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Derivation of the differential equations for MASCO

We here derive the change in marginal lineage state probability over time, Pt(Li = li, T ), from the ESCO
interval contribution differential equations governing the change in the probability of a configuration K and the
coalescent history T . We denote with K \ i a configuration for lineages 1, 2, . . . , i− 1, i+ 1, . . . , n. Pt(Li = li, T )
denotes the probability of lineage i being in state li at time t joint with the probability of the coalescent history
T up to time t. We can express Pt(Li = li, T ) and its derivative as:

P (Li = li, T ) =
∑
K\i

Pt(K, T )

d

dt
Pt(Li = li, T ) =

d

dt

∑
K\i

Pt(K, T ) =
∑
K\i

d

dt
Pt(K, T )

with
∑
K\i denoting the summation over all configurations except fixing the state of lineage i. Using Eqn. 2

from the main text, we can express d
dtP (Li = li, T ) as:

d

dt
Pt(Li = li, T ) =

∑
K\i

n∑
j=1

m∑
a=1

(
µaljPt(Kja, T )− µljaPt(Kjlj , T )

)
−
∑
K\i

( m∑
a=1

λa

(
ka(K)

2

)
Pt(K, T )

)

with Kja being the configuration K \ j and lineage j being in a. We can now split the cases where j 6= i and
where j = i to obtain:

d

dt
Pt(Li = li, T ) =

∑
K\i

n∑
j=1
j 6=i

m∑
a=1

(
µaljPt(Kja, T )− µljaPt(Kjlj , T )

)

+

n∑
K\i

m∑
a=1

(
µaliPt(Kia, T )− µliaPt(Kili , T )

)

−
∑
K\i

( m∑
a=1

λa

(
ka(K)

2

)
Pt(K, T )

)

We note that
∑
K\i
∑n

j 6=i
j=1

∑m
a=1 µaljPt(Kja, T ) is the rate to leave via migration any configuration on lineages

1, 2, . . . , i − 1, i + 1, . . . , n. Further,
∑
K\i
∑n
j 6=i
∑m
a=1 µljaPt(Kjlj , T ) is the rate to enter via migration any

configuration on lineages 1, 2, . . . , i− 1, i+ 1, . . . , n. Since the net change of probability mass due to migration
for lineages other than i has to always be 0, we can write:

d

dt
Pt(Li = li, T ) =

n∑
K\i

m∑
a=1

(
µaliPt(Kia, T )− µliaPt(Kili , T )

)
−
∑
K\i

( m∑
a=1

λa

(
ka(K)

2

)
Pt(K, T )

)

Using the fact that
∑n
K\i Pt(Kia, T ) = Pt(Li = a, T ), we get:

d

dt
Pt(Li = li, T ) =

m∑
a=1

(
µaliPt(Li = a, T )− µliaPt(Li = li, T )

)
−
∑
K\i

( m∑
a=1

λa

(
ka(K)

2

)
Pt(K, T )

)
(1)
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The first term denotes the reallocation of probability mass due to migration. The second term describes the loss
of probability mass due to the coalescent process, with the rate at which coalescent events occur.

Following the main text, ka(K) denotes the number of lineages in state a for configuration K. We next express(
ka(K)

2

)
by using the probabilities of lineages j and k being in state a conditional on the configuration K: we

have ka(K) =
∑n
j=1 Pt(Lj = a|K, T ), with Pt(Lj = a|K, T ) = 1 if Lj = a in configuration K, and 0 otherwise.

We can write the term
(
ka(K)

2

)
, i.e. the number of pairs of lineages that are both in state a, as sums over these

conditional probabilities. Imagine a matrix with n rows and n columns, with entries Pt(Lj = a, Lk = a|K, T ) at

position (j, k). If we want to get the number of pairs of lineages (j, k) that are both in state a (i.e.
(
ka(K)

2

)
), we

can count every element in the upper triangle for which both lineages are in state a (i.e.
∑n
j=1

∑n
k=j+1 Pt(Lj =

a, Lk = a|K, T )). We can now write this double summation as 1
2

∑n
j=1

∑n
k 6=j , since the matrix is symmetric.

This leads to:∑
K\i

( m∑
a=1

λa

(
ka(K)

2

)
Pt(K, T )

)
=

∑
K\i

m∑
a=1

λa
2

n∑
j=1

n∑
k=1
k 6=j

Pt(Lj = a, Lk = a|K, T )Pt(K, T )

(2)

We now write the above term explicitly for cases involving lineage i and cases not involving lineage i and write:

∑
K\i

( m∑
a=1

λa

(
ka(K)

2

)
Pt(K, T )

)
=

m∑
a=1

λa
2

n∑
j=1
j 6=i

n∑
k=1
k 6=j,i

∑
K\i

Pt(Lj = a, Lk = a|K, T )Pt(K, T )

+

m∑
a=1

λa
2

n∑
k=1
k 6=i

∑
K\i

Pt(Li = a, Lk = a|K, T )Pt(K, T )

+

m∑
a=1

λa
2

n∑
j=1
j 6=i

∑
K\i

Pt(Lj = a, Li = a|K, T )Pt(K, T )

=

m∑
a=1

λa
2

n∑
j=1
j 6=i

n∑
k=1
k 6=j,i

∑
K\i

Pt(Lj = a, Lk = a|K, T )Pt(K, T )

+

m∑
a=1

λa

n∑
k=1
k 6=i

∑
K\i

Pt(Li = a, Lk = a|K, T )Pt(K, T )

(3)

We now derive an expression for
∑
K\i Pt(Lj = a, Lk = a|K, T )Pt(K, T ):∑

K\i

Pt(Lj = a, Lk = a|K, T )Pt(K, T ) =
∑
K\i

Pt(Lj = a, Lk = a,K, T )

= Pt(Lj = a, Lk = a, Li = li, T )

= Pt(Lj = a, Lk = a, Li = li|T )Pt(T ) (4)

Next, we can assume that the state of lineages j, k and i, with j 6= k 6= i, are mutually independent, i.e. we
assume that:

Pt(Lj = lj , Lk = lk, Li = li|T )
MASCO

= Pt(Li = li|T )Pt(Lj = lj |T )Pt(Lk = lk|T )

This allows us to simplify equation 4, for j, k 6= i, to:

Pt(Lj = a, Lk = a, Li = li|T )Pt(T ) = Pt(Lj = a|T )Pt(Lk = a|T )Pt(Li = li, T ) (5)
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We can now plug equation 5 into equation 3 to receive:

∑
K\i

( m∑
a=1

λa

(
ka(K)

2

)
Pt(K, T )

)
= Pt(Li = li, T )

m∑
a=1

λa
2

n∑
j=1
j 6=i

n∑
k=1
k 6=j,i

Pt(Lj = a|T )Pt(Lk = a|T )

+

m∑
a=1

λa

n∑
k=1
k 6=i

Pt(Li = a, Lk = a, Li = li|T )Pt(T )

= Pt(Li = li, T )

m∑
a=1

λa
2

n∑
j=1
j 6=i

n∑
k=1
k 6=j,i

Pt(Lj = a|T )Pt(Lk = a|T )

+λli

n∑
k=1
k 6=i

Pt(Li = li, Lk = a|T )Pt(T )

= Pt(Li = li, T )

m∑
a=1

λa
2

n∑
j=1
j 6=i

n∑
k=1
k 6=j,i

Pt(Lj = a|T )Pt(Lk = a|T )

+Pt(Li = li, T )λli

n∑
k=1
k 6=i

Pt(Lk = li|T )

using the MASCO approximation for the last line. Plugging the above expression for∑
K\i

(∑m
a=1

λa

2

(
ka(K)

2

)
Pt(K, T )

)
into equation 1 yields:

d

dt
Pt(Li = li, T ) =

m∑
a=1

(
µaliPt(Li = a, T )− µliaPt(Li = li, T )

)

− Pt(Li = li, T )

m∑
a=1

λa
2

n∑
j=1
j 6=i

n∑
k=1
k 6=j,i

Pt(Lj = a|T )Pt(Lk = a|T )

− Pt(Li = li, T )λli

n∑
k=1
k 6=i

Pt(Lk = li|T ) (6)

The first term now describes how the marginal probability of lineage i in state li changes due to migration. The
second line denotes the rate at which coalescent events happen that do not directly involve lineage i and the
third line denotes the rate at which coalescent events involving lineage i happen. The reason why we need to
consider events that do not involve lineage i is that we seek to calculate the probability of lineages i in state li
jointly with the full coalescent history T .
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Derivation of the differential equations for SISCO

The differential equation describing the change in probability over time using the approximation of state in-
dependence can be derived from equation 6. In addition to the MASCO assumption, we now further assume

Pt(Li = b|T )
SISCO

= Pt(Li = b). The differential equations for Pt(Li = b, T ), i = 1, . . . ,m under MASCO become
differential equation for Pt(T ) and Pt(Li = b), i = 1, . . . ,m when using the SISCO approximation. We will now
first show how to derive Pt(T ) and then how to derive Pt(Li = b), i = 1, . . . ,m. Since under SISCO,

m∑
b=1

Pt(Li = b, T ) = Pt(T )

m∑
b=1

Pt(Li = b) = Pt(T ),

where the second equality follows from
∑m
b=1 Pt(Li = b) = 1, we obtain,

d

dt
Pt(T ) =

d

dt

m∑
b=1

Pt(Li = b, T ).

From the MASCO equation 6 with additionally using the SISCO approximation, we obtain,

d

dt
Pt(T ) =

d

dt

m∑
b=1

Pt(Li = b, T ) =

m∑
b=1

m∑
a=1

(
µabPt(Li = a, T )− µbaPt(Li = b, T )

)

−
m∑
b=1

Pt(Li = b, T )

m∑
a=1

λa
2

n∑
j=1
j 6=i

n∑
k=1
k 6=j,i

Pt(Lj = a)Pt(Lk = a)

−
m∑
b=1

Pt(Li = b, T )λb

n∑
k=1
k 6=i

Pt(Lk = b)

=

m∑
b=1

m∑
a=1

(
µabPt(Li = a, T )− µbaPt(Li = b, T )

)

−Pt(T )

m∑
a=1

λa
2

n∑
j=1
j 6=i

n∑
k=1
k 6=j,i

Pt(Lj = a)Pt(Lk = a)

−Pt(T )

m∑
a=1

λa

n∑
k=1
k 6=i

Pt(Li = a)Pt(Lk = a)

=

m∑
b=1

m∑
a=1

(
µabPt(Li = a, T )− µbaPt(Li = b, T )

)

−Pt(T )

m∑
a=1

λa
2

n∑
j=1

n∑
k=1
k 6=j,i

Pt(Lj = a)Pt(Lk = a)

−Pt(T )

m∑
a=1

λa
2

n∑
j=1
j 6=i

Pt(Li = a)Pt(Lj = a)

=

m∑
b=1

m∑
a=1

(
µabPt(Li = a, T )− µbaPt(Li = b, T )

)
(= 0)

−Pt(T )

m∑
a=1

λa
2

n∑
j=1

n∑
k=1
k 6=j

Pt(Lj = a)Pt(Lk = a) (7)

= −Pt(T )

m∑
a=1

λa
2

n∑
j=1

n∑
k=1
k 6=j

Pt(Lj = a)Pt(Lk = a) (8)
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We now derive how lineage move between states, i.e. an expression for the differential equation of Pt(Li = b).
Under the SISCO approximation, we can write:

d

dt

m∑
b=1

Pt(Li = b, T ) =

m∑
b=1

Pt(Li = b)
d

dt
Pt(T ) + Pt(T )

m∑
b=1

d

dt
Pt(Li = b)

Since
∑m
b=1 Pt(Li = b) = 1, the above expression simplifies to:

d

dt

m∑
b=1

Pt(Li = b, T ) = Pt(T )

m∑
b=1

d

dt
Pt(Li = b) +

d

dt
Pt(T )

and can be transformed to,

0 =

m∑
b=1

d

dt
Pt(Li = b) =

1

Pt(T )

(
d

dt

m∑
b=1

Pt(Li = b, T )− d

dt
Pt(T )

)

The right hand side is equal to 1
Pt(T ) (eq 7− eq 8). Since we aim to get an expression for d

dtPt(Li = b), we write:

m∑
b=1

d

dt
Pt(Li = b) =

1

Pt(T )

m∑
b=1

m∑
a=1

(
µabPt(Li = a, T )− µbaPt(Li = b, T )

)

=

m∑
b=1

m∑
a=1

(
µabPt(Li = a|T )− µbaPt(Li = b|T )

)

=

m∑
b=1

m∑
a=1

(
µabPt(Li = a)− µbaPt(Li = b)

)

Hence, we can calculate d
dtPt(Li = b) using the following equation,

d

dt
Pt(Li = b) =

m∑
a=1

(
µabPt(Li = a)− µbaPt(Li = b)

)
. (9)
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Figure S1: Inferred asymmetry of migration and coalescent rates with confidence intervals using
MASCO. Here we show the inferred coalescent (upper row) and migration (lower row) rate ratios under
different conditions. In the first column, the coalescent rate ratios (x-axis) are varied while the migration rates
ratios are kept constant. In the second column, the migration rate ratios (x-axis) are varied, while the
coalescent rate ratios are kept constant. The red line indicates where the estimates should lie. The black point
represent the mean estimated ratios and the green lines represent the 95% confidence intervals of these
estimates
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Figure S2: Inferred asymmetry of migration and coalescent rates with confidence intervals using
SISCO. Here we show the inferred coalescent (upper row) and migration (lower row) rate ratios under
different conditions. In the first column, the coalescent rate ratios (x-axis) are varied while the migration rates
ratios are kept constant. In the second column, the migration rate ratios (x-axis) are varied, while the
coalescent rate ratios are kept constant. The red line indicates where the estimates should lie. The black point
represent the mean estimated ratios and the orange lines represent the 95% confidence intervals of these
estimates
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Table S1: Sample locations and associated regions for the here used AIV sequences

location region number of samples

Alaska Alaska 18
Saskatchewan North West 1
North Dakota North West 1
British Columbia North West 5
Alberta North West 4
Washington North West 3
California South West 21
Mexico South West 3
Mississippi Center 7
Missouri Center 6
Nebraska Center 2
Texas Center 2
Delaware East Coast 7
Delaware Bay East Coast 14
New Jersey East Coast 13
Maryland East Coast 2
Pennsylvania East Coast 1
North Carolina East Coast 3
Illinois North Mid East 3
Ohio North Mid East 4
Wisconsin North Mid East 4
New Brunswick North East 8
Nova Scotia North East 1
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