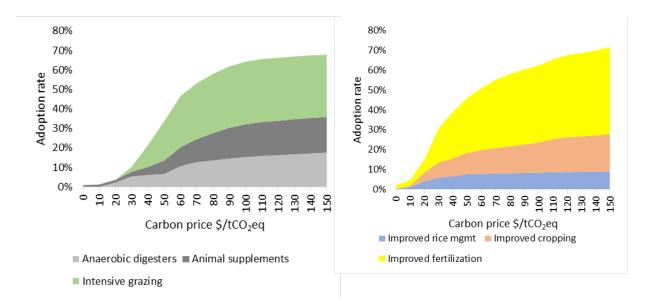

Frank et al. Supplementary Material - Structural change as a key component for agricultural non-CO₂ mitigation efforts



SUPPLEMENTARY FIGURES

Supplementary Figure 1. Development of agricultural non-CO2 emissions in the baseline scenario by GHG source.

Supplementary Figure 2. Development of agricultural non-CO2 emissions in the baseline scenario by region.

Supplementary Figure 3. Adoption rate of technical crop- and livestock mitigation options across carbon price scenarios in 2050.

SUPPLEMENTARY TABLES

Supplementary Table 1. Global average GHG reduction, impact on productivities and costs for technical mitigation options. Ranges across regions are presented in brackets.

Mitigation option	Non-CO ₂ reduction	Productivity changes	Annual costs
Antibiotics ^a	-2 (-6 to 0)%	+5%	6 (5 to 10) \$/TLU
Bovine somatotropin (bST) ^b	+5 (0 to +10)%	+12 (11 - 13)%	110 (100 to 240) \$/TLU
Propionate precursors	-13 (-10 to -19)%	+5%	41 (35 to 60) \$/TLU
Anti-methanogen vaccination	-10 %	+5%	9 (5 to 20) \$/TLU
Intensive grazing	-14 (-13 to -15)%	-11%	6 (5 to 20) \$/TLU
Large-scale complete-mix digesters	-85%	-	25 (5 to 55) \$/TLU

Large-scale covered lagoon	-85%	-	34 (10 to 70) \$/TLU
Large-scale fixed-film digester	-85%	-	34 (10 to 60) \$/TLU
Large-scale plug-flow digesters	-85%	-	38 (10 to 75) \$/TLU
Small-scale digester	-50%	-	7 (5 to 15) \$/TLU
Centralized digester ^c	-90%	-	8 (5 – 45) \$/TLU
No-till adoption	-13 (-2 to -22)%	-6 (-22 to +1)%	-23 (-85 to 0) \$/ha
Optimal N fertilization	+47 (-75 to +290)%	+167 (+1 to +775)%	16 (10 to 15) \$/ha
Split N fertilization	-3 (-11 to +1)%	+3 (0 to +29)%	1 \$/ha
Nitrification inhibitors	-7 (-2 to -23)%	+0.2 (-9 to +9))%	23 (15 to 35) \$/ha
100% residue incorporation	+26 (+4 to +52)%	+5 (0 to +21)%	5 (0 to 30) \$/ha
Improved rice management: various combinations of different water-, residue-, and fertilizer management	-100% to +300%	-33% to +47%	-16 to 123 \$/ha

TLU: livestock unit, an animal of 250 kg live weight. ^a Antibiotics: No application in Europe and Taiwan (Maron et al., 2013); ^b bST: No application in Australia, Canada, Europe, Japan, New Zealand (Dervilly-Pinel et al., 2014); ^c Centralized digesters are only applied in Europe;

SUPPLEMENTARY REFERENCES

- Dervilly-Pinel, G., S. Prévost, F. Monteau and B. Le Bizec (2014). "Analytical strategies to detect use of recombinant bovine somatotropin in food-producing animals." <u>TrAC Trends in Analytical Chemistry</u> 53(0): 1-10.
- Maron, D., T. Smith and K. Nachman (2013). "Restrictions on antimicrobial use in food animal production: an international regulatory and economic survey." <u>Globalization and Health</u> **9**(1): 48.