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k-mean hierarchical clustering: detailed algorithm and parameter adjustment.  
Basic statements 

Spacers are defined by their 32-nucleotide sequences. A large number (up to 0.5x107 ) of spacers needs to be 
clustered into an initially unknown number of groups, so that spacers in each group are similar to each other and 
different from spacers from other groups. Also, identical spacers derived from the same protospacer but differing in 
their orientation (reverse complementary) (Erdmann & Garrett 2012; Lopez-Sanchez et al. 2012; Mick et al. 2013; 
Shmakov et al. 2014) and spacers produced by imprecise excision (Savitskaya et al. 2013), need to be combined 
and handled together.  

A spacer α with a given nucleotide sequence is denoted by the 32 × 4 = 128-dimensional numerical vector Sα, in 
which information about each nucleotide is stored in 4 corresponding dimensions in the following way: 
 
• base A is denoted as (1, 0, 0, 0). 

 
• base G is denoted as (0, 1, 0, 0). 

 
• base C is denoted as (0, 0, 1, 0). 

 
• base T is denoted as (0, 0, 0, 1). 

 For example, sequence [AGGC, . . ] corresponds to (1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, .  .). 
 

While a vector describing a single spacer S_ = (S1 , . . . , S128) contains only 0s and 1s, the position 
C_=(C1,…..,C128) of the center of a cluster, defined as the arithmetic mean of vectors S_α of constituent n spacers, 

 

1   n 
Cj  = ∑

  
Sj,α , j = 1, . . . , 128,  (1) 

α=1 
 
generally is characterized by real numbers 0 ≤ Cj  ≤ 1. 

The distance Dαβ between two spacers or clusters α and β is defined as a sum over 128 dimensions of the 
absolute value of the difference between their coordinates, 
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Dαβ =
 
∑

  
|Cj,α  − Cj,β|. (2) 

j=1 
 

This distance is twice the Hamming distance between spacers, since each replacement of a nucleotide removes 1 
from the position of the old base and adds 1 to position corresponding to a new base. The radius of a cluster is 
defined as the distance from its center to its most remote member. 

 
Sorting into tree-like hierarchy 

To reduce the amount of data and accelerate the search, we cluster the spacers into a 3-level branching structure 
with each subsequent level having clusters of progressively higher similarity between members. At the last level of 
segregation, clusters have radii approximately equal to 3, which reflect the maximum number substitutions 
corresponding to biologically similar spacers and sets the “resolution limit” of the process. Parameters defining 
branching were varied and after several experiments we converged to values listed below. The procedure of placing 
a new spacer into the system of clusters consists of the following steps: 

 
• The first spacer forms the root, the first-level branch, and the second-level branch of the first tree. 

 
• Each new spacer is first matched with the closest tree root. If no tree is found within a distance of 27, the new 

spacer forms the root, first-, and second-level branches of a new tree. 
 

• If a matching tree is found, the new spacer is then matched with the closest first-level branch coming out 
from the root. If no first-level branch is found within a distance of 9 from the spacer, the spacer forms new 
first-level and second-level branches. 



	

 
• If the matching first-level branch is found, the spacer is then compared to the second-level branches 

emanating from the first-level branch.  It joins the closest second-level branch, and if no such branch 
exists within a distance of 3 from the spacer, it forms a new second-level branch. 

 
Thus, in such fully developed hierarchy, a spacer is defined by its membership in a tree, in a first-level 

branch, and in a second-level branch or “final” cluster. The hierarchical scheme allowed us to substantially 
speed up the search of the target cluster for each new spacer. 

This clustering procedure is repeated several times from the beginning, taking into account the results of 
the previous rounds of clustering. A new round starts with clustering of spacers, which belong to the 
largest final cluster of the largest branch of the largest tree. Next, spacers from the second largest cluster are 
re-clustered, etc. After the second iteration the cluster tree does not change significantly. Naturally, some of 
the clusters may have final radii smaller than the threshold value of 3, while others may contain spacers that 
are further than 3 substitutions away from the center of their cluster.  The latter happens when a spacer, 
initially within the distance of 3 from the center, becomes further separated as the center moves away due 
to subsequent addition of new members. We surmise that such “swelling” of clusters has little effect on the 
final result since if such swollen clusters were broken, most probably, they would have merged during the 
second stage of clustering. 

 
 

Shifting, flipping, and merging clusters 
The first procedure allows us to reduce the amount of data, which is now represented by sizes and 

coordinates of centers of a few thousand clusters with radii ≈3.  Next, we compute pairwise distances 
between all clusters, taking into account possible reversions (Erdmann & Garrett 2012; Lopez-Sanchez et 
al. 2012; Mick et al. 2013; Shmakov et al. 2014) and shifts of their sequences. When comparing one cluster 
to another, we first compute the distance between two sequences in their original form, then for one 
sequence shifted by ±1 and ±2 bases, and finally we “flip” one sequence, generating a reverse complement 
sequence and repeat the procedure, looking for the best match. Flips have no distance penalty, but a shift 
by a single base in either direction adds a 2 to the distance between clusters. In the end, we compute the 
adjacency matrix of the complete graph where nodes are clusters and edges are labeled by distances between 
nodes. For a given cutoff distance D, all edges with distances larger than D are removed, normally breaking 
the complete graph into several disconnected components. Each component is then declared to be a 
secondary cluster, characterized by its center and the number of constituent spacers. Naturally, the smaller 
threshold D yields more such secondary clusters; the plot of the number of secondary clusters N vs. D is 
shown in Fig. S1.  

It follows from Fig. S1 that for 5 ≤ D ≤ 10, the dependence of N on D is the weakest, which suggests 
that the natural inter-cluster separation falls into this range. For final clustering of our data, we chose D = 7 
which is in the middle of this range. 

 
 

Concluding remarks 
Overall, our clustering method offers two main advantages for large CRISPR spacer sets analysis: 

 
• It is significantly faster. 

 
• Compared to clustering based on pairwise BLAST scores, it naturally and simply shows the sequence 

composition of each cluster and reveals the variability of each nucleotide within the cluster. 
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Figure S1. A plot showing the dependence of the number of secondary clusters N vs. the cutoff distance 
between clusters D.  

 

 


