Bio-derived three-dimensional hierarchical carbon-graphene- TiO_2 as electrode for supercapacitors Lili Jiang¹, Zhifeng Ren*,² Shuo Chen², Qinyong Zhang¹, Xiong Lu³, Hongping Zhang⁴, and Guojiang Wan³ - 1.Key Laboratory of Fluid and Power Machinery of Ministry of Education, Center for Advanced Materials and Energy, School of Materials Science and Engineering, Xihua University, Chengdu 610039, China - 2.Department of Physics and TcSUH, University of Houston, 3201 Cullen Blvd Houston, Texas 77204, United states. - 3. Key Lab of Advanced Technologies of Materials, Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu 610031, Sichuan China - 4. School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan China - * Corresponding author, E-mail address: zren2@Central.UH.EDU ## Support information Figure S1 shows the EDX mapping image of BC-G-TiO₂. Figure S1a is TEM image of BC-G-TiO₂, while Figure S1b indicated the EDX mapping image of all C, Ti, and O elements. The distribution of C, Ti, and O are shown in Figure S1c, d, and e. These results prove that the TiO₂ nanoparticles are evenly distributed. Figure S1 (a) TEM images of BC-G-TiO₂; (b) EDX mapping of BC-G-TiO₂; (c), (d), and (e) EDX mapping of the distribution of elements C, Ti, and O.