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5.1 Parameter regimes for the surrogate function
For brevity, we define

θ = exp(r(t+ b)).

We will assume that r > 0 and b ≥ 0, so that θ as a function of non-negative
t goes from some value greater than or equal to 1 up to infinity. Also note
that dθ/dt = rθ and dθ−1/dt = −rθ−1.

The surrogate function is defined as

f(c,m, r, b; t)

= c log((1 + θ−1)/2) +m log((1− θ−1)/2)

= c log(1 + θ−1) +m log(1− θ−1)− (c+m) log 2.

As t goes to infinity, this has limit −(c+m) log 2.
Taking the derivative,

df/dt = −crθ−1/(1 + θ−1) +mrθ−1/(1− θ−1)

=
−cr
θ + 1

+
mr

θ − 1

= r(−cθ + c+mθ +m)/(θ2 − 1)

= r((m− c)θ +m+ c)/(θ2 − 1).

So the first derivative is zero when (using subscript zero to denote maxi-
mum) θ0 = (c + m)/(c − m); this gives a finite real solution for t when
c > m. This is equivalent to

t0 = −b+ log[(c+m)/(c−m)]/r. (3)

For a more complete characterization of f , we also take the second
derivative:

d2f

dt2
= r2θ

(c−m)(θ2 + 1)− 2(c+m)θ

(θ2 − 1)2

This is zero when

exp(r(t+ b)) = θ =
(
√
c±
√
m)

2

c−m ;

or

t = −b+
1

r
log

(
(
√
c±
√
m)

2

c−m

)
; (4)

We also note that c > m implies c−m > (
√
c−
√
m)2, meaning that there

can never be two positive solutions. With this we distinguish between four
regimes:

1. one negative and one positive root of (4), f(t) diverges at t = 0: b = 0,
c > m and exp(br) ≤ (

√
c+
√
m)2)/(c−m)
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Figure S1: The various regimes of a likelihood function for the BSM parame-
terized by branch length.

2. one negative and one positive root of (4), f(t) finite for all t ≥ 0:
b > 0, c > m and exp(br) ≤ (

√
c+
√
m)2)/(c−m)

3. two negative solutions of (4): c > m and exp(br) > (
√
c+
√
m)2/(c−

m)

4. no real solutions of (4): c < m.

This determines the shape of the likelihood curve up to the sign of the
second derivative (Fig. S1) for positive t. Only in cases (1) and (2) are there
inflection points. Only in cases (1) and (4) is the limit as t goes to zero in-
finite. In (3) and (4) the ML t is zero and infinity, respectively. Assuming
a tree with finite branch lengths, note that the probability of having some-
thing in (4) goes to zero as sequences become long.

5.2 lcfit2 parameterization
An alternative parameterization to (1) can be useful. The “lcfit2” param-
eterization is in terms of c, m, the branch length t0 giving the maximum
value of the surrogate, and the second derivative at t0. We assume that we
are in parameter regime 1 or 2, so c > m.

We can re-express everything in terms of the difference from the ML
branch length t0 and eliminate b. Let t̃ be t − t0 and θ̃ = exp(r(t − t0)).
Note that θ = θ̃θ0, so we can re-express f in these terms, recalling that
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θ0 = (c+m)/(c−m):

f(c,m, r, t0; t̃)

= c log
(

1 + (θ̃θ0)−1
)

+m log
(

1− (θ̃θ0)−1
)

− (c+m) log 2

= c log

(
1 +

c−m
θ̃(c+m)

)
+m log

(
1− c−m

θ̃(c+m)

)
− (c+m) log 2

= c log

(
c+m+

c−m
θ̃

)
+m log

(
c+m− c−m

θ̃

)
− (c+m) log(c+m)− (c+m) log 2

= c log

(
c+m+

c−m
θ̃

)
+m log

(
c+m− c−m

θ̃

)
− (c+m) log(2(c+m))

Also recall

f ′(t) =
d

dt
f(c,m, r, b; t) =

−cr
θ + 1

+
mr

θ − 1

f ′′(t) =
d2

dt2
f(c,m, r, b; t) =

cr2θ

(θ + 1)2
+
−mr2θ
(θ − 1)2

.

At the ML point t0, note

θ0 + 1 =
2c

c−m θ0 − 1 =
2m

c−m
so

θ0
(θ0 + 1)2

=
(c−m)(c+m)

4c2
;

θ0
(θ0 − 1)2

=
(c−m)(c+m)

4m2

and

f ′′(t0) = r2
(

(c−m)(c+m)

4c
− (c−m)(c+m)

4m

)
= r2

(c−m)(c+m)

4

(
1

c
− 1

m

)
= r2

(c−m)(c+m)

4

(m− c
cm

)
= −r2 (c−m)2(c+m)

4cm
.

So

r =
2

c−m

√
−f ′′(t0)cm

c+m
.
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5.3 Sampling from the PDF corresponding to the sur-
rogate function
In the context of a Bayesian Monte Carlo algorithm, we can use the fit likeli-
hood curve to quickly draw proposals from an approximate unnormalized
posterior, which is simply the lcfit likelihood function times a prior. For
example, we have found this useful in the context of sts. To draw such
proposals, we can first use the procedure detailed above to fit an approx-
imate likelihood curve and then use rejection sampling to draw from the
approximate posterior.

Rejection sampling generates samples from an arbitrary distribution
h(x) using a proposal distribution g(x) subject only to the constraint that
h(x) ≤ cg(x) for some constant c > 0. Because the surrogate likelihood
function is bounded above, we can use the prior as a proposal distribu-
tion. We now specialize to the case of an exponential prior. Let h(t) be the
unnormalized posterior on branch lengths

h(t) = λe−λtF (t)

where F (t) = ef(t) is the surrogate likelihood function for some set of fit
parameters. Let g(t) be the PDF of the exponential distribution with rate λ,

g(t) = λe−λt.

Clearly the ratio h(t)/g(t) = F (t), so we choose c to be the maximum
likelihood value

c = F (t0)

where t0 is the mode of the surrogate function and can be computed di-
rectly using (2). Then we have the ratio

h(t)

cg(t)
=

F (t)

F (t0)
≤ 1

which satisfies the requirement for rejection sampling.
The procedure for generating a sample from the distribution begins by

drawing a branch length t from the exponential distribution with rate λ
and a value u from the uniform distribution over (0, 1]. If

u ≤ h(t)

cg(t)
=

F (t)

F (t0)

the sample is accepted; otherwise, the sample is rejected and the procedure
is repeated. We note that eliminating the prior g(t) from the acceptance cal-
culation allows sampling from the distribution even when the maximum
lcfit branch length is infinite (i.e., regime 4), since the asymptotic maximum
likelihood can still be calculated.

Although this rejection sampling scheme can require many tries for cer-
tain curve shapes, individual evaluations of the surrogate function are very
cheap so we have not found this to be a problem in practice.

S4



0

20

40

60

0.00 0.02 0.04 0.06
branch length

pr
ob

ab
ilit

y 
de

ns
ity

distribution
empirical
gamma (97.3%)
weibull (94.3%)
lcfit (96.9%)

run.404.resumed 569−88

(a) Good

0

100

200

300

400

500

0.000 0.003 0.006 0.009 0.012
branch length

pr
ob

ab
ilit

y 
de

ns
ity

distribution
empirical
gamma (89.1%)
weibull (92.3%)
lcfit (74.8%)

run.404.resumed 671−497

(b) Bad

Figure S2: (a) An example good fit and (b) the worst fit of the surrogate func-
tion to empirical log-likelihood curves from the Aberer et al. (2016) data, pre-
sented as approximate posterior distributions given an exponential prior. Also
shown are histograms of sampled branch lengths obtained from the ExaBayes
MCMC sample after discarding burn-in. Expected acceptance rates of the cor-
responding lcfit, gamma, and Weibull distributions are also given.

5.4 Fitting methods
We have found a combination of two fitting methods to be useful. The first,
which we call lcfit4, simply applies standard nonlinear least-squares opti-
mization to find parameters for f using a sample of true values from the
original likelihood function. The second, which we call lcfit2, uses the pa-
rameterization in terms of c,m, t0, and f ′′(t0). In this case we simply set the
t0 and f ′′(t0) values to their values in the original function, then use least-
squares fitting for c and m with a useful set of sampled points (inspired
by Aberer et al. (2016); see below for details). For lcfit4, we first try un-
constrained optimization using the Levenberg-Marquardt (L-M) algorithm
(Levenberg, 1944; Marquardt, 1963) implemented in the GNU Scientific Li-
brary version 1.16 (Galassi and Gough, 2003). If the L-M algorithm fails
to converge to a valid model, we fall back on constrained optimization us-
ing the SLSQP algorithm (Kraft, 1994) implemented in NLopt version 2.4.2
(Johnson, 2014). We have found that trying the L-M algorithm first yields
better results in the case of four-parameter optimization than using SLSQP
alone. For lcfit2, we use only the SLSQP algorithm, as we did not find the
L-M step necessary to achieve good results. These two methods are used
together as described below.

Next we describe the fitting process for these two methods in more de-
tail. If one only wants a rough estimate of the likelihood curve, one can
simply take a number of pre-chosen points, such as 0.05, 0.1, 0.5, and 1, cal-
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culate the corresponding likelihoods, and fit parameters of the curve using
least squares as previously described. On the other hand, if a more accurate
likelihood curve is desired, one can use an iterative algorithm to obtain an
improved estimate of the likelihood curve around the maximum likelihood
branch length. The idea of this process is to sample until the points enclose
the maximum likelihood point. We will call this method “lcfit4 fitting”.

First, we fit the initial model:

1. Initialize with four values of t, and corresponding log likelihoods `.

2. If the ` values are monotonically increasing, add a point: t = 2 max(t),
with corresponding log likelihood.

3. If the ` values are monotonically decreasing, add a point: t = min(t)/10
with corresponding log-likelihood.

4. Repeat until the points enclose a maximum.

lcfit expects a minimum branch length tmin and maximum branch length
tmax to consider.1 Some phylogenetic libraries and applications enforce
their own values. When such values are not available, we have found that
a small but nonzero value for tmin (such as 10−6) works well. For tmax,
choose a significantly large value at which the log-likelihood function can
be expected to be nearly flat; we used 20. Note that excessively large values
of tmax can affect numerical stability. The current implementation uses 0.1,
0.5, 1.0, and tmax as the first four starting points for t. tmax is included
in these points to ensure that the fitted model exhibits good asymptotic
performance. The procedure from the previous section is then used to find
a starting point of BSM parameters for the optimization algorithm.

We then enter the second phase, which is repeated until the estimate of
the ML branch length changes less than some fixed number. The first step
is to find the maximum-likelihood branch length using (2) for the current
BSM parameter estimates, and add it to the set of sampled values. The
model is then re-fit using the optimization algorithm.

When the ML branch length is non-zero, we have found this method to
be less robust to corner cases than we desired. Thus we have developed
an alternative means of fitting, which we call “lcfit2 fitting”, that requires
finding the ML value and the second derivative. As described in the main
text and derived below, one can re-express the surrogate function in terms
of the c and m parameters from before, along with the ML branch length
t0 of the surrogate function and its second derivative there. Then, one can
simply set the t0 and f ′′(t0) values of the surrogate function equal to the
values found on the original function.

The procedure to find c and m for the lcfit2 surrogate after plugging in
t0 and f ′′(t0) is as follows. Starting with a default c and m,

1A reviewer has pointed out that likelihoods can be calculated directly at t = 0 and t = +∞
because transition matrices take a simple form in both of these cases. This is an excellent point,
however calculating these likelihoods would require knowing the partial likelihoods on either side
of the edge, which are not available using the design of our software library. Indeed, our library
assumes that only the likelihood function be available for evaluation at requested points. In any
case, we also require a bounded range such that the log likelihood maximum is either in the range
or less than tmin so that we can attempt to find the maximum using numerical methods. An
alternative library design may be able to use log likelihood values at these extreme points.
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1. calculate the inflection point ti for the model.

2. define ∆ = |t0 − ti|.
3. let our four t values for fitting be {t0 − ∆, t0, t0 + ∆, tmax}; if either

of t0 ±∆ are outside the interval (tmin, tmax) then replace them with
half the distance from t0 to the interval boundary.

4. fit c and m using these four points.

5. repeat steps 1–4 once more to refine the model.

Our complete fitting routine, using both lcfit2 and lcfit4, is as follows.
First, maximize the original function on the set of non-negative t values.
The maximum is found using Brent’s method (Brent, 1973). Next, esti-
mate the first and second derivatives at the maximum using fourth-order
finite difference approximations (Davis and Polonsky, 1964, Table 25.2). If
the first derivative is nonzero, use lcfit4 fitting, which we have found con-
verges quickly in this case. If not, then use lcfit2 fitting. All least-squares
fitting is done using the following gradient of f :

df/dc = log

(
1

2
(1 + θ−1)

)
df/dm = log

(
1

2
(1− θ−1)

)
df/dr = (b+ t)

m(θ + 1)− c(θ − 1)

θ2 − 1

df/db = r
(m− c)θ + c+m

θ2 − 1

We have also found it very advantageous to standardize the height of
the surrogate function by subtracting the peak of the original function, so
that we are fitting a curve that has maximum value zero. This leaves the
asymptote free to vary.

Bad fits of the surrogate to the empirical log-likelihood function, such
as the one seen in Fig. S2, generally appear to occur when the maximum-
likelihood branch length t0 is very short, and the second derivative there
is negative (thus a positive inflection point ti exists). These characteristics
place the curve in regime 1 or 2 and are fit using the lcfit2 strategy. It is
possible that these bad fits result from a deficiency in the fitting procedure.
Recall that one of the points sampled during the lcfit2 procedure is to the
left of t0, ideally t0 −∆ where ∆ = |t0 − ti|. However, when t0 −∆ is less
than tmin, the point (tmin + t0)/2 is used instead. When t0 is very small
(i.e. close to tmin), this point is still very near the peak, and may result in
overfitting the peak at the expense of the rest of the curve.

5.5 Extended methods: benchmarking
We evaluated the performance of lcfit on both real and simulated data.

We used nestly (McCoy et al., 2012) and the Bio++ 2.2.0 suite (Dutheil
et al., 2006; Dutheil and Boussau, 2008) of C++ libraries and binaries to per-
form simulation. We began by generating random 10-leaf bifurcating trees
using the function rtree from the R package ape (Paradis et al., 2004),
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with branch lengths sampled from an exponential distribution. We gener-
ated one set of trees with the exponential mean µ = 0.1, and another set
with µ = 0.01. Each set contains 10 independent replicates. For each tree,
we generated a 1000-site sequence alignment with bppseqgen from the
Bio++ suite using an evolutionary model from Table S1 and a rate distri-
bution of either uniform or discretized gamma (n = 4, α = 0.2). We then
optimized the branch lengths of each tree with bppml. The evolutionary
model, tree, and alignment were then fed into our lcfit-compare util-
ity. lcfit-compare loops over each branch of the tree and uses Bio++
to get an empirical log-likelihood function parameterized by the branch
length. It then fits an lcfit model to the empirical log-likelihood function,
and both the empirical and surrogate log-likelihood functions are sampled
in the neighborhood of the peak.

We estimated the Kullback-Leibler (KL) divergence from the original
likelihood function to the surrogate function by sampling these functions
over 501 evenly spaced points in the neighborhood of the peak. This neigh-
borhood is found as the region where the log-likelihood curve is above 10%
of its peak value, bounded by tmin and tmax. Probabilities are computed
from the relative log-likelihoods as

Pi =
exp(`(ti)− `(t0))∑
j [exp(`(tj)− `(t0))]

and
Qi =

exp(f(ti)− f(t0))∑
j [exp(f(tj)− f(t0))]

where t0 is the maximum-likelihood branch length. The KL divergence
from the discretized model distribution Q to the discretized empirical dis-
tribution P is then calculated as

DKL(P‖Q) =
∑
i

Pi log2

(
Pi
Qi

)
.

Instructions for running these simulations and the analysis can be found
in the sims subdirectory of the lcfit repository at https://github.com/
matsengrp/lcfit.

We also tested the performance of lcfit on real data, in the manner of
Aberer et al. (2016), and compared lcfit to the gamma and Weibull proposal
distributions described in their work. To accomplish this, we incorporated
lcfit fitting directly into the ExaBayes code used to generate data for their
analysis. We then compared these results to the ExaBayes results, which
were shared with us by André Aberer. Our fork of ExaBayes 1.3.1 used for
these experiments can be found at https://github.com/matsengrp/
exabayes-1.3.1-lcfit. We tested 12 out of the 14 DNA datasets they
examined. One of the datasets not included in our analysis (dat-354) was
missing gamma and Weibull distribution fit parameters in the data pro-
vided for some edges of the tree. The other dataset not included (dat-125)
yielded a few invalid estimated acceptance rates (i.e., much greater than
100%). We attributed these errors to a numerical stability issue in the es-
timated acceptance rate calculations, and chose to omit the dataset from
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the analysis entirely rather than present a subset of its results. The remain-
der of the datasets contain between 24 and 500 taxa, with sequence lengths
ranging from approximately 100 to 30,000 bases. We reproduced the esti-
mated acceptance rate calculations for gamma and Weibull proposals us-
ing the method described in their supplemental material, then applied the
same method to lcfit proposals. We then used the aggregated results to
produce Fig. 2 (analogous to Fig. 2 in Aberer et al. (2016)).

5.6 Relationship to entropy
Here we establish a simple relationship between the ML value of the surro-
gate function and Shannon entropy of a corresponding sequence alignment
under the BSM model. This is not used in practice, but is simply provided
here for interest. Continuing in the setting of the lcfit2 parameterization
and with that same notation,

θ̃−1 = exp(−rt̃)

such that

f(t̃) = c log (c+m+ ν) +m log (c+m− ν)− (c+m) log(2(c+m))

where
ν :=

c−m
θ̃

.

At t = t0, θ̃ = 1, so the corresponding ν0 = c−m. Also,

f(t0) = c log(c+m+ ν0) +m log(c+m− ν0)

− (c+m) log(2(c+m))

= c log(2c) +m log(2m)− (c+m) log(2(c+m))

= c log c+m logm− (c+m) log(c+m).

Shannon entropy is defined as

S := −
∑
i

pi log pi.

Since the (c + m) sites in the model are i.i.d., consider that the probabil-
ity of observing a substitution at a single site is p = m/(c + m), and the
probability of observing no substitution is 1− p = c/(c+m). Then

S = − [(1− p) log(1− p) + p log p]

= −
[

c

c+m
log

(
c

c+m

)
+

m

c+m
log

(
m

c+m

)]
= − 1

c+m
[c log c+m logm− (c+m) log(c+m)]

= − 1

c+m
f(t0).
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Figure S3: Mean effective sample size (ESS) using lcfit-based and prior-based
proposals in the sequential Monte Carlo algorithm. The mean ESS is calculated
using a combination of data sets of different sizes (10, 50, 100 sequences) and
particle populations of varying sizes (750, 3750, 7500, 37500, and 75000 parti-
cles). The linear regression line relating both proposals is superimposed on the
scatter plot and has a slope of about 7.

5.7 sts experiment
Figures S3 and S4 justify the claims in the Discussion concerning the im-
provement of using lcfit in sts versus drawing from the prior. For details
on sts, we refer the reader to Fourment et al. (2017).
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Figure S4: Effective sample size (ESS) per minute using lcfit-based and prior-
based proposals in the sequential Monte Carlo algorithm. These results are for
five data sets containing 100 sequences and 750, 3750, 7500, 37500, and 75000
particles.

Name Data Type Parameters Reference
Binary-1.0 binary κ = 1 see caption
Binary-4.0 binary κ = 4 see caption
JC DNA (Jukes and Cantor, 1969)
HKY85 DNA κ = 2.0, equal base freqs (Hasegawa et al., 1985)
JTT92 amino acid (Jones et al., 1992)
LG08 amino acid (Le and Gascuel, 2008)
YN98 codon κ = 2.0, ω = 5.0 (Yang and Nielsen, 1998)
Nonhomogeneous DNA 7 edges with T92 model,

6 edges with TN93 model,
5 edges with GTR

Tamura (1992); Tamura and
Nei (1993); Tavaré (1986)

Table S1: The models used in Fig. 3. The binary model is parametrized as
in the Bio++ documentation, such that a binary model with parameter κ has
stationary distribution (1/(κ+ 1), κ/(κ+ 1)).
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