Supplemental Information

HDAC3 is a master regulator of mTEC development

Yael Goldfarb^{1,4}, Noam Kadouri^{1,4}, Ben Levi¹, Asaf Sela¹, Yonatan Herzig¹, Ronald

N Cohen², Anthony Hollenberg³ & Jakub Abramson^{1,5}

¹Department of Immunology, Weizmann Institute of Science, Rehovot 76100 Israel ²University of Chicago Medical Centre, Chicago, IL 60637, USA ³Division of Endocrinology, Beth Israel Deaconess Medical Centre, Boston, MA 02215, USA ⁴ Equal contributions

⁴ Equal contributions

⁵ Correspondence should be addressed to JA (jakub.abramson@weizmann.ac.il)

Figure S1. Related to Figure 1

Suppl. Figure 1, related to Figure 1. (a) Expression of genes encoding histone and protein deacetylases in mTEChi, mTEClo and cTECs, assessed by RNA sequencing and presented as fragments per kilobase of transcript per million mapped reads (FPKM). (b) qPCR analysis of Foxn1.Cre-mediated recombination efficacy of Hdac1^{fl/fl}, Hdac2^{fl/fl} and Hdac3^{fl/fl} loci. The analysis shows relative mRNA expression + SEM of the corresponding Hdacs in sorted mTEChi, mTECho and cTEC populations isolated from either Foxn1.Crenegative (WT; white) or Foxn1.Cre-positive (cKO, black) Hdac1^{fl/fl}, Hdac2^{fl/fl} and Hdac3^{fl/fl} mice. Data were normalized to Hprt mRNA levels. Asterisks indicate significant differences (**p < 0.001). (c) Total cell numbers of the TEC (upper panel) or mTEC (lower panels) compartments of WT Hdac1^{fl/fl}, Hdac2^{fl/fl} and Hdac3^{fl/fl} or their cKO counterparts. (d) Representative flow cytometric profile showing frequencies of individual TEC populations from Hdac3-cKO and mice and their WT littermates. The displayed cells were first gated on CD45⁻EpCAM⁺ cells (Fig. 1B) and then according to MHC-II or (e) CD80 and Ly51 expression to highlight medullary (mTEC) and cortical (cTEC) populations. Individual gates indicate cortical (cTECs) and medullary (mTECs) epithelial cells either high (mTEC^{hi}) or dim (mTEC^{lo}) for MHC-II and CD80 molecule expression. (f) Representative staining of frozen thymic sections (20× magnification) from WT and Hdac3-cKO mice. β5t staining (green) highlights cortical regions, DAPI staining (blue) highlights cell nuclei and is typically more intense in the cortex, Aire staining (red). (g) Representative staining of the thymic stroma (CD45-EpCAM+ cells) isolated from Hdac3cKO and WT littermates with viability dye and MHC-II.

Suppl. Figure 2, related to Figure 2. (a) Representative flow cytometric profile showing frequencies of CD4/CD8 splenocytes (upper panel) and CD4+CD25+Foxp3+ T_{reg} cells (lower panel) obtained from 5-week-old WT and *Hdac3*-cKO spleens, as well as respective graphs showing average frequencies + SEM of CD4+CD25+Foxp3+ T_{reg} cells isolated from WT (white) and *Hdac3*-cKO mice (black); Average values are calculated from three WT and three *Hdac3*-cKO animals, asterisks indicate significant differences (*p < 0.05). (b) Hematoxylin and eosin (H&E) staining of paraffin embedded sections of livers from aged WT or *Hdac3*-cKO mice representing the scoring system used for assessing immune cell infiltration.

Figure S3. Related to Figure 3

RANKL

cTEC

25.3%

EpCAM+

4.49%

Ly51

Suppl. Figure 3, related to Figure 3. (a) Representative flow cytometric profile showing frequencies of individual TEC populations from the mice indicated in Fig 3C. The displayed cells were first gated on CD45⁻EpCAM⁺ cells (Fig. 3C) and then analyzed according to CD80 and Ly51 expression to depict medullary (mTEC) and cortical (cTEC) populations. Individual gates indicate cortical (cTECs) and medullary (mTECs) epithelial cells either high (mTEC^{hi}) or dim (mTEC^{lo}) for CD80 (upper panel) and MHC-II (lower panel) molecule expression (b) Total cell numbers of the TEC and mTEC compartments of *Aly^{+/-}* and *Aly/Aly* mice. (c) Representative flow cytometric profiles of Fetal Thymic Organ Cultures (FTOCs) prepared from thymi isolated from E16.5-old WT, *Hdac3*-cKO and *Aly/Aly* embryos. The FTOCs were cultured for 7 days either in the absence (DMEM) or presence of soluble recombinant RANKL (1250ng/ml). Cells were first gated on CD45⁻EpCAM⁺ cells (upper panel) and were then gated according to Ly51 and MHC-II expression (lower panels). Individual gates indicate cortical (cTECs) and medullary (mTECs) epithelial cells either high (mTEC^{hi}) or dim (mTEC^{hi}) or dim (mTEC^{hi}).

Figure S4. Related to Figure 4

Ly51

Suppl. Figure 4, related to Figure 4. (a) qPCR analysis of *Foxn1*.Cre-mediated recombination efficacy of *N-CoR1*^{fl/fl} and *SMRT*^{fl/fl} loci. Shown is relative mRNA expression + SEM of WT *N-CoR1* and *SMRT* in sorted mTEC^{hi}, mTEC^{lo} and cTEC populations isolated from either *Foxn1*.Cre-negative (WT; white) or *Foxn1*.Cre-positive (cKO, black) *N-CoR1*^{fl/fl} or *SMRT*^{fl/fl} mice. Data were normalized to *Hprt* mRNA levels. Asterisks indicate significant differences (*p < 0.05, **p < 0.001). (b) Representative flow cytometric profiles of WT and *N-CoR1* or *SMRT* individual cKO. Cells were first gated on CD45⁻EpCAM⁺ cells (upper panel) and were then gated according to Ly51 and MHC-II expression (lower panels). Individual gates indicate cortical (cTECs) and medullary (mTECs) epithelial cells either high (mTEC^{hi}) or dim (mTEC^{lo}) for MHC-II molecule expression.

Figure S5. Related to Figure 5

Suppl. Figure 5, related to Figure 5. (a) Expression of genes encoding mTEC specific (left panel) or cTEC specific (right panel) *Hdac3*-dependent TFs in mTEC^{hi}, mTEC^{lo} and cTECs, assessed by RNA sequencing and presented as fragments per kilobase of transcript per million mapped reads (FPKM). (b) Quantitative Real-Time PCR analysis assessing expression of a number of Notch pathway related genes in sorted mTEC^{lo} and cTEC cells isolated from *Aly/+* (white) or *Aly/Aly* mice (black); data were normalized to *Hprt* mRNA levels and presented as percent of expression in WT cTEC; Asterisks indicate significant differences (*p < 0.05 and **p < 0.001).

Figure S6. Related to Figure 6

Suppl. Figure 6, related to Figure 6. (a) Thymi isolated from 10d old Rosa.flox-STOP-flox–NICD^{Foxn1.Cre+} (WT) and Rosa.flox-STOP-flox–NICD^{Foxn1.Cre+} (NICD o/ex) (b) Picture of 10d old Rosa.flox-STOP-flox–NICD^{Foxn1.Cre+} (WT) and Rosa.flox-STOP-flox–NICD^{Foxn1.Cre+} (WICD o/ex) mice showing skin phenotype caused by *Foxn1*-dependent Notch1 over-activation in keratinocytes and hair follicles. (c) Total cell numbers of the TEC and mTEC compartments of WT and NICD o/ex mice. (d) Representative flow cytometric profiles of dispersed thymic epithelial cell populations from 6-week-old *Hdac3*-WT, *Hdac3*-cKO, NICD-WT and NICD o/ex mice. Cells were first gated on CD45⁻ EpCAM⁺ cells (upper panels) and were then either gated according to Ly51 and UEA-1 expression (middle panels), or according to CD80 or MHC-II and Ly51 expression (lower panels). Individual gates indicate cortical (cTECs, Ly51⁺UEA-1⁻) and medullary (mTECs, Ly51^{neg/lo}UEA-1⁺) epithelial cells either high (mTEC^{hi}) or dim (mTEC^{lo}) for CD80 and MHC-II molecule expression. (e) Representative flow cytometric profiles of CD4/CD8 thymocyte populations from 6-week-old *Hdac3*-WT, *Hdac3*-cKO, NICD-WT and NICD o/ex mice flow cytometric profiles of CD4/CD8 thymocyte populations from 6-week-old *Hdac3*-WT, *Hdac3*-cKO, NICD-WT and NICD o/ex mice flow cytometric profiles of CD4/CD8 thymocyte populations from 6-week-old *Hdac3*-WT, *Hdac3*-cKO, NICD-WT and NICD o/ex mice.

Suppl. Table 1

Top50	transcriptic	on factors indu	ced by HDA	AC3 in mTE	Cs
Probe Set ID	Gene Symbol	mRNA Accession	WT I	HDAC3cKO WT	/KO ratio
10592705	Pou2f3	NM 011139	4162.5	332.2	12.5
10371578	Ascl1	NM_008553	7783.4	639.7	12.2
10543362	Fezf1	NM_028462	1084.6	101.3	10.7
10417620	Fezf2	NM 080433	2938.3	358.8	8.2
10485445	Fhf	NM_007914	2305.3	303.3	76
10462575	Linm	NM_023903	705.5	93.8	7.5
10344679	St18	NM 173868	805.4	114 0	7.0
10346168	Stat4	NM 011487	1110.2	174.0	6.4
10354777	Sath2	NM 1301/6	075.5	165 /	63
10540401	Jainz Lirrn 1	NM_009516	975.5	151.4	0.0
10340401	Enni Ear?	NM_019791	3066.0	522.0	5.0
10410231	L915 1 1#f1	NM 000492	267 2	152.0	5.9
1000500	Ull I Eavo1	NM_009462	007.2	100.0	5.0 4 E
10400504	FUXAI Thy15	NM_000209	931.0	207.3	4.0
10494072	I DX I O	NM_009323	220.7	49.4	4.5
10432032	var	NM_009504	1706.1	407.1	4.Z
10356593	Hesb	NM_019479	2549.2	612.4	4.2
10349993	Myog	NM_031189	427.3	105.4	4.1
10361023	Prox1	NM_008937	473.4	118.0	4.0
10571601	Pdlim3	NM_016798	3352.7	961.4	3.5
10549276	Bhlhe41	NM_024469	1069.6	310.2	3.4
10490755	Hnf4g	NM_013920	240.9	72.3	3.3
10358027	Elf3	NM_001163131	3618.6	1093.1	3.3
10350594	lvns1abp	NM_054102	7126.5	2200.4	3.2
10575763	Gan	NM_001081151	1027.6	323.1	3.2
10603116	Asb11	NM_026853	264.2	84.2	3.1
10510422	Casz1	NM_001159344	720.8	234.5	3.1
10562812	Spib	NM_019866	4599.3	1586.1	2.9
10515590	Kdm4a	NM_001161823	3296.2	1158.7	2.8
10352576	Esrrg	NM_011935	377.7	133.2	2.8
10404389	Irf4	NM_013674	472.4	167.2	2.8
10489961	Nfatc2	NM_010899	736.5	263.5	2.8
10569385	Ascl2	NM_008554	181.5	66.0	2.8
10419966	Zfhx2	NM 001039198	642.2	241.8	2.7
10473809	Sfpi1	NM 011355	1018.2	392.6	2.6
10569102	Irf7	NM_016850	3286.9	1270.4	2.6
10381172	Stat5a	NM_011488	1428.8	552 7	2.6
10514347	Cdkn2b	NM_007670	803.8	325.4	2.5
10451763	Sath1	NM_009122	1555.0	643 7	2.0
10422013	Klf12	NM_010636	512.9	214 1	2.1
10416800	lm07	NM 201529	734.4	307.4	2.4
10481304	Gfi1h	NM 008114	503.1	250.9	2.4
10545021	Mvd1	NM 010751	2558.0	1008.0	2.7
10340205	Tofon211	NM 023755	2000.9 805.7	358 5	2.0
10536492	Top	NM 207176	1970.6	940.4	2.2
10530403	100 Unflo	NM_207170	1079.0	162.0	2.2
10002907	niii id Ear2	NM_010110	2405.2	103.0	2.2
10303733	Eyiz Arnto	NIVI_UTUTTŐ	3490.3 E00.0	1002.0	2.2
10000292	AIIILZ	INIVI_UU/400	599.U	200.0 0765 0	2.1
10301828		NIVI_UTU828	5/55.6	2/05.0	2.1
10393266	roxj1	NIVI_008240	234.2	114.5	2.0
10404402	roxq1	NM_008239	6/1.0	342.6	2.0
10345016	ιςταρ20	NW_009334	105.6	55.3	1.9

Suppl. Table 1

Top50 t	ranscription	n factors repre	ssed by HD	DAC3 in mT	ECs
Probe Set ID	Gene Symbol	mRNA Accession	WT	HDAC3cKO W1	/KO ratio
10505911	Dmrta1	NM 175647	342.0	3388.1	0.10
10423971	Pkhd1l1	NM 138674	100.1	925.0	0.11
10608107	Uty	NM_009484	93.2	614.3	0.15
10394534	Osr1	NM_011859	220.5	1413.8	0.16
10607972	Kdm5d	NM_011419	95.6	477.6	0.20
10474295	Wt1	NM 144783	145.4	718.5	0.20
10514049	Nfib	NM_001113209	227.4	989.3	0.23
10497203	Hey1	NM_010423	1161.3	5043.3	0.23
10368556	Hey2	NM_013904	403.9	1713.6	0.24
10421950	Dach1	NM_007826	179.4	700.8	0.26
10453857	Gata6	NM_010258	299.5	1091.1	0.27
10538811	Prdm5	NM_027547	220.3	791.9	0.28
10544751	Hoxa2	NM_010451	240.7	864.2	0.28
10601519	Klhl4	NM_172781	64.8	213.7	0.30
10380660	Hoxb2	NM_134032	162.3	513.7	0.32
10481056	Notch1	NM_008714	2659.7	8390.4	0.32
10363901	Etv5	NM_023794	188.3	577.8	0.33
10381006	Thra	NM_178060	677.3	2050.6	0.33
10376060	Irf1	NM_008390	2390.3	7034.3	0.34
10509218	Zfp46	NM_009557	288.3	834.9	0.35
10438626	Etv5	NM_023794	102.7	292.4	0.35
10476939	Gm4979	NM_001142411	532.8	1493.1	0.36
10600093	Zfp185	NM_009549	146.2	408.6	0.36
10544756	Hoxa3	NM_010452	91.8	255.2	0.36
10481857	Pbx3	NM_016768	709.1	1959.4	0.36
10374727	Bcl11a	NM_016707	834.6	2223.0	0.38
10390328	Tbx21	NM_019507	278.8	728.5	0.38
10488459	Zfp442	NM_001177550	70.5	182.7	0.39
10511835	Fhl5	NM_021318	56.6	146.4	0.39
10401238	Zfp36l1	NM_007564	2137.8	5505.4	0.39
10497646	Phc3	NM_001165954	384.8	987.2	0.39
10509163	ld3	NM_008321	1055.4	2699.6	0.39
10369252	Sep10	NM_001024911	381.1	953.0	0.40
10366293	Csrp2	NM_007792	1103.1	2721.4	0.41
10375864	Agxt2l2	NM_028398	406.5	992.9	0.41
10476874	Pax1	NM_008780	1550.8	3755.1	0.41
10386394	Zfp867	NM_178417	86.1	207.9	0.41
10459905	Setbp1	NM_053099	716.4	1726.3	0.42
10536505	Met	NM_008591	266.5	641.5	0.42
10395409	Meox2	NM_008584	544.6	1310.2	0.42
10529875	Ldb2	NM_001077398	584.1	1384.3	0.42
10557211	Rbbp6	NM_011247	150.0	355.2	0.42
10540523	Lmcd1	NM_144799	318.3	751.3	0.42
10565204	Bnc1	NM_007562	227.4	535.6	0.42
10506050	INTIA Diale 1	NM_000000	/61.4	1/8/./	0.43
10441270	КIрк4 Zfa 20	NM_023663	410.2	938.6	0.44
10386219	∠īp39 Zfa⊊Z	INIM_011758	236.8	541.8	0.44
10445071	∠īp57	NIVI_001013745	250.5	569.5	0.44
10434806	Lpp		2612.7	5611.1	0.45
10462195	Nanki	INIVI_181404	302.3	0/1.0	0.45

Supplemental Experimental Information

Extended Materials and Methods:

Antibodies and reagents: Antibodies were purchased from the indicated manufacturers/providers: eBioscience: Fixable Viability Dye eFluor® 506 Vector laboritories: **Biotinylated UEA1 Biolegend**: APC, APC-Cy7 anti-mouse EpCAM (CD326) FITC, PerCP-Cy5.5 anti-mouse CD45 Streptavidin conjugated PE-Cy7 PE, Biotinylated anti-mouse Ly51 Pasific-Blue, APC anti-mouse I-A/I-E Pasific-Blue anti-mouse CD80 APC anti-mouse CD8α Pasific-Blue anti-mouse CD4 PE anti-mouse CD25 Alexa-Fluor 488 anti-mouse Foxp3 PE anti-rat IgG2c Jackson: Goat anti-Rabbit AF488 Goat anti-Rat Cy3 Strepavidin conjugated Cy2 Covance: Rabbit polyclonal antibody anti-Keratin 5 (PRB-160P) MBL: Rabbit anti-Mouse β5t Millipore: Rat anti-Aire mAb, clone 5H12 Recombinant mouse RANKL was produced by the Structural Proteomics Unit at the Weizmann Institute.

Cell preparation, flow cytometry and sorting:

A) Isolation of thymic stromal cells: Thymi were surgically removed from mice of different ages (2 – 16 weeks) and placed into cold 1X PBS supplemented with 2% Fetal Bovine Serum (FBS, Invitrogen). Thymi were trimmed of fat and connective tissues and minced into small pieces. Thymi were then disintegrated by enzymatic digestion using 0.5mg/ml Collagenase D (Roche #1088858), 1mg/ml Collagenase-Dispase cocktail (Roche #269638), 2% FBS and DNase in RPMI until complete digestion.

The single cell suspension was then filtered through 52micron mesh filter and resolved on a Percoll gradient. To this end, single cell suspension was washed and re-suspended in 1.115 g/ml isotonic Percoll (Sigma), topped by one layer of isotonic 1.065 g/ml Percoll and one layer of 1X PBS. Percoll gradient was centrifuged at 2700rpm at 4°C with no break, for 30 minutes. Stromal cells, found between the 1X PBS layer and the 1.065 g/ml Percoll layer, where collected and washed with MACS buffer (2% FBS with 5mM EDTA pH 8.0 in 1X PBS) followed by centrifugation at 1300rpm for 4 minutes at 4°C. Cells were then stained with the specific antibodies.

B) Isolation of thymocytes: Thymi were mechanically digested by squashing through a 40micron cell strainer. Thymocytes were collected into MACS buffer, filtered again through 52micron mesh filter, washed with MACS buffer and subjected to staining with the appropriate antibodies.

C) Isolation of splenocytes: Spleens were surgically removed from 4- to 9-week-old mice and placed into cold 2% FBS in 1X PBS. Spleens were then and trimmed of fat and connective tissues and then mechanically disintegrated through 40μ m mesh filter. Cells were collected and washed with MACS buffer. In order to remove red blood cells, pellets were resuspended in 1X ACK Lysing buffer (15mM Ammonium-Chloride, 1mM Potassium bicarbonate, 10μ M EDTA in DDW, pH 7.3) and incubated for 4 minutes in room temperature. After incubation, cell suspension was washed with MACS buffer, filtered through 52 micron mesh filter, washed again and then stained with the specific antibodies.

Immunostaining of cell suspensions: All cells were stained in 100µl MACS buffer and incubated with the specific fluorophore-labeled antibodies for 20-60 minutes at 4°C. Antibodies and dilutions are indicated under antibodies section.

For intracellular staining of Aire or Foxp3, cells labeled for membrane antigens were washed

and then fixed in Fixation/Permeabilization solution (eBioScience/ Biolegend, respectively), followed by Aire/anti-rat IgG2c-PE staining or Foxp3-Alexa 488 antibody staining.

Flow cytometry analysis, sorting and data processing:

Following staining, cells were washed, re-suspended in MACS buffer, filtered and analyzed either on the BD FACS Canto II analyzer or sorted in BD FACS Aria III cell sorter. All compensations were performed on cells labeled with single colors. Data analysis was done using FlowJo software.

Real-Time PCR analysis:

RNA was extracted from sorted cells using Trizol reagent and used for cDNA synthesis (Life Technologies) according to manufacturer's instructions and the entire amount of purified total RNA was then used for cDNA synthesis using the High-Capacity cDNA kit (Applied Biosystems) and random primers. The subsequent qPCR analysis was performed using the Fast SYBR Green Master Mix (Life technologies) or TaqMan Fast advanced master mix (Life technologies) for testing deletion efficacy. Differential expression was calculated according to the $\Delta\Delta$ CT method and the obtained data were then statistically evaluated (ANOVA test, P-value < 0.05) using StatView software (SAS Institute Inc.).

List of specific TaqMan assays for deletion efficacy:

All assays were purchased from ThermoScientific

Mouse strain	Assay ID
<i>Hdac1</i> -flox	Mm01610894_g1
Hdac2-flox	Mm01193629_m1
Hdac3-flox	Mm01258398_g1
<i>N-CoR1</i> -flox	Mm01333098_m1
SMRT-flox	Mm01198135_m1

List of specific primers for qPCR analysis:

Gene	Forward	Reverse
Rpl32	TTAAGCGAAACTGGCGGAAAC	TTGTTGCTCCCATAACCGATG
HPRT	TGAAGAGCTACTGTAATGATCAGTCAA	AGCAAGCTTGCAACCTTAACCA
Aire	GTACAGCCGCCTGCATAGC	CCCTTTCCGGGACTGGTT
Ins2	GACCCACAAGTGGCACAA	ATCTACAATGCCACGCTTCTG
Pcp4	TCTGAGCTGTTCTGTGGGACC	TCCGGCACTTTGTCTCTCACT

Mup4	CTGACCCTAGTCTGTATTCATGCA	CCATTCCCCATTAATCTTTTCTACATT
Dio1	TGCTACAAGGGTAAAGCTGGCCC	AGGCACGTGTCTAGGTGGAGTG
Zp2	GGGCTCTCCAGCCTGATCTACTTC	ATGCAGGGCAAGTCACAGAGC
Pld1	AGTGCAGTTGCTCCGATCTGC	TGGATGTAGGCAGCGTGGATGG
RANK	AGAGGCATTATGAGCATCTCG	GGAGTGCACTTAGAGGACAGGT
IkBa	ACGAGCAAATGGTGAAGGAG	ATGATTGCCAAGTGCAGGA
RelB	CCGGCACAGCTTTAACAACC	TCTTCAGGGAGCCAGCATTG
Fezf2	ACTCGGCCTGACAGCTGAACG	TGAGCATTGAACACCTTGCCGCAC
Ascl1	TGGACTTTGGAAGCAGGATGG	GAAGGTGCCCCTGTAGGTTG
Pou2f3	CCATGCCTGGAACAGTAACG	CCTGAACCAGGAGACGAAGG
Hey1	TGAGAAGCAGGGATCTGCTAAG	GCATTCCCGAAACCCCAAAC
Hey2	ACAGGGGGTAAAGGCTACTTTG	AGATGAGAGACAAGGCGCAC
Notch1	ACAGTGCAACCCCCTGTATG	AGTTGTTCCGTAGCTGGTCG
Notch2	GCCACTGCATGTTGCCTTAC	CATCGTTTACCTTGCCAGCC
Notch3	TTCCCCGTGTCGTAATGGTG	TCGAAGCCAGGAAGGCAAG
Pax1	CGGACGTTTATGGAGCAAAC	TCCATCTTGGGGGGAGTAGG
Prss16	TGGGACGTCAGAAAATCTCCC	TGATGGGACTGTCAAAGGGC
SpiB	ATCTCAGGCAGGTGCACGCAAG	GCGAGCCAACAACTCCTTGTGC
CD40	GAGTCAGACTAATGTCATCTGTGGTT	GGTTTCTTGACCACCTTTTTGA

Pathological evaluation and mice irradiation:

Histopathology, including analysis and scoring of immune infiltrates in various peripheral tissues, was performed under supervision of a certified animal pathologist. Briefly, scoring was assessed according to size and frequency of immune infiltrates, with scanning of 3 slices from each animal. Score 0 marked animals in which no infiltrates were found, while score 2.5 marked animals in which many large infiltrates were found (Suppl. Fig. 2B). Final score was calculated as the average of scoring performed by two independent people.

Hdac3-cKO and WT mice (5 to 6-week-old) were sub-lethally irradiated (~300 rad) in order to cause transient lymphopenia, as a means to aggravate autoimmunity. Mice were analyzed three months later for the presence of immune infiltrates in peripheral tissues, as described above.

Statistical analysis:

Two- or three-way analysis of variance (ANOVA) with a pre-determined significance level of 0.05 was conducted. Provided significant group differences, Fisher's protected least significant differences (Fisher's PLSD) contrasts were performed to compare specific pairs of

groups. Student's t-test was used for the comparison of only two groups to determine statistically significant differences with a pre-determined significance level of 0.05. The Mann-Whitney U-test for unpaired samples was used to determine the statistical significance of autoimmune infiltrates with a pre-determined significance level of 0.05. All statistical analyses were conducted using StatView software (SAS Institute, San Francisco, CA).