Impact of recombination on the base composition of Bacteria and Archaea

Supplementary Material

Louis-Marie Bobay and Howard Ochman

Table of content:

Figure S1. Comparison of nucleotide changes introduced by recombination and mutation at each codon position.

Figure S2. Equilibrium GC content relative to actual GC content.

Figure S3. Equilibrium GC content inferred from new polymorphisms relative to actual GC content at each codon position.

Figure S4. Impact of recombination and mutations on genomic nucleotide composition and codon usage.

Figure S5. Distribution of average bootstrap values for the species phylogenies.

Figure S6. Nucleotide bias of recent recombinant alleles and recent mutations.

Table S1. Description of species and core genome information.

Table S2. Identifying recombinant alleles in simulated data sets.

Figure S1. Comparison of nucleotide changes introduced by recombination and mutation at each codon position. Cumulative proportions of SNPs at first codon positions (GC1), second codon positions (GC2), third codon positions (GC3), and four-fold degenerate sites (GC4_{fold}) for each of the six types of nucleotide changes, as calculated for: (**A**) all alleles introduced by recombination (dark green); (**B**) new alleles introduced recombination (pale green); (**C**) all alleles introduced by mutations (dark red); (**D**) new alleles introduced by mutations (pale red). Values were normalized by the GC-contents at each codon position for each species prior to calculating overall proportions, and species with fewer than 50 polymorphic sites for a given category of alleles were excluded.

Figure S3. Equilibrium GC content inferred from new polymorphisms relative to actual GC content at each codon position. *GCeq* is the expected GC-content at first codon positions (GC1), second codon positions (GC2), third codon positions (GC3), and fourfold degenerate sites (GC4_{fold}) for a given species when based on new alleles introduced by recombination (pale green), new alleles introduced by mutations (pale red), all alleles introduced by recombination (dark green) and all alleles introduced by mutations (dark red). *GCeq* values were normalized by the GC-contents at each codon position for each species, and species with fewer than 50 polymorphic sites for any given category of allele were excluded. Points in shaded area below the diagonal denote species that are GC-rich relative to the input of polymorphisms by recombination or mutation.

Figure S4. Impact of recombination and mutations on genomic nucleotide composition and codon usage. The metric *B* represents the number of changes from G or C to A or T relative to the number of changes from A or T to G or C at four-fold degenerate sites. B > 1 indicates an enrichment towards A and T, and B < 1 indicates an enrichment toward G and C. Values shown are for all alleles introduced by recombination (dark green); new alleles introduced recombination (pale green); all alleles introduced by mutations (dark red); new alleles introduced by mutations (pale red). Values were normalized by the GC-contents at the corresponding codon postion for each species prior to calculating overall proportions, and species with fewer than 50 polymorphic sites for a given category of alleles were excluded.

Figure S5. Distribution of average bootstrap values for the species phylogenies.

For each species tree, 100 bootstrap replicates were computed, averaged across all nodes to produce an average bootstrap value for a species. The list of average bootstrap values of each species is given in Table S1.

Figure S6. Nucleotide bias of recent recombinant alleles and recent mutations.

The metric *B* represents the number of changes from G or C to A or T relative to the number of changes from A or T to G or C at four-fold degenerate sites. On each axis, a value of B < 1 indicates an enrichment toward G and C (green area), and value of B > 1 indicates an enrichment towards A and T (blue area). The solid diagonal line indicates identical nucleotide bias for recent recombinant alleles and recent mutations; the dotted lines represent half of the standard deviation. Values were normalized by the GC-contents at four-fold degenerate sites for each species prior to calculating overall proportions, and species with fewer than 50 polymorphic sites for a given category of alleles were excluded. (**A**) The color of dots denotes the recombination rate h/m for a species, as indicated in the key. (**B**) The color of dots denotes the number of strains for a given species, as indicated in the key.

Table S1. Description of species and core genome information.

Species	Genomes	Distinct strains	Core genes	h/m (average on core genes)	GC content (%) (average on core genes and standard deviation)	p-value	Spear man's Rho	Average Bootstrap support	Polymorphic sites (%)
Acinetobacter baumannii	1046	276	49	1,26	42.3 (2.98)	1,22E-01	-0,22	54,30	40,38
Acinetobacter	20	15	2360	0,74	40.35 (3.11)	7,13E-08	0,11	97,60	13,75
Aggregatibacter actinomycetemcomi tans	21	20	282	0,16	48.01 (3.67)	8,33E-01	0,01	97,10	8,63
Bacillus anthracis	95	22	2037	0,12	36.56 (3.02)	2,46E-01	-0,04	83,70	0,13
Bacillus cereus	168	130	970	1,18	37.26 (3.1)	2,33E-03	0,10	97,20	31,95
Bacillus subtilis	79	54	224	0,73	44.8 (3.05)	2,97E-03	0,20	90,60	25,18
Bacillus thuringiensis	56	36	1857	0,99	36.97 (3.07)	2,73E-01	-0,03	97,00	16,81
Bacteroides fragilis	93	36	597	0,25	45.21 (3.12)	3,38E-01	0,04	86,90	13,31
Bifidobacterium longum	44	28	734	1,65	61.72 (2.57)	2,19E-01	-0,05	71,00	7,91
Bordetella bronchiseptica	64	41	2340	1,30	68.58 (3.06)	2,93E-01	0,02	76,40	2,86
Borrelia burgdorferi	30	25	79	0,90	30.54 (4.57)	4,69E-01	0,09	83,10	1,94
Borrelia garinii	22	20	31	0,50	31.96 (3.53)	1,73E-01	0,26	84,20	2,97
Brucella militensis	64	34	950	0,33	58.49 (3.27)	2,71E-01	0,04	90,80	0,55
Brucella abortus	150	31	1498	0,38	58.63 (3.2)	7,45E-01	0,01	96,60	0,54
Brucella suis	51	16	2124	0,37	58.79 (2.93)	5,55E-02	-0,05	99,60	0,44
Burkholderia pseudomallei	189	120	172	1,26	67.61 (2.95)	6,95E-01	-0,03	37,10	2,50
jejuni	142	117	174	1,28	32.47 (3.51)	4,52E-02	0,15	88,50	11,27
Campylobacter coli	72	70	270	1,88	34.3 (2.91)	7,32E-01	0,02	84,10	13,50
Chlamydia trachomatis	92	56	752	2,76	42.03 (2.2)	1,19E-01	0,06	91,70	1,52
Chlamydia psittaci	47	19	127	0,30	40.1 (2.33)	7,01E-01	-0,03	92,90	35,32
Clostridium botulinum	53	37	46	0,92	31.32 (3.3)	6,24E-01	-0,08	78,00	8,73
Corynebacterium pseudotuberculosis	22	18	1260	0,73	53.3 (3.05)	7,37E-01	0,01	93,30	1,58
Coxiella burnetii	24	16	536	0,08	44.64 (4.1)	3,11E-01	-0,05	92,00	0,76
Enterobacter cloacae	199	99	426	1,19	55.45 (3.03)	9,64E-13	0,34	79,90	32,74
Enterobacter aerogenes	28	21	2081	0,83	57.15 (3.34)	9,20E-01	0,00	94,50	6,10
Enterococcus faecalis	362	158	158	1,16	39.56 (2.58)	4,52E-01	0,06	70,30	4,58
Enterococcus faecium	274	165	238	1,86	40.83 (2.18)	4,81E-01	0,05	61,80	7,30
Escherichia coli	2961	63	656	0,68	52.49 (2.82)	4,04E-01	0,03	96,20	31,44
Francisella tularensis	67	29	489	0,22	33.87 (3.3)	7,81E-01	0,01	96,80	9,80
Fusobacterium nucleatum	29	26	708	0,88	28.36 (3.3)	1,37E-01	-0,06	84,20	19,68
Gallibacterium anatis	22	21	1456	2,32	41.79 (3.08)	6,62E-03	-0,07	90,80	9,47
Gardnerella vaginalis	36	32	91	0,89	44.49 (3.81)	7,32E-04	0,35	89,60	35,42
Haemophilus influenzae	43	38	526	2,39	39.37 (3.02)	8,12E-01	-0,01	88,00	10,51
Helicobacter pylori	445	347	50	2,47	40.69 (2.55)	3,83E-01	0,13	46,30	36,81
Kingella kingae	42	42	914	1,53	48.48 (3.65)	4,22E-01	-0,03	96,50	3,29
Klebsiella pneumoniae	526	178	344	0,76	57.85 (3.68)	1,25E-01	0,08	66,60	12,65
Lactobacillus rhamnosus	31	21	286	1,13	47.95 (3.18)	2,94E-01	0,06	90,40	5,73
Lactobacillus casei	27	20	869	1,33	48.16 (2.71)	3,38E-01	-0,03	99,30	3,07
Lactobacillus paracasei	43	38	133	0,86	47.28 (2.81)	5,91E-01	-0,05	82,30	3,35

Lactobacillus	28	25	702	0,29	46.71 (3.31)	1,38E-04	-0,14	67,00	25,30
Lactococcus lactis	39	35	382	0,68	37.93 (3.32)	4,87E-01	0,04	90,80	13,67
Legionella pneumophila	74	44	510	0,66	39.54 (2.91)	2,38E-01	0,05	95,70	13,36
Leptospira interrogans	198	55	217	0,81	38.28 (3.53)	7,85E-01	0,02	63,00	3,99
Leptospira kirschneri	23	17	1865	1,67	38.33 (3.24)	2,66E-01	-0,03	90,90	3,33
Leptospira santarosai	23	22	1899	1,17	43.6 (2.99)	1,93E-01	0,03	90,30	2,12
Listeria monocytogenes	331	63	427	0,75	39.31 (2.77)	9,07E-01	0,01	75,80	11,47
Methanosarcina mazei	63	30	1708	3,61	45.93 (3.44)	3,90E-01	0,02	94,40	2,42
Mycobacterium tuberculosis	1817	143	38	0,19	63.04 (1.74)	5,04E-02	-0,32	18,10	1,15
Mycobacterium abscessus	79	24	1898	2,24	65.01 (2.56)	4,54E-01	-0,02	88,80	5,13
Mycobacterium africanum	28	20	3336	0,18	65.85 (3.09)	8,45E-01	0,00	100,00	0,12
Mycobacterium avium	58	34	186	1,34	68.17 (2.58)	6,20E-01	0,04	93,00	1,93
Mycobacterium bovis	39	19	2085	0,33	65.31 (3.04)	2,69E-01	0,03	92,10	0,16
Neisseria meningitidis	200	153	318	4,28	54.56 (4.82)	3,88E-01	0,05	85,00	10,46
Neisseria gonorrhoeae	23	19	1163	2,08	54.94 (4.98)	1,92E-02	0,08	87,80	0,95
Oenococcus oeni	58	36	484	1,16	39.85 (3.62)	6,81E-01	-0,02	92,20	2,02
Pasteurella multocida	27	22	182	0,76	41.8 (2.86)	5,01E-01	0,05	80,40	3,33
Pectobacterium carotovorum	35	34	1852	1,08	53.84 (3.53)	1,62E-03	0,07	97,20	23,04
Peptoclostridium difficile	254	81	192	0,71	30.13 (2.9)	5,02E-01	-0,05	71,90	5,05
Prochlorococcus marinus	31	26	289	0,89	36.77 (2.77)	1,97E-02	0,14	89,10	47,02
Propionibacterium acnes	92	78	222	0,82	60.25 (2.88)	9,41E-01	0,01	65,20	4,66
Pseudomonas aeruginosa	725	310	104	0,83	63.83 (3.61)	3,07E-01	0,10	43,60	7,79
Pseudomonas fluorescens	57	54	1492	2,37	61.48 (2.98)	7,25E-03	0,07	94,80	42,69
Pseudomonas putida	35	33	526	1,21	62.15 (3.07)	9,03E-01	-0,01	96,90	38,61
Pseudomonas stuzeri	22	22	1620	1,32	64.36 (3.16)	7,56E-21	-0,23	98,10	42,03
Pseudomonas syringae	98	57	394	1,07	58.38 (3.14)	8,44E-07	0,25	92,40	33,70
Ralstonia solanacearum	29	24	1152	0,24	67.26 (3.16)	1,27E-02	-0,07	100,00	12,37
Rhizobium Ieguminosarum	30	30	2497	0,75	62.87 (2.56)	6,17E-01	0,01	97,90	33,52
Rhodococcus fascians	21	20	2136	0,39	65.04 (2.16)	3,75E-02	-0,05	99,30	32,25
Salinispora arenicola	47	41	1171	0,55	68.99 (2.62)	5,29E-02	-0,06	79,10	4,97
Salinispora pacifica	38	32	2667	0,51	70.42 (3.04)	7,10E-09	-0,11	99,30	18,47
Salmonella enterica	1139	64	279	0,69	53.75 (3.56)	6,20E-02	0,11	63,80	13,37
Serratia marcescens	36	23	1853	0,72	61.04 (3.99)	9,75E-01	0,00	98,10	12,39
Sinorhizobium meliloti	30	28	2294	1,38	63.2 (2.55)	3,45E-01	-0,02	70,70	2,83
Staphylococcus aureus	4221	370	30	0,34	34.23 (3.27)	5,09E-01	-0,13	24,90	6,29
Staphylococcus epidermidis	104	72	691	1,31	33.78 (3.01)	8,13E-01	-0,01	82,20	5,14
Stenotrophomonas maltophilia	29	27	119	0,85	66.28 (2.75)	4,61E-01	0,07	83,10	31,72
Streptococcus pneumoniae	327	237	118	1,48	42.62 (3.02)	2,14E-01	0,12	72,50	8,29
Streptococcus agalactiae	316	136	79	1,14	36.18 (3.15)	3,03E-01	-0,12	45,80	2,91
Streptococcus	41	39	362	1,28	43.18 (2.79)	2,43E-05	0,22	98,10	37,44

mitis									
Streptococcus mutans	166	145	861	0,99	38.17 (3.17)	3,72E-01	-0,03	89,20	5,35
Streptococcus pyogenes	234	54	264	0,93	39.78 (3.19)	4,72E-02	0,12	81,80	4,19
Streptococcus sanguinis	24	21	791	0,93	46.24 (3.02)	4,26E-08	0,19	92,80	25,08
Streptococcus sobrinus	48	39	87	3,92	44.53 (3.8)	9,86E-02	0,21	82,00	3,27
Streptococcus suis	470	231	368	1,36	43.05 (3.91)	4,32E-12	0,35	78,30	34,95
Sulfolobus islandicus	20	18	1316	0,71	35.39 (3.06)	7,91E-01	-0,01	98,70	1,80
Vibrio cholerae	278	66	114	2,16	48.18 (3.09)	3,39E-01	-0,09	66,90	9,70
Vibrio cyclitrophicus	21	19	3354	2,12	45.03 (2.41)	9,55E-02	0,03	79,90	3,10
Vibrio parahaemolyticus	76	75	63	0,72	46.43 (2.32)	6,23E-01	0,07	35,80	4,16
Vibrio vulnificus	31	23	95	1,83	48.21 (3.0)	6,23E-02	-0,19	75,50	8,67
Xanthomonas axonopodis	90	29	1046	0,56	64.96 (2.9)	4,00E-01	0,03	96,80	11,03
Xanthomonas campestris	22	16	1355	0,34	65.88 (2.97)	1,23E-13	-0,20	100,00	23,43
Xanthomonas citri	51	21	1867	0,58	65.51 (3.07)	4,15E-01	0,02	99,30	1,47
Yersinia pseudotuberculosis	23	16	2888	0,89	49.04 (4.34)	1,02E-01	0,03	99,60	0,91

We estimated the recombination rate h/m as the ratio of homoplasic (h) to non-homoplasic (m) alleles inferred along the core genome of each species. Homoplasies were defined with the distance-based method (see Materials and Methods). Spearman coefficients Rho and p-values were estimated by correlating the recombination rate h/m relative to the GC content of the core genes for each species. Species in bold correspond to the species displayed in Figures 6 and S6. Average bootstrap supports are defined as the average of bootstrap values estimated over all the nodes of each species tree, which were built with a maximum likelihood approach on the concatenate of core genes (see Materials and Methods).

N=100, rec=10, m=1			N=10	0, <i>rec</i> =50	, <i>m</i> =1	N=100, rec=100, m=1			
Generations	Inferred	Recombinant	Generations	Inferred	Recombinant	Generations	Inferred	Recombinant	
G2000	10	10	G2000	18	18	G2000	18	18	
G5000	21	20	G5000	36	36	G5000	48	48	
G10000	14	14	G10000	89	89	G10000	57	57	
G12000	2	2	G12000	81	81	G12000	57	57	
G15000	22	22	G15000	139	139	G15000	90	90	
G18000	14	14	G18000	12	12	G18000	37	37	
G20000	21	21	G20000	56	56	G20000	126	126	
G22000	8	8	G22000	40	40	G22000	129	129	
G25000	68	68	G25000	10	10	G25000	16	16	
G30000	17	16	G30000	49	49	G30000	106	106	
N=10	0, <i>rec</i> =10,	, <i>m</i> =10	N=100), <i>rec</i> =50,	<i>m</i> =10	N=100, rec=100, m=10			
Generations	Inferred	Recombinant	Generations	Inferred	Recombinant	Generations	Inferred	Recombinant	
G2000	317	317	G2000	433	433	G2000	2358	2358	
G5000	96	96	G5000	575	575	G5000	600	600	
G10000	306	306	G10000	681	681	G10000	1544	1544	
G12000	626	626	G12000	1616	1616	G12000	1453	1453	
G15000	82	82	G15000	741	741	G15000	1540	1540	
G18000	358	358	G18000	755	755	G18000	1918	1918	
G20000	651	651	G20000	428	428	G20000	1641	1641	
G22000	197	197	G22000	355	355	G22000	742	742	
G25000	223	223	G25000	1502	1502	G25000	1848	1848	
G30000	67	67	G30000	744	744	G30000	1687	1687	
N=500, rec=10, m=1			N=50	0, <i>rec</i> =50	, <i>m</i> =1	N=50	0, <i>rec</i> =10	0, <i>m</i> =1	
Generations	Inferred	Recombinant	Generations	Inferred	Recombinant	Generations	Inferred	Recombinant	
G2000	54	54	G2000	847	847	G2000	775	775	
G5000	26	26	G5000	538	538	G5000	6/4	6/4	
G10000	163	163	G10000	/84	/84	G10000	394	394	
G12000	53	53	G12000	320	320	G12000	52/	52/	
G15000	6/	6/	G15000	235	235	G15000	146	146	
G18000	207	207	G18000	821	821	G18000	283	283	
G20000	146	146	G20000	316	316	G20000	458	458	
G22000	105	105	G22000	499	499	G22000	931	931	
G25000	424	30	G23000	200	208	G25000	290	440	
G30000	424		G30000 218		210 m=10	G30000	300	300	
Concrations	N=500, rec=10, m=10		Concrations	J, Tec=50,	Recombinant		Inforrod	D, III=10	
Generations	786	786	Generations	5214	5214	Generations	6814	6814	
G2000	/00	/151	G2000	2585	2585	G2000	5753	5753	
G1000	990	990	G1000	2303	8077	G1000	5662	5662	
G12000	2517	2517	G12000	610/	6104	G12000	721/	701/	
G15000	231/	031	G15000	3100	3100	G15000	7151	7214	
G18000	122/	177/	G18000	2572	2572	G18000	8866	2255 2255	
G20000	1212	1212	G20000	5577	5577	620000	6376	6376	
G22000	1313 846	1313 846	G22000	3/67	3462	G20000	8/05	0320 8/05	
G25000	1701	1701	G25000	5780	5780	G25000	6002	6002	
G20000	1791	171/	G20000	1209	J209 A210	G20000	6002	2002 2057	
920000	1214	1214	00000	4319	4319	00000	0052	2000	

Table S2. Identifying recombinant alleles in simulated data sets.