the MLE under model with Z satisfying ZT{y − b′(Zγ̂)} = 0 and

Ŵ = diag{b′′(Ziγ̂)}. Threshold t is the (1− α)th quantile of χ2-distribution

of one degree of freedom, q1−α say.

2.3 Cp-type criterion for smooth-threshold multivari-

ate genetic prediction in generalized linear model

Using expression (20) given in Appendix, the GDF for score-test screening

(12) is derived by applying Proposition 2. As in the linear regression case,

we use fixed γ = 1 and τ = n/
√
log n. Denoting the dependency of θ̌ on

α explicitly, the unbiased Cp-type model selection criterion based on −2×

loglikelihood is given as follows:

C(α) =
n∑

i=1

q{yi; θ̌i(α)}+ 2GDF(α).

An optimal α is chosen by minimizing the above quantity. Here, we compute

θ̂1 at α1 = 3n/(p log n) as a sufficiently complex model as in linear regres-

sion case. From (13), the expectation of the above criterion approximates

to
∑n

i=1 E{q(Eyi; θ̌i)} if the Taylor approximation used in the derivation is

sufficiently accurate. The accuracy of the Taylor approximation may depend

on the underlying data-generating process. In the simulation studies given in

next section, which mimics genetic predictions from GWAS data, we found

that the above approximation is accurate (See Figures 3 and 4 in main text).
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3 Technical proofs

Here we give technical proofs for earlier sections.

3.1 Proof of Proposition 2

By operating ∂i on both sides of (14), it follows that

0 = ∂iU(β̌)

= −∂iĎ{u(β̌)− (τ − λ)β̌}+ (Ip − Ď){∂iu(β̌)}+ τĎ∂iβ̌ + λ(Ip − Ď)∂iβ̌

= [(Ip − Ď){XT b′′(Xβ̌)X + λIp}+ τĎ]∂iβ̌ − ∂iĎ{u(β̌)− (τ − λ)β̌} − (Ip − Ď)XT
i .

This is equivalent to

[(Ip − Ď){XT b′′(Xβ̌)X + λIp}+ τĎ]∂iβ̌ = ∂iĎm̌+ (Ip − Ď)XT
i . (17)

Noting that ∂iĎj = 0 for j ∈ Ac or Tj(y,X) ≤ t, (17) is re-expressed as


 (I|A| − ĎA)X

T
Ab

′′(Xβ̌)X

O

+

 λ(I|A| − ĎA) + τĎA O

O I|Ac|




 ∂iβ̌A

∂iβ̌Ac


=

 ∂iĎA O

O O

 m̌+

 (I|A| − ĎA)X
T
A,i

0

 ,
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which gives that

 ∂iβ̌A

∂iβ̌Ac

 =

 ǦA

{
∂iĎAm̌A + (I|A| − ĎA)X

T
A,i

}
0

 ,

where ǦA = [(I|A| − ĎA){XT
Ab

′′(Xβ̌)XA + λI|A|}+ τĎA]
−1. Using the above

quantities, it holds that

GDF =
n∑

i=1

b′′(θ̂1,i)Xi∂iβ̂ =
n∑

i=1

b′′(θ̂1,i)X
T
i,A∂iβ̌A

=
n∑

i=1

b′′(θ̂1,i)X
T
i,AǦA(∂iĎAm̌A) +

n∑
i=1

b′′(θ̂1,i)X
T
i,AǦA(I|A| − ĎA)Xi,A

= tr{ǦAĽ
T
Ab

′′(θ̂1)XA}+ tr{ǦA(I|A| − ĎA)X
T
Ab

′′(θ̂1)XA}, (18)

where ĽA is an n× |A| matrix whose (i, j)-element is (∂iĎj)m̌j.

3.2 Explicit formulas of ∂iTj(y,X)

For F -test screening, ∂iTj(y,X) in Proposition 1 can be analytically calcu-

lated as follows. It is convenient to re-express Tj(y,X) by

Tj(y,X) = (n− d)
yTPjy

yTQjy
,
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in which Qj = In − PZ − Pj and Pj = PX̃j
. Then,

∂Tj(y,X)

∂y
= 2(n− d)

{
Pjy

yTQjy
− (yTPjy)Qjy

(yTQjy)2

}

= 2(n− d)

 (X̃T
j y)

||X̃j ||2
X̃j

||y − PZy||2 −
(X̃T

j y)2

|X̃j ||2

−
(X̃T

j y)2

|X̃j ||2
{y − PZy −

(X̃T
j y)

||X̃j ||2
X̃j}

{||y − PZy||2 −
(X̃T

j y)2

|X̃j ||2
}2

 .(19)

Here, PZ = Z(ZTZ)−ZT . For Z = 1, i.e. covariate is intercept only, PZy =

ȳ1 where ȳ =
∑n

i=1 yi/n.

For score-test screening in generalized linear model, the first derivative of

Tj(y,X) with respect to yi is computed as follows.

∂iTj(y,X)

∂yi
= 2

uj∂iuj

vj
−
(
uj

vj

)2

∂ivj, (20)

where ∂iuj is the (i, j)-element of the n× p matrix

∂u = X − Z{ZT b′′(Zγ̂)Z}−1ZT b′′(Zγ̂)X,

∂ivj is the (i, j)-element of the n× p matrix

∂v = Z{ZT b′′(Zγ̂)Z}−1ZT b′′′(Zγ̂)(∂u ◦ ∂u),

with ◦ denoting the Hadamard product.
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3.3 Derivation of (20)

First, by operating ∂i on both sides of ZT{y − µ(Zγ̂)} = 0, we have that

0 = ∂i[Z
T{y− b′(Zγ̂)}] = ZT

i −ZT b′′(Zγ̂)Z∂iγ̂. By letting B = ZT b′′(Zγ̂)Z,

we have ∂iγ̂ = B−1ZT
i , or in matrix form,

∂T γ̂ = B−1ZT ,

which is the d × n matrix. Substituting into ∂iuj = Xij − XT
j b

′′(Zγ̂)Z∂iγ̂,

we have ∂u = X − ZB−1AT . Here A = Xb′′(Zγ̂)ZT , p× d matrix.

Next consider ∂ivj. Expressing vj by

vj =
n∑

a=1

b′′(Zaγ̂)X
2
ja − AjB

−1AT
j ,

in which Aj =
∑n

a=1 b
′(Zaγ̂)XajZa, the jth row of A, it holds that

∂ivj =
n∑

a=1

b′′′(Zaγ̂)X
2
ja{Za(∂iγ̂)} − 2

[
n∑

a=1

b′′′(Zaγ̂)Xaj{Za(∂iγ̂)}Za

]
B−1AT

j

+ AjB
−1

[
n∑

a=1

b′′′(Zaγ̂)Z
T
a Za{Za(∂iγ̂)}

]
B−1AT

j

=
n∑

a=1

{Za(∂iγ̂)}b′′′(Zaγ̂)(Xja − ZaB
−1AT

j )
2

=
n∑

a=1

(ZiB
−1ZT

a )b
′′′(Zaγ̂)(∂auj)

2,

which arrives at the desired expression.
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4 Deflated RSS due to winner’s curse effect

Consider the RSS from multiple regression after marginal association screen-

ing which uses all SNPs simultaneously in A. The F -test screening is roughly

equivalent to the screening based on the marginal association. Hence the fol-

lowing RSS after marginal screening at a cutoff value s2 ≥ 0 follows:

RSSA = ||y − PAy||2 = ||y||2 − cTAGAAcA, (21)

where PA = X̃AGAAX̃
T
A , GAA = (X̃T

AX̃A)
−1, cA = (cj)j∈A, cj = X̃T

j y, X̃j =

Q1Xj and A = {j ∈ M : c2j > s2}. Since, in most practical GWASs, the

threshold s is taken to be large so as to make the SNP discovery conservative,

|A| < n can be assumed. As a result, the above RSSA is computable and can

be used in evaluating a predictive power of the model usingXA. However, the

behavior of RSSA may differ from the behavior when no screening is applied,

i.e. sampling variability in selecting A invalidates the theory for RSSA with

deterministic A.

Assume that y ∼ N(µ, σ2
yIn). Then, c = XTy ∼ N(β,Σ), in which

β = XTµ and Σ = σ2
yX

TX. For simplicity, assume that XTX = Ip, i.e.

an orthogonal case, and hence GAA = I|A| for any A ⊂ M . Under this

assumption, c1, . . . , cp are mutually independent: c = XTy ∼ N(β, σ2
yIp).

Meanwhile we assume that σ2
y is known. In the case where A is deterministic,
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the expectation of RSSA is

E(RSSA) = E||y||2 − E(cTAGAAcA)

= E||y||2 − βT
AGAAβA − σ2

y|A|

= E||y||2 −
∑
j∈A

E(c2j)

= E||y||2 −
∑
j∈A

(β2
j + σ2

y).

On the other hand, when A is random, the expectation of RSSA conditional

on A = {j ∈ M : c2j > s2} is

E(RSSA | A) = E||y||2 − E(cTAGAAcA | A)

= E||y||2 − E(
∑
j,k∈M

Gjkcjck1{j,k∈A} | A)

= E||y||2 −
∑
j∈A

E(c2j | |cj| > s)

in which 1B represents the indicator function of a set B. Note that, at s = 0,

E(c2j | |cj| > s) = E(c2j). By letting g(s2) = logE(c2j | |cj| > s) = logE(c2j |
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c2j > s2), and setting u = s2, the first derivative of g(u) is

dg(u)

du
=

d

du
log

∫
x2>u

x2ϕσy(x− βj)dx∫
x2>u

ϕσy(x− βj)dx

=
−uϕσy(

√
u− βj)∫

x2>u
x2ϕσy(x− βj)dx

−
−ϕσy(

√
u− βj)∫

x2>u
ϕσy(x− βj)dx

>
−uϕσy(

√
u− βj)

u
∫
x2>u

ϕσy(x− βj)dx
−

−ϕσy(
√
u− βj)∫

x2>u
ϕσy(x− βj)dx

= 0,

and hence, g(u) is monotone increasing in u = s2, which is true for eg(u) =

E(c2j | |cj| > s). Consequently, the conditional expectation E(RSSA | A) is

smaller than the expectation of RSSA with any deterministic A. The larger u

is taken, the larger deflation in RSSA due to screening or the winner’s curse

effect appears.

5 Additional figures and tables from low her-

itability polygenic simulations

Here we present additional simulation results under the same polygenic mod-

els as that in main text except that lower heritabilities are assumed. To be

specific, we repeated quantitative trait simulations 20 times with the follow-

ing six models: Model P13, p0 = 100, h2 = 0.01; Model P14, p0 = 100,

h2 = 0.005; Model P15, p0 = 100, h2 = 0.001; Model P16, p0 = 200,

h2 = 0.01; Model P17, p0 = 200, h2 = 0.005; Model P18, p0 = 200,
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h2 = 0.001. We also repeated binary trait simulations 20 times with the

following six models: Model P19, p0 = 100, h2 = 0.01; Model P20, p0 = 100,

h2 = 0.005; Model P21, p0 = 100, h2 = 0.001; Model P22, p0 = 200,

h2 = 0.01; Model P23, p0 = 200, h2 = 0.005; Model P24, p0 = 200,

h2 = 0.001, which correspond to the models with liability generated from

Models P13,. . . ,P18. The results are given in Table S1 and Figures S2 and

S3.
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Figure S1: Illustration in a simple least-squares regression, y = β + ϵ; (a)
indicator function D̂(y) = 1(|y| ≤ t) with t = 3 (green dotted) and its
approximation by the adaptive lasso smooth-thresholding function Ď(y) =
min{1, (t/y)1+γ} with γ = 1 (black solid); (b) plots of 1−D

1−(1−τ)D
y, which is

the solution to the equation (1 − D)(β − y) + τDβ = 0 with respect to β
given τ > 0 and D. Indicator function, D = D̂(y) (Green dotted). (Note:
any τ gives an identical solution.) Smooth-thresholding D = Ď(y) for τ = 1
(black solid), 10 (red solid) and 20 (blue solid), respectively. When τ = 1,
the smooth-threshold estimator reduces to the adaptive lasso estimator.
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Figure S2: Prediction errors averaged over 20 simulation replicates for quan-
titative traits in polygenic scenarios (Models P13,...,P18). Black dashed line
(ST), average of mean prediction squared error for training data (PSEtr)
for predictive models from smooth-threshold multivariate genetic prediction
at each p-value threshold in − log10-scale (x-axis). Black dotted line (ST.P),
average of prediction squared error for test data (PSEte) for predictive model
from smooth-threshold multivariate genetic prediction trained on the train-
ing data. Red solid line (CpST), average of the proposed Cp-type criterion
(an unbiased estimator of the black dashed line).
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Figure S3: Prediction −2× loglikelihood averaged over 20 simulation repli-
cates for binary traits in polygenic scenarios (P19,...,P24). Black dashed line
(ST), average of mean −2× loglikelihood for training data (PSEtr) for pre-
dictive models from smooth-threshold multivariate genetic prediction at each
p-value threshold in − log10-scale (x-axis). Black dotted line (ST.P), average
of prediction −2× loglikelihood for test data (PSEte) for predictive model
from smooth-threshold multivariate genetic prediction trained on the train-
ing data. Red solid line (CpST), average of the proposed Cp-type criterion
(an approximate unbiased estimator of the black dashed line).
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Table S1: Simulations under low helitability polygenic scenarios, predictive
correlation coefficient (PCC), average AUC with standard deviation in paren-
thesis, and average number of true/false positive (TP/FP) results for three
methods in replicates. STMGP, smooth-threshold multivariate genetic pre-
diction; Enet, elastic net; GS, gene score. The best performing method is
emphasized in bold.
p0 h2 STMGP Lasso Enet GCTA GS

Quantitative traits (n = 5000)
100 0.01 PCC 0.02 (0.07) 0.01 (0.1) 0.01 (0.1) 0.02 (0.11) 0.03 (0.11)

TP/FP 0/15 1/87 1/86 - 16/8495
100 0.005 PCC 0 (0.06) 0.01 (0.1) 0.01 (0.1) 0.01 (0.11) 0.04 (0.13)

TP/FP 0/6 0/93 0/89 - 15/8547
100 0.001 PCC −0.01 (0.05) 0 (0.1) 0 (0.1) 0.01 (0.11) −0.02 (0.12)

TP/FP 0/9 0/91 0/81 - 7/5225
200 0.01 PCC 0.05 (0.1) 0.03 (0.11) 0.03 (0.1) 0.02 (0.11) 0.04 (0.11)

TP/FP 0/26 1/91 1/80 - 26/8190
200 0.005 PCC 0.04 (0.09) 0.01 (0.11) 0.01 (0.1) 0.02 (0.11) 0.02 (0.1)

TP/FP 0/20 0/98 0/80 - 38/12843
200 0.001 PCC 0.03 (0.09) 0.01 (0.12) 0 (0.1) 0.01 (0.11) 0.03 (0.1)

TP/FP 0/28 0/96 0/74 - 18/6052
Binary traits (n = 5000)

100 0.01 AUC 0.5 (0.03) 0.5 (0.02) 0.5 (0.03) 0.51 (0.04) 0.5 (0.03)
TP/FP 1/25 2/1297 5/1663 - 13/6195

100 0.005 AUC 0.5 (0.02) 0.51 (0.03) 0.51 (0.03) 0.49 (0.03) 0.5 (0.03)
TP/FP 0/57 3/2078 6/2952 - 16/9796

100 0.001 AUC 0.5 (0.01) 0.5 (0.03) 0.51 (0.03) 0.5 (0.04) 0.5 (0.04)
TP/FP 0/39 3/2166 4/2984 - 13/9234

200 0.01 AUC 0.5 (0.02) 0.5 (0.03) 0.5 (0.03) 0.51 (0.03) 0.52 (0.03)
TP/FP 1/88 7/2220 7/2100 - 15/4614

200 0.005 AUC 0.5 (0.03) 0.5 (0.03) 0.5 (0.03) 0.51 (0.03) 0.51 (0.03)
TP/FP 0/78 4/1114 8/2279 - 25/8293

200 0.001 AUC 0.5 (0.02) 0.51 (0.04) 0.51 (0.04) 0.5 (0.04) 0.51 (0.03)
TP/FP 0/36 7/2642 7/2557 - 21/7656
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