Supplementary Material for:

Statistically derived asymmetric membrane potentials from α-helical and β-barrel membrane proteins

Julia Koehler Leman^{1,2}, Richard Bonneau^{1,2,3}, Martin Ulmschneider⁴

¹ Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, 10010 NY

² Department of Biology, Center for Genomics and Systems Biology, New York University, New York, 10003 NY

³ Department of Computer Science, New York University, New York, 10012 NY

⁴ Medical School, University of Exeter, Exeter EX1 2LU, UK

Supplementary Methods:

PDB codes of the 239 α -helical membrane proteins in our database:

1AFO, 1C17, 1FDM, 1H2S, 1JB0, 1KF6, 1KQF, 1M0K, 1M56, 1NKZ, 1OKC, 1ORS, 1P49, 1PPJ, 1RZH, 1U19, 1U7G, 1XIO, 1XRD, 1ZZA, 2A65, 2BHW, 2BL2, 2BS2, 2CFQ, 2FYU, 2H88, 2IH3, 2J58, 2J7A, 2JLN, 2K73, 2K9J, 2K9P, 2K9Y, 2KLU, 2KNC, 2KOG, 2KS9, 2KSD, 2KSE, 2KSF, 2L0J, 2L2T, 2L35, 2L9U, 2LCK, 2LOM, 2LOR, 2LOS, 2LOT, 2LP1, 2LZL, 2M67, 2M7G, 2MFR, 2MIC, 2MKV, 2MMU, 2MN6, 2MOF, 2MPN, 2MXB, 2N2A, 2N4X, 2NA8, 2NDJ, 2NQ2, 2NRG, 2QTS, 2R9R, 2VPZ, 2WDQ, 2WSW, 2XFN, 2XOV, 2YEV, 2Z73, 2ZXE, 3AR4, 3AYF, 3B9W, 3C02, 3CX5, 3D31, 3DDL, 3DH4, 3EGW, 3G6B, 3GIA, 3H90, 3K06, 3K3F, 3KLY, 3LDC, 3M73, 3MP7, 3NE2, 3NE5, 3NYM, 3PCV, 3QAP, 3QE7, 3RKO, 3RLF, 3RQW, 3S8G, 3TDS, 3TUI, 3TX3, 3UG9, 3VMA, 3VW7, 3W4T, 3WAJ, 3WFD, 3WMG, 3WO6, 3WU2, 3WXW, 3ZE3, 3ZOJ, 4A01, 4AL0, 4BEM, 4BVN, 4C7R, 4COF, 4DVE, 4DX5, 4ENE. 4EZC. 4G7V. 4GC0. 4GX0. 4HFI. 4HUQ. 4HYJ. 4I0U. 4IFF. 4IKV. 4J05. 4K1C. 4KPP. 4KYT. 4LP8, 4LXJ, 4M5B, 4MBS, 4MES, 4MND, 4MRS, 4N6H, 4N7W, 4NV5, 4O6M, 4O6Y, 4O93, 4OGQ, 4P02, 4P79, 4PD6, 4PGR, 4PHZ, 4PL0, 4Q4H, 4QND, 4QTN, 4QUV, 4R0C, 4RDQ, 4RI2, 4RNG, 4RP9, 4RYO, 4TQ3, 4U4T, 4U9N, 4UC1, 4UMW, 4UVM, 4V1G, 4WD8, 4WFE, 4X5M, 4X89, 4XES, 4XK8, 4XNV, 4XP9, 4XTL, 4XU4, 4YMK, 4YMU, 4YSX, 4Z3N, 4ZP0, 4ZR1, 4ZW9, 5A1S, 5AJI, 5AWW, 5AX0. 5AYN, 5AZB, 5B0W, 5B1A, 5BW8, 5BZ3, 5C6O, 5C6P, 5C78, 5CKR, 5DQQ, 5DWY, 5EDL, 5EIK, 5EKE, 5EZM, 5FXB, 5G28, 5G2C, 5G2D, 5HK1, 5HYA, 5I20, 5I32, 5ID3, 5IU4, 5IWS, 5J4I, 5KBW, 5KUK, 5SVK, 5SYT, 5T1A, 5TCX, 5TIS, 5U09

PDB codes of the 96 β -barrel membrane proteins in our database:

1A0T, 1EK9, 1FEP, 1KMO, 1P4T, 1QD6, 1QJ8, 1QJP, 1UUN, 1UYN, 1WP1, 1XKW, 1YC9, 2ERV, 2F1V, 2FGQ, 2GR8, 2GUF, 2HDI, 2LHF, 2LME, 2MAF, 2MPR, 2POR, 2VDF, 2W16, 2WJR, 2X27, 2X55, 2X9K, 2Y2X, 2YNK, 3AEH, 3BS0, 3CSL, 3DWO, 3DZM, 3EFM, 3FHH, 3FID, 3GP6, 3KVN, 3O44, 3PGU, 3PRN, 3QQ2, 3QRA, 3RFZ, 3SY7, 3SY9, 3SYB, 3SZV, 3T0S, 3V8X, 3VY8, 3W9T, 3X2R, 4AFK, 4B7O, 4C00, 4C69, 4CU4, 4D5B, 4E1S, 4E1T, 4FQE, 4FRX, 4FSO, 4FSP, 4FUV, 4GEY, 4K3C, 4K7R, 4MEE, 4MT4, 4N75, 4Q35, 4QL0, 4RDR, 4RJW, 4RL8, 4RLC, 4Y25, 5DL5, 5DL6, 5DL7, 5DL8, 5FOK, 5FP1, 5FR8, 5FVN, 5IUY, 5IVA, 5IXM, 5LDV, 7AHL

Supplementary Table 1:

Number of redundant membrane protein structures for different types of membrane bilayers. Counts were taken from the OPM website (<u>http://opm.phar.umich.edu/localization.php</u>).

membrane type ^a	pro/eu ^b	#prot ^c	#sol P ^d	#MPs ^e	$\pmb{\alpha}^{f}$	β^{g}
archaebacterial membrane	pro	94	7	87	87	-
bacterial gram-neg IM	pro	494	94	400	400	-
bacterial gram-neg OM	pro	227	31	196	7	189
bacterial gram-pos OM	pro	10	9	1	-	1
bacterial gram-pos plasma membrane	pro	144	47	97	97	-
sum ^h					591	190
cytoplasmic granule membrane	-	1	1	-	-	-
secreted	-	981	938	43	35	8 ⁱ
thylakoid membrane	-	42	14	28	28	-
undefined	-	118	113	5	3	2
viral membrane	-	91	64	27	27	-
sum					93	10
chloroplast IM	eu	2	2	-		-
chloroplast OM	eu	2	2	-	-	-
ER membrane	eu	209	118	91	91	-
endosome membrane	eu	56	47	9	9	-
eukaryotic plasma membrane	eu	845	427	418	418	-
golgi membrane	eu	35	35	-	-	-
lysosome membrane	eu	23	20	3	3	-
mitochondrial IM	eu	80	38	42	42	-
mitochondrial OM	eu	33	15	18	10	8
nuclear IM	eu	5	5	-	-	-
nuclear OM	eu	6	6	-	-	-
peroxisome membrane	eu	11	11	-	-	-
vacuole membrane	eu	28	18	10	10	-
vesicle membrane	eu	22	21	1	1	-
sum					584	8

^{*a*} – different membrane types; OM = outer membrane; IM = inner membrane

^b – eukaryotic or prokaryotic membrane type

^c – total number of proteins in that type of membrane according to the OPM database

^{*d*} – number of membrane-associated, but not transmembrane, proteins in that membrane type, i.e. these proteins are soluble ^{*e*} – number of membrane proteins in that membrane

f – how many of the membrane proteins in that membrane α -helical

 α – now many of the membrane proteins are α -nelical

g – how many of the membrane proteins are β -barrels

 h – sum of $\alpha\text{-helical}$ and $\beta\text{-barrels}$ for this class of membranes

 i – secreted β -barrel MPs are lysins for which the barrel consists of multiple chains

Supplementary Figure S1:

Amino acid occurrences for α -helical proteins, considering lipid-accessible and lipid-inaccessible residues separately. Counts were averaged over 3Å bins along the membrane normal.

Supplementary Table 2: Fitting parameters for total counts for α -helical proteins (see Supplementary Figure S1).

amino acid	function	а	b	С	d	e	f	g
HIS	dgaussian	45.9426	111.8477	-18.7311	6.6892	123.2780	15.8104	6.4044
PHE	dgaussian	84.0570	553.0258	-8.4815	8.8068	544.4241	11.1981	6.9751
TRP	dgaussian	30.6708	221.0713	-12.6161	6.5237	240.7302	12.3390	6.1409
TYR	dgaussian	85.9869	224.5648	-13.8022	6.5776	304.8907	13.5983	6.0264
ASN	dgaussian	100.7527	174.4990	-18.7619	5.6477	184.9904	17.7994	5.0672
GLN	dgaussian	80.0819	135.5682	-20.4137	7.0684	135.7772	18.1724	5.2534
SER	dgaussian	103.6965	327.8742	-13.1740	11.9214	307.0977	15.3144	7.9998
THR	dgaussian	128.8560	278.1981	-12.6311	9.8470	293.4502	12.3766	8.3310
ALA	gaussian	113.2601	779.1964	-0.4875	16.9416			
GLY	gaussian	47.6585	667.4080	0.1731	20.7867			
ILE	gaussian	103.4647	761.5255	-0.2855	13.0411			
LEU	gaussian	153.2482	1163.4179	-0.7183	14.1093			
VAL	gaussian	143.6374	723.0583	-0.4278	13.1572			
ARG	dgaussian	110.7870	434.7847	-18.6558	5.3030	141.9693	17.0798	3.0190
ASP	dgaussian	72.7777	182.3676	-25.4930	9.2611	205.5760	21.9673	6.5730
GLU	dgaussian	46.0040	279.2446	-27.4897	10.9056	187.4936	24.1953	11.8811
LYS	dgaussian	90.6900	359.0646	-20.8885	6.5083	103.0028	19.1817	4.7431
CYS	gaussian	34.9335	78.7127	0.4979	7.9379			
MET	gaussian	34.2900	254.8837	-0.4510	16.3663			
PRO	dgaussian	117.5398	199.7092	-19.4333	7.9062	275.4525	17.3003	6.5076

Supplementary Figure S2:

Amino acid occurrences for β -barrel proteins, considering lipid-accessible and lipid-inaccessible residues separately. Counts were averaged over 3Å bins along the membrane normal.

Supplementary Table 3: Fitting parameters for total counts for β -barrel proteins (see Supplementary Figure S2).

amino acid	function	а	b	С	d	е	f	g
HIS	dgaussian	8.2031	46.0225	-12.3860	3.4095	51.5503	13.1994	8.4881
PHE	dgaussian	13.5052	165.4294	-12.8650	2.6833	132.6475	3.1051	13.6012
TRP	dgaussian	11.3502	88.6820	-11.2581	4.2830	78.5192	9.8533	5.3468
TYR	dgaussian	34.1224	172.0264	-9.7808	-3.2421	225.0861	6.9283	6.8709
ASN	dgaussian	26.2122	127.4087	-14.3430	5.2280	184.9654	15.1838	11.5617
GLN	dgaussian	28.9380	71.9467	-14.7575	4.4234	115.9907	9.9989	10.0199
SER	dgaussian	40.6483	156.7841	-8.8986	7.0755	222.5365	13.7595	9.2514
THR	dgaussian	27.1084	124.4057	-11.8590	6.3334	182.7258	11.6498	12.3484
ALA	gaussian	49.8598	230.6812	2.8176	14.0284			
GLY	gaussian	11.7367	345.2370	4.0755	17.1572			
ILE	gaussian	27.5348	104.5430	-0.6901	13.5805			
LEU	gaussian	50.5373	298.7281	-2.2565	9.9534			
VAL	gaussian	38.1035	217.5332	-0.3895	10.2598			
ARG	dgaussian	27.0737	84.7174	-13.1119	5.4989	151.5175	11.9019	10.9967
ASP	dgaussian	33.2685	131.1659	-14.3802	6.8511	251.8404	17.2180	8.4928
GLU	dgaussian	25.0175	71.0348	-13.0992	7.7363	106.7172	13.3075	10.4151
LYS	dgaussian	18.1530	111.8809	-11.9914	6.6853	146.4727	18.8114	8.6094
CYS	gaussian	4.0620	-3.0216	8.8661	11.8573			
MET	gaussian	6.1678	46.1242	3.2229	13.4698			
PRO	dgaussian	14.8918	111.5543	-13.5661	5.0001	57.7180	17.3520	13.2913

Supplementary Table 4: Fitting parameters for implicit membrane potential for α -helical proteins and lipid accessible residues (see Figure 2).

amino acid	function	а	b	С	d	е	f	g	residual
HIS	dgaussian	0.644	0.379	-0.864	4.032	0.309	-3.647	10.069	0.041
PHE	dgaussian	1.900	-114.339	2.124	-556.724	112.093	-0.120	803.289	0.132
TRP	dgaussian	0.669	-0.488	-14.624	6.484	-0.570	16.959	8.314	0.135
TYR	dgaussian	-432.871	433.008	-23.494	1319.332	0.370	0.289	4.741	0.141
ASN	dgaussian	-226.712	0.274	1.306	3.618	227.260	1.558	453.920	0.213
GLN	dgaussian	-0.802	-0.246	14.552	4.608	1.783	3.644	21.540	0.327
SER	dgaussian	0.019	-0.052	-7.004	3.275	-1143217.656	1225.720	-92.327	0.110
THR	dgaussian	0.005	-0.041	-14.337	7.356	-1143217.656	1225.720	-92.327	0.082
ALA	dgaussian	-0.225	-0.288	1.987	10.600	-0.037	-0.603	0.786	0.091
GLY	dgaussian	4.162	-115.350	0.028	-429.832	110.873	-7.915	883.013	0.281
ILE	dgaussian	-1.199	0.945	-22.213	19.828	1.069	27.319	14.420	0.059
LEU	dgaussian	-0.764	0.242	-22.321	7.317	0.109	15.827	5.989	0.055
VAL	dgaussian	304.943	-0.056	1.562	-5.057	-305.432	-0.408	414.496	0.111
ARG	dgaussian	-0.151	1.371	0.492	6.720	0.528	19.864	11.672	0.323
ASP	dgaussian	0.631	0.502	-6.791	3.694	0.472	4.589	5.246	0.237
GLU	dgaussian	0.127	0.171	-2.667	3.262	0.853	0.108	9.902	0.317
LYS	dgaussian	0.004	1.489	1.154	7.412	0.404	16.750	3.356	0.279
CYS	dgaussian	17.414	-0.760	1.001	-10.268	-16.018	-0.723	-188.362	0.207
MET	dgaussian	2.191	-113.071	-2.883	-594.978	111.104	2.494	778.256	0.119
PRO	dgaussian	-0.169	0.074	0.236	-4.892	0.583	-4.213	-14.948	0.164

Supplementary Table 5:

Fitting parameters for implicit membrane potential for α -helical proteins and lipid inaccessible residues (see Figure 2).

amino acid	function	а	b	С	d	е	f	g	residual
HIS	dgaussian	0.287	0.560	-6.816	6.725	0.233	5.254	8.905	0.215
PHE	dgaussian	0.012	-0.035	21.620	0.582	-0.294	3.191	10.943	0.207
TRP	poly4d	0.000	0.000	-0.001	-0.016	0.558	-	-	0.539
TYR	dgaussian	-0.178	0.556	-2.669	12.983	0.191	-4.527	2.596	0.382
ASN	dgaussian	0.096	0.302	7.629	3.717	0.285	-7.442	-6.288	0.135
GLN	dgaussian	0.059	0.816	-0.722	10.498	-0.232	5.819	-2.551	0.150
SER	dgaussian	-0.154	0.053	-1.588	4.882	-1143217.656	1225.720	-92.327	0.254
THR	dgaussian	-0.179	0.129	-14.087	5.644	-1143217.656	1225.720	-92.327	0.432
ALA	dgaussian	1070.802	-1071.379	1.351	-832.579	-1143217.656	1225.720	-92.327	0.229
GLY	dgaussian	2584.551	-2585.073	0.967	-1315.588	-1143217.656	1225.720	-92.327	0.407
ILE	dgaussian	-0.101	-0.035	21.620	0.582	-0.343	-2.398	8.978	0.395
LEU	dgaussian	-0.178	-0.376	-2.325	18.002	-1143217.656	1225.720	-92.327	0.087
VAL	dgaussian	-0.195	-0.035	21.620	0.582	-0.211	-3.281	7.380	0.440
ARG	dgaussian	-0.418	1.098	10.002	7.174	1.410	-4.749	5.593	0.724
ASP	dgaussian	-0.016	0.520	-9.198	5.595	1.103	4.249	5.842	0.637
GLU	dgaussian	0.228	0.687	-2.003	6.339	0.226	11.252	1.890	0.338
LYS	dgaussian	-1.412	0.525	2.994	1.709	2.642	2.018	15.301	0.707
CYS	dgaussian	1826.803	-0.035	21.620	0.582	-1826.134	-0.184	690.803	0.353
MET	dgaussian	676.000	-0.035	21.620	0.582	-675.991	0.443	504.612	0.255
PRO	dgaussian	-0.096	0.567	5.524	3.684	0.406	-5.893	-8.485	0.269

Supplementary Table 6: Fitting parameters for implicit membrane potential for β -barrel proteins and lipid accessible residues (see Figure 2).

amino acid	function	а	b	с	d	е	f	g	residual
HIS	dgaussian	-543.314	1.281	-2.018	3.081	544.076	-49.107	1520.739	0.513
PHE	dgaussian	-0.571	-0.136	6.414	-3.884	0.756	18.227	15.817	0.113
TRP	dgaussian	2268.535	1.011	-1.128	4.095	-2268.798	-1.895	-826.541	0.483
TYR	dgaussian	0.331	-0.730	-9.552	6.838	-0.951	7.359	5.304	0.296
ASN	dgaussian	-141.565	141.560	-6.652	320.865	1.051	-2.304	5.443	0.288
GLN	dgaussian	-0.155	0.408	-18.012	27.657	0.881	-3.437	4.754	0.386
SER	dgaussian	-0.487	0.599	-17.677	20.128	0.775	1.105	-4.328	0.106
THR	dgaussian	-4.835	115.484	-10.740	368.628	-110.555	15.296	-872.002	0.304
ALA	dgaussian	-1.328	1.342	15.826	10.693	1.167	-14.487	7.966	0.147
GLY	dgaussian	-126.817	-0.331	1.144	-4.359	126.700	0.856	281.733	0.140
ILE	poly4d	0.000	0.000	0.004	0.021	-0.195	-	-	0.362
LEU	dgaussian	-2.126	2.523	22.202	16.175	1.437	-17.468	9.936	0.317
VAL	dgaussian	-0.762	1.295	17.600	7.458	1.328	-29.431	12.095	0.267
ARG	dgaussian	-0.251	0.899	-7.883	7.971	0.648	0.861	3.973	0.507
ASP	dgaussian	-0.524	0.492	-15.813	3.457	1.951	-1.495	6.420	0.236
GLU	dgaussian	-12999.587	13006.329	-1525.155	47781.041	1.171	-1.646	7.672	0.817
LYS	dgaussian	-0.616	1.104	-5.885	12.758	1.499	-0.598	4.393	0.676
CYS	-	-	-	-	-	-	-	-	-
MET	poly4d	0.000	0.000	0.002	-0.007	0.649	-	-	0.538
PRO	dgaussian	-0.143	0.617	7.577	12.261	0.226	1.922	5.407	0.139

Supplementary Table 7:

Fitting parameters for implicit membrane potential for β -barrel proteins and lipid inaccessible residues (see Figure 2).

amino acid	function	а	b	с	d	e	f	g	residual
HIS	dgaussian	0.623	0.284	8.639	-2.752	0.423	-3.317	4.590	0.400
PHE	dgaussian	0.308	-0.470	-7.232	12.398	0.454	-4.604	5.944	0.110
TRP	poly4d	0.000	0.000	0.000	0.005	0.884	-	-	0.512
TYR	dgaussian	0.681	-0.649	6.671	18.437	-0.119	-10.570	2.213	0.080
ASN	dgaussian	-5.284	116.313	0.107	347.070	-111.165	36.742	-2262.392	0.322
GLN	dgaussian	37.569	-0.158	9.557	-4.053	-37.546	-9.669	-405.899	0.184
SER	dgaussian	-0.015	-0.379	12.327	9.330	-0.410	-7.446	6.651	0.163
THR	dgaussian	-0.108	-0.180	10.886	4.677	-0.281	-8.918	4.673	0.100
ALA	dgaussian	2.222	110.312	-0.144	814.458	-112.775	8.550	-538.112	0.246
GLY	dgaussian	-0.029	-0.621	-3.255	20.295	0.212	-10.070	3.782	0.083
ILE	dgaussian	0.197	0.218	-10.009	1.849	0.110	-6.568	7.466	0.260
LEU	dgaussian	2.279	110.370	-25.815	2914.210	-112.718	-0.068	-471.648	0.530
VAL	dgaussian	2.298	110.388	-5.320	-17095.160	-112.698	2.350	-359.740	0.426
ARG	dgaussian	-0.066	-0.134	-4.760	-7.661	-1143217.656	1225.720	-92.327	0.334
ASP	dgaussian	-598.378	0.171	9.882	1.778	598.245	-1.780	560.561	0.140
GLU	dgaussian	2.784	-113.807	-1.779	-560.687	110.981	3.888	806.902	0.176
LYS	dgaussian	-0.111	0.507	10.255	3.227	0.358	2.911	-3.717	0.192
CYS	-	-	-	-	-	-	-	-	-
MET	dgaussian	0.889	-0.327	-1.472	3.873	-0.379	9.121	4.385	0.324
PRO	dgaussian	0.036	0.629	-2.988	5.123	0.513	10.726	5.112	0.238

Supplementary Figure S3:

Free energy scores for the native position (position (0, 0) in Figure 6) of each protein in the database: The scores for the lipidaccessible residues is shown in orange, for lipid-inaccessible residues in blue and the total scores are shown as '-'. (A) Scores for all 239 proteins in our α -helical membrane protein database. Lipid-inaccessible residues contribute on average about 19.57% to the total score – these residues are most often buried in the protein interior. (B) Scores for all 96 proteins in our β -barrel database. Lipidinaccessible residues contribute on average 40.70% to the overall score. Since lipid-inaccessible residues mostly face the aqueous pore in β -barrels, the contribution of pore-facing residues to overall insertion and stability is considerably higher than was previously suggested by Liang et al.¹. However, there is excellent agreement between the values suggested for OmpLA (gray box): Liang et al. estimated that lipid-facing contribute 16.67% to overall insertion, while our predicted value for OmpLA is 16.95%.

Supplementary Figure S4:

Histograms for TM span lengths (left) and tilt angles (right) for α -helical (top) and β -barrel (bottom) membrane proteins derived from our databases show that statistics agree well with previous analyses. When deriving statistics on the α -helical and β -barrel databases, we also investigated TM span lengths and tilt angles for individual secondary structure elements (as opposed to tilt angles of entire proteins). For the α -helical bundles in our database, TM spans were on average 26.0 \pm 7.9 residues in length with an average tilt angle of 22.9 \pm 12.7°. These values are in excellent agreement with previous analyses^{2,3}. For the β -barrels in our database, TM spans were on average 12.9 \pm 4.1 residues in length with an average tilt angle of 37.3 \pm 9.6°. From these values, an average membrane thickness can be estimated, which would be 35.9 Å for the thickness derived from α -helical MPs (assuming a 1.5 Å rise per residue) and 36.0 Å for the thickness derived from β -barrel MPs (assuming a 3.5 Å rise per residue). These values, however, are derived under the assumption that the entire TM span is located in the membrane, which doesn't always hold true, especially not for many outer membrane β -barrels that have long strands sticking into the oligosaccharide region of the LPS outer membrane leaflet⁴.

References:

- 1. Lin, M., Gessmann, D., Naveed, H. & Liang, J. Outer membrane protein folding and topology from a computational transfer free energy scale. *J. Am. Chem. Soc.* **138**, 2592–2601 (2016).
- 2. Ulmschneider, M. B., Sansom, M. S. P. & Di Nola, A. Properties of integral membrane protein structures: Derivation of an implicit membrane potential. *Proteins Struct. Funct. Genet.* **59**, 252–265 (2005).
- 3. Bowie, J. U. Helix packing in membrane proteins. J. Mol. Biol. 272, 780–789 (1997).
- 4. Pavlova, A., Hwang, H., Lundquist, K., Balusek, C. & Gumbart, J. C. Living on the edge: Simulations of bacterial outer-membrane proteins. (2016). doi:10.1016/j.bbamem.2016.01.020