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Supplemental Methods 

Participants 

 Over the term of the project, 467 participants (208 men, 259 women) completed informed 

consent and were screened for study inclusion. Of 467 participants screened, 257 met the criteria 

for enrollment (121 men, 136 women). All 257 participants completed functional Magnetic 

Resonance Imaging (fMRI) data collection, though 118 were not selected for final analysis (n = 

139) because: they were on antipsychotic medication (n = 3), anticipated a release or transfer 

from the facility in less time than would allow for the completion of the protocol (n = 30), had a 

family history of psychosis (n = 2), had an IQ below 70 (n = 1), had scheduling conflicts (n = 4), 

had an artifact and could not be used in final fMRI data analysis (n = 1), did not meet diagnostic 

criteria for cocaine, heroin, or methamphetamine dependence, or had abstained from substance 

use for longer than three months prior to incarceration (n = 32), were diagnosed with psychosis 

(n = 2), had less than a sixth grade reading level (n = 4), opted not to participate following the 

consent (n = 9), were diagnosed with schizophrenia (n = 1), were in segregation (n = 1), sought 

other drug treatment (n = 11), had significant movement of greater than 1.5 mm translation and 

1.5 degrees of rotation during fMRI data collection (n =12), poor behavioral performance (n = 

3), performing only one run of the Go/NoGo fMRI task (n = 1), or had a history of significant 

traumatic brain injury (n = 1).  
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 Two-hundred ten did not meet study eligibility criteria because: they absconded (n = 1), 

were over the age of 55 (n = 1), anticipated a release or transfer from the facility in less time 

than would allow for the completion of the protocol (n = 23), were on antipsychotic medication 

(n = 13), had a family history of psychosis (n = 9), had scheduling conflicts (n = 2), were MRI 

incompatible (n = 42), did not meet diagnostic criteria for cocaine, heroin, or methamphetamine 

dependence, or had abstained from substance use for longer than three months prior to 

incarceration (n = 38), opted not to participate following the consent (n = 13), were diagnosed 

with psychosis (n = 13), had less than a sixth-grade reading level (n = 23), sought other drug 

treatment (n = 4), were clinically unstable (i.e., report current or recent suicidal ideation) (n = 7), 

or had a history of significant traumatic brain injury (n = 5). Exclusion data were unavailable for 

n = 16 participants. Of the participants completing informed consent and screening for the study, 

225 (98 males, 127 females) were assigned to one of three therapy cells using a pseudorandom 

process. A total of 151 participants (59 males, 93 females) completed the entire therapy protocol 

(nine or more sessions).  

Procedures and Ethical Considerations 

Initial contact was made with potential study participants through announcements by 

research staff at the correctional facilities. Meetings were scheduled with interested participants 

and informed consent was obtained. Participants were informed of their right to discontinue 

participation at any point and that their participation was in no way associated with their status at 

the facility, their parole status, and there were no direct institutional benefits. Participants were 

paid at the rate of the hourly wage at the facility. All procedures were approved by the Human 

Research Review Committee at the research institution and correctional facilities where the study 

was conducted.  



Steele et al. Supplement 

3 

Assessment Measures 

Depressive symptomatology. Depressive symptomatology was assessed using the Beck 

Depression Inventory-II (BDI-II) (1), a 21-item self-report measure that assesses the severity of 

depressive symptoms. Depressive symptom measures were unavailable for five participants. The 

Cronbach’s alpha for the BDI-II in this sample was .90. 

Anxiety symptomatology. Anxiety symptomatology was assessed using the State-Trait 

Anxiety Inventory (STAI) (2), a 40-item measure that assesses the intensity of anxiety symptoms 

and distinguishes between state anxiety and trait anxiety. Anxiety symptoms were unavailable 

for eighteen participants. The Cronbach’s alpha for the STAI in this sample was .72. 

Psychopathy. Psychopathy was assessed using the PCL-R (3, 4), comprising two factors; 

Factor 1 assessing callous interpersonal and affective traits, and Factor 2 assessing impulsive 

lifestyle and antisocial behavior. In the current study, Factor 2 was used as an index of 

impulsivity. Factor 1 and 2 scores were unavailable for 31 participants. The Cronbach’s alpha for 

the PCL-R in this sample was .77.  

Motivation for change. Motivation for change was assessed using the University of 

Rhode Island Change Assessment (URICA (5)), a continuous measure of four stages of how a 

person may feel about making changes before they acknowledge they have a problem 

(precontemplation), after they acknowledge they have a problem (contemplation), once they take 

steps toward treatment (action), and maintaining the change (maintenance).  URICA scores were 

unavailable for 15 participants. The Cronbach’s alpha for the URICA in this sample was .80. 

 Estimated IQ. IQ was estimated using the Vocabulary and Matrix Reasoning subtests of 

the Wechsler Adult Intelligence Scale (6) (mean = 96.07, SD = 11.27). IQ scores were 

unavailable for four participants. 
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 Years of Substance Use. Years of regular substance use were measured using a modified 

version of the Addiction Severity Index (ASI-X (7)) by calculating the cumulative years of 

regular use (i.e., three or more times per week for a minimum of one month) for all substances 

(alcohol, heroin, cocaine, methamphetamine, cannabis, hallucinogens, and inhalants) combined. 

Total scores were then divided by participant’s age to control for opportunity to use. ASI scores 

were unavailable for 10 participants. The Cronbach’s alpha for the ASI in this sample was .77. 

 Experimental Go/NoGo Task  

Participants then performed a difficult, previously published Go/NoGo paradigm (8) 

containing two experimental runs, each comprising 245 visual stimuli, presented to participants 

using the computer-controlled visual presentation software package, Presentation. Each stimulus 

appeared for 250 ms in white text within a continuously displayed rectangular fixation box. 

Participants were instructed to respond as “quickly and accurately as possible” with their right 

index finger every time the target (“Go”) stimulus (a white “X”) appeared, and to withhold a 

response when the distracter “No/Go” stimuli (a white “K”) appeared. Targets appeared with 

higher frequency (84%, 412 trials with 206 for each run) than distractors (16%, 78 trials with 39 

for each run) to establish a strong stimulus-response mapping on “Go” trials. Two K’s were 

never presented sequentially. The stimuli were approximately 3 x 5 visual degrees, and were 

presented for 250 ms on a black background. The interstimulus interval was pseudo-randomly  

jittered (1-3 s stimulus-onset asynchrony (SOA; 9); averaging 1.5 s). Prior to recording, each 

participant performed a block of 10 practice trials to ensure that the instructions were clearly 

understood. The SOA between Go stimuli varied to the constraint that three Go stimuli were 

presented within each consecutive 6 s period. The NoGo stimuli were interspersed among the Go 

stimuli in a pseudorandom manner subject to two constraints: the minimum SOA between a Go 
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and NoGo stimulus was 1000 ms; the SOA between successive NoGo stimuli was in the range 

eight to 14 s. 

Analysis of Functional Magnetic Resonance Imaging Data  

 A mean functional image volume was constructed for each run from the realigned image 

volumes. The mean EPI image from each run was normalized to the EPI template. The spatial 

transformation into standard MNI space was determined using a tailored algorithm with both 

linear and nonlinear components (10). The normalization parameters determined for the mean 

functional volume were then applied to the corresponding functional image volumes for each 

participant. The normalized functional images were smoothed with a 6 mm full width at half-

maximum (FWHM) Gaussian filter. Event-related responses were modeled using a synthetic 

hemodynamic response function composed of two gamma functions. The first gamma function 

modeled the hemodynamic response using a peak latency of 6 s. A term proportional to the 

derivative of this gamma function was included to allow for small variations in peak latency. The 

second gamma function and associated derivative was used to model the small “overshoot” of 

the hemodynamic response on recovery. A latency variation amplitude-correction method was 

used to provide a more accurate estimate of hemodynamic response for each condition that 

controlled for differences between slices in timing and variation across regions in the latency of 

the hemodynamic response (11). High-pass (cutoff period 116 s) and low-pass (cutoff period 

0.23 s) filters were applied to remove any low- and high-frequency confounds, respectively.  

Condition-specific derivative terms (11) were extracted for analysis. SPM5 using MATLAB 

2014a was used for these analyses. 

 The primary purpose of this study was to use functional network connectivity (FNC) 

features for classification of substance abuse treatment outcomes. Functional connectivity (FC) is 
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defined as the correlation (or other kinds of statistical dependency) among spatially remote brain 

regions (12). FC analysis documents interactions among brain regions either during tasks or 

during rest. Two widely used FC approaches are: (a) seed-based analysis (13-18) and (b) spatial 

Independent Component Analysis (ICA) (19-23). ICA is a data-driven multivariate analysis 

method that identifies distinct groups of brain regions with the same temporal pattern of 

hemodynamic signal change. In the seed-based approach, individual seed voxels from predefined 

brain regions of interest (ROI) are chosen and the cross correlation of other voxels' time courses 

(TCs) with the selected seeds then computed, to derive a correlation map. This map is then 

thresholded to identify voxels with significant FC with the seed voxels. 

An alternative approach is based on ICA, a blind source separation method can recover a 

set of signals from their linear mixtures. This method has yielded fruitful results with fMRI data 

(24, 25). ICA estimates maximally independent components using independence measures based 

on higher-order statistics. Compared to general linear model approaches, ICA requires no 

specific temporal model (task-based design matrix), making it ideal for analyzing resting-state 

data (26). Depending on the data matrix formation, one can perform either temporal (tICA) or 

spatial ICA (sICA) on fMRI data with sICA most commonly used (19, 20, 27). sICA 

decomposes fMRI data into a set of maximally spatially independent maps and their 

corresponding time-courses. Each thresholded sICA map may consist of several remote brain 

regions forming a brain functional network. sICA generates consistent spatial maps while 

modeling complex fMRI data collected during a task or in a resting-state (28) although the task 

can result in a subtle modulation of the spatial patterns (29). The dynamics of the BOLD signal 

within a single component is described by that component's TC. Regions contributing 

significantly within a given component are strongly functionally connected to each other. 
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 Group ICA was performed on the preprocessed fMRI time-series data (20). These 

methods were implemented in the MATLAB toolbox for ICA of fMRI (GIFT) and have been 

detailed previously (20, 25). A two-stage PCA data reduction step was implemented, at the 

single subject level 150 PCs were extracted, followed by a group PCA step using 75 

components, lower than the first step (30). The number of ICA components was selected in light 

of evidence that a high number (70-100) of independent components consistently and stably 

estimate data (31-34). The data reduction was followed by a group sICA, performed on the 

participants’ aggregate data, resulting in the final estimation of our ICs. The algorithm used in 

this process was the infomax algorithm, which attempts to minimize the mutual information of 

network outputs (35). This was followed by a back reconstruction of single-subject time courses 

and spatial maps from the raw data using the group solution to accurately depict the participant-

to-participant variability that existed in the data (30). The resulting single-subject time-course 

amplitudes were then intensity prenormalized (20). These spatial maps and TCs were then 

regressed against the same design matrix used in the SPM analysis. Spatial maps were 

reconstructed and converted to Z-values for each participant. Partial correlations were used to 

identify 34 non-artifactual components (Figures S1-S5) that were task related (Table S2). Non-

artifactual components are expected to have peak activation in the gray matter and have low 

spatial overlap with known ventricles, vascular, motion, and susceptibility artifacts.  

The FNC (36) among ICA TCs across the entire task were computed using Pearson 

correlation coefficients. These coefficients were used in support vector machine (SVM) models 

predicting which individuals would or would not complete treatment. Reducing dimensionality 

of the FNC features used in the models was crucial considering the current dataset would be 

considered small compared to the number of features in the context of machine learning. We 
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used double input symmetric relevance (DISR) (37) feature selection method. DISR is a fast 

filtering method designed to select a feature set that exhibits maximal mutual information with 

class labels while minimizing the mutual information among the selected features. This method 

reduced the feature set for each classification run from 561 to 50 for each participant during the 

cross-validation step. Frequency of selection for each variable was tracked to assess the relative 

usefulness of each feature in the prediction models.  

The accuracy of these SVM models was confirmed with permutation tests. These tests 

were calculated by randomizing the labels (i.e., group membership as completed treatment or 

discontinued treatment prematurely) 1000 times and calculating classification measures within 

each iteration. When randomizing the labels, the ratio of classes constant was held constant. By 

calculating the proportion of times (of the 1000 iterations) where the measures were greater than 

our original classification measures, p-values reflecting the stability of our classification models 

were calculated. 
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Table S1. Descriptive Statistics and Independent Samples t-tests for Variables Used as 
Covariates     
 

 All Participants 
(n=139) 

Completed Group 
(n=107) 

Discontinued Group 
(n=32) 

   
    
Variable N  Mean SD N  Mean SD N  Mean SD t df p 
             
Age 139 34.00 7.97 107 34.39 8.07 32 32.69 7.60 -1.06 137 .290 
             
IQ 135 96.07 11.27 107 95.72 11.18 28 97.39 11.73 0.70 133 .486 
             
Precontemplation 124 53.10 10.58 98 53.32 10.33 26 52.31 11.68 -0.43 122 .668 
             
Contemplation 124 43.45 14.08 98 43.62 13.49 26 42.31 16.38 -0.42 122 .674 
             
Action 124 50.97 11.75 98 51.07 12.02 26 50.58 10.89 -0.19 122 .850 
             
Maintenance 124 47.98 10.78 98 48.37 9.22 26 46.54 15.48 -0.77 122 .444 
             
State Anxiety 121 40.08 12.14 99 40.25 12.20 22 39.32 12.14 -0.33 119 .746 
             
Trait Anxiety 121 43.21 11.27 99 43.36 11.61 22 42.50 9.84 -0.32 199 .747 
             
Beck’s Depression 134 16.37 10.98 107 16.56 11.54 27 15.63 8.49 -0.39 132 .695 
             
PCL-R-F1 108 5.08 2.99 92 5.10 3.09 16 4.98 2.50 -0.14 106 .887 
             
PCL-R-F2 108 

 
12.70 
 

3.23 
 

92 
 

12.74 
 

3.27 
 

16 
 

12.48 
 

3.10 
 

-0.30 
 

106 
 

.768 
 

Years of Sub. Use 139 1.29 0.62 103 1.27 0.64 26 1.39 0.55 0.86 127 .394 
             
 
Note. All participants (n=139) either successfully completed or discontinued a cognitive behavioral substance abuse 
treatment program. Individuals in the completed group (n=107) include adult incarcerated offenders who 
successfully completed nine weeks of a cognitive behavioral substance abuse treatment program. Individuals in the 
discontinued group (n=32) include adult incarcerated offenders who discontinued treatment prior to nine weeks of a 
cognitive behavioral substance abuse treatment program. Assessments: Intelligence Quotient (IQ) was calculated 
from the Wechsler Adult Intelligence Scale III (WAIS-III); Precontemplation, Contemplation, Action, and 
Maintenance are summary scores of subscales from the University of Rhode Island Change Assessment (URICA); 
State Anxiety and Trait Anxiety are summary scores from the State and Trait Anxiety Questions from the State-Trait 
Anxiety Inventory (STAI); Beck’s Depression is the total score from Beck’s Depression Inventory (BDI-II); PCL-R-
F1 and PCL-R-F2 are the Factor 1 and Factor 2 summary scores from the Psychopathy Checklist – Revised (PCL-
R); Years of Sub. Use is the total number of years of substance use divided by participant’s age was calculated by a 
modification of the Addiction Severity Index (ASI-X) divided by the participant’s age. 
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Table S2. Summary of Independent Component Relationship to the Design Matrix 
 
 Hits Correct Rejects False Alarms 
Component t-value t-value t-value 

2 4.31*** 1.40 3.87*** 
4 11.33*** 2.24 3.72*** 
5 -25.70*** -16.48*** -0.29 
6 6.66*** 1.76 4.49*** 
7 -13.07*** -11.69*** -9.62*** 
9 5.54*** -0.56 -7.07*** 

12 13.43*** 6.39*** 0.52 
16 -5.63*** -6.44*** -11.78*** 
21 5.25*** 8.09*** -1.51 
23 -13.19*** -1.76 -5.10*** 
31 10.80*** 9.98*** -9.51*** 
32 -7.10*** 0.63 -4.38*** 
34 -9.63*** -2.09 9.28*** 
38 -5.02*** -7.33*** 12.42*** 
40 18.02*** 17.82*** 16.73*** 
41 2.76* -1.44 3.78*** 
43 -16.74*** 2.74* -4.04*** 
44 1.62 0.50 4.45*** 
51 11.01*** 5.79*** -1.11 
54 12.84*** 6.75*** 3.96*** 
56 0.75 -7.38*** -4.21*** 
61 -3.52** -10.54*** -2.24 
62 5.17*** 2.07 5.77*** 
63 3.55*** 6.09*** 14.64*** 
64 -7.44*** -6.42*** -11.23*** 
65 7.67*** 14.51*** 20.32*** 
66 4.51*** 6.93*** 3.92*** 
67 -2.35 -10.74*** -0.01 
68 5.91*** 15.70*** 2.01 
69 -12.65*** -12.33*** -1.88 
70 -8.58*** -16.36*** -11.20*** 
71 -1.27 2.66 -1.86 
73 -0.86 -2.25 -9.81*** 
74 5.53*** 15.82*** 0.05 

Note. Relationship between time courses of independent components and the design matrix of experimental 
conditions Hits, Correct Rejections, and False Alarms are presented. A false-discovery rate correction for multiple 
comparisons was applied correction (38, 39). 
*** p < .001 
** p < .005 
* p < .01 
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Figure S1. Spatial maps for five independent components in the occipital and cerebellar regions: 
Component 5 (cuneus); Component 23 (cuneus and cingulate gyrus); Component 31(middle 
occipital gyrus and thalamus); Component 32 (culmen and precuneus); Component 74 (inferior 
temporal gyrus). 
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Figure S2. Spatial maps for seven independent components in posterior regions: Component 12 
(postcentral gyrus, cingulate gyrus, and superior frontal gyrus); Component 16 (postcentral 
gyrus, cingulate gyrus, and claustrum); Component 43 (precuneus); Component 67 (cingulate 
gyrus); Component 68 (inferior parietal lobule, middle frontal gyrus, and middle frontal gyrus); 
Component 69 (precuneus, superior temporal gyrus, and parahippocampal gyrus); Component 73 
(precuneus, fusiform gyrus, inferior parietal lobule, and thalamus). 
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Figure S3. Spatial maps for ten independent components in frontal regions: Component 34 
(superior temporal gyrus, culmen, and insula); Component 38 (rACC); Component 40 (Putamen, 
rACC); Component 44 (precentral gyrus, middle temporal gyrus, and middle frontal gyrus); 
Component 61 (middle frontal gyrus, caudate, and insula); Component 62 (left insula, 
hypothalamus, cingulate gyrus, and parahippocampal gyrus); Component 63(claustrum, inferior 
frontal gyrus, medial frontal gyrus); Component 65 (cACC); Component 70 (medial frontal 
gyrus, superior temporal gyrus, and putamen); Component 71 (superior frontal gyrus, cingulate 
gyrus, and precuneus). 
 
 

  



Steele et al. Supplement 

14 

 

Figure S4. Spatial maps for six independent components accounting for motor, default mode 
network, and dorsal regions: Component 2 (precentral gyrus); Component 7 (middle frontal 
gyrus); Component 21 (superior frontal gyrus); Component 41 (superior temporal gyrus); 
Component 64 (middle frontal gyrus, superior parietal lobule, insula, inferior temporal gyrus); 
Component 66 (inferior parietal lobule, postcentral gyrus, sub-gyral, cuneus, and putamen). 
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Figure S5. Spatial maps for six independent components in subcortical regions: Component 4 
(thalamus); Component 6 (right thalamus and putamen); Component 9 (putamen and 
hippocampus); Component 51 (putamen and fusiform gyrus); Component 54 (cingulate gyrus, 
and superior frontal gyrus); Component 56 (amygdala, hippocampus, and striatum). 
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Figure S6. The nested, two-fold cross-validation method implemented in the SVM models used 
here. The 10-fold outer cross-validation loop was used to estimate the error on the test dataset. At 
each outer loop, 1/10th of the data are set aside for testing, 1/10th for validation and 4/5th for 
training. The inner cross-validation loop was used to estimate hyperparameters of the model via 
grid search. At each inner loop, 1/5th of the data are set aside for testing, 1/5th for validation and 
3/5th for training. This model is similar to SVM models previously published from this group 
(40-45) with further discussion in Steele et al (40). 
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