3 Supplementary Figures 1-8

1

Supplementary Figure 1: Predicted coiled-coil motifs of OsKCH2. (Top) Based on the prediction by the program MARCOIL with a coiled-coil cutoff probability of 80%, the full-length OsKCH2 contains three coiled-coils, which include CC0 in aa 239-295, CC1 in aa 313-354, and CC2 in aa 718-766. (Middle) The predicted coiled-coil profile of human kinesin-7 CENP-E(aa 343-423) by MARCOIL. Red line depicts the region that forms an actual coiled-coil structure based on X-ray crystallography¹. This serves as a positive control of the coiled-coil prediction of OsKCH2 by MARCOIL. (Bottom) The predicted coiled-coil profile by MARCOIL of yeast Pac11(aa 25-87) that was experimentally found to be intrinsically disordered². This serves as a negative control of the coiled-coil prediction of OsKCH2 by MARCOIL³.

20

Supplementary Figure 2: Phylogenetic tree of kinesin-14 motors from *Oryza* sativa and *Arabidopsis thaliana*. The phylogenetic tree was generated with the program PhyML (www.phylogeny.fr) based on the full-length protein sequences of the

24	kinesin-14 family from Oryza sativa (japonica cultivar) and Arabidopsis thaliana. The							
25	maximum likelihood method was used. Branch support values were represented in							
26	percentages (%), and only values greater than 60% were shown in the tree. Protein							
27	sequence data of O. sativa (japonica cultivar) were obtained from MSU RGAP Release							
28	7 (http://rice.plantbiology.msu.edu/; "LOC_" was omitted from each locus call) except for							
29	OsKCH2, which was not annotated in the release; Protein sequence data of A. thaliana							
30	were from TAIR10 (http://www.arabidopsis.org/); AtKCH1=LOC_Os12g36100.							
31	AtKP1=At3g44730; ATK1=At4g21270/KATA; ATK2=At4g27180/KATB;							
32	ATK3=At5g54670/KATC; ATK4=At5g27000/KATD; ATK5=At4g05190;							
33	AtKCA1=At5g10470/KAC1; AtKCA2=At5g65460/KAC2; AtKCBP=At5g65930.							
34	AtKinesin-12A/At4g14150 was included as an outgroup protein in the analysis.							
35	Complete protein sequence alignment of all kinesin-14s in the phylogenetic tree can be							
36	found in Supplementary Data 1.							
37								
38								
39								
40								
41								
42								
43								
44								
45								
46								

Supplementary Figure 3: OsKCH2 exhibits cortical localization in a rice cell at
prophase. a, Immunostaining of a wildtype rice cell using anti-OsKCH2 (left) and anti Tubulin (right). b, Immunostaining of a *kch2* mutant cell using anti-OsKCH2 (left) and
anti-Tubulin (right). Scale bar: 5 µm.

- . -

Supplementary Figure 4: The artificial homotetramer GFP-OsKCH2(289-767)^T exhibits ultraprocessive minus-end-directed motility on single microtubules. a, Schematic diagrams of GFP-OsKCH2(289-767) and GFP-OsKCH2(289-767)^T. b, Example fluorescence intensity traces over time of individual GFP-OsKCH2(289-767)^T molecules immobilized on the microtubules. c, Histogram of the photobleaching steps of GFP-OsKCH2(289-767)^T (n = 255). d, Example kymograph showing that individual GFP-OsKCH2(289-767)^T molecules move processively toward the minus-end on a

69	single microtubule. e , Velocity histogram of single GFP-OsKCH2(289-767) ^T molecules.
70	Red line indicates a Gaussian fit to the velocity histogram. f, Run-length histogram of
71	single GFP-OsKCH2(289-767) ^T molecules. Red line indicates a single-exponential fit to
72	the run-length histogram. Scale bars: 1 minute (vertical) and 5 μ m (horizontal).
73	

Supplementary Figure 5: GFP-OsKCH1(292-744) is a nonprocessive minus-end-79 directed microtubule motor. a, Predicted coiled-coil motifs of OsKCH1. Based on the 80 prediction by the program MARCOIL with a coiled-coil cutoff probability of 80%. The full-81 length OsKCH1 contains an upstream putative coiled-coil (CC1, aa 298-374) and a 82 downstream putative coiled-coil (CC2, aa 706-740). b, Schematic diagrams of the full-83 length OsKCH1 and GFP-OsKCH1(292-744). c, Coomassie-stained SDS-PAGE of 84 purified recombinant GFP-OsKCH1(292-744). d, Example fluorescence intensity traces 85 over time of individual GFP-OsKCH1(292-744) molecules immobilized on the 86 87 microtubules. e, Histogram of the photobleaching steps of GFP-OsKCH1(292-744) (n = 156). f, Micrograph montage showing surface-immobilized GFP-OsKCH1(292-744) 88 molecules drive microtubules to glide with minus-end-directed motility. White 89 arrowheads indicate the plus ends of polarity-marked microtubules. g, Example 90 kymograph showing that individual GFP-OsKCH1(292-744) molecules are unable to 91 produce processive motility on a single microtubule. Scale bars: 30 s (vertical) and 5 92 µm (horizontal). 93

94

95

		10	20	30	40	50	60				
OsKCH2(289-767)	289 MKET	SECFLTSLRLP	CGRRKQLDDG	GGLEHQQEEL	EKLKVSFNEMK	LQVESTRSQW	EEDLR	349			
OsKCH1(292-744)	292		Evkqfqleaq	TNFDVQQKQI	QELKGALSFVK	SGMEQLRLQY	SEEFA	338			
OsKCH2(289-767)	350 RLES	SYFEAHN HNA	YHKLLEENRK	LYNQVQDLKG	SIRVYCRVKPF	LKMQTDQRST	V D H I G	408			
OsKCH1(292-744)	339 KLGM	(hfytlsnaass)	YHKVLEENRK	LYNQIQDLKG	NIRVYCRVRPF	LPGHRSLSSS	V A D T E	399			
OsKCH2(289-767)	409 ENGE	IMIVNPQKQGK	EGRKMFSFNK	IFGPNASQSE	VFADTQPLIRS	VMDGYNVCIF.	AYGQT	469			
OsKCH1(292-744)	400 ER-T	ITIITPTKYGK	DGCKSFSFNR	VFGPASTQEE	VFSDMQPLIRS	VLDGFNVCIF.	AYGQT	459			
OsKCH2(289-767)	470 GSGK	KTYTMSGPDITT	E E T WG V N Y R S	LNDLFAISQN	RADTTTYDVKV	QMIEIYNEQV	RDLLM	530			
OsKCH1(292-744)	460 GSGK	KTFTMSGPKVLT	E E S L G V N Y R A	LNDLFNIKAQ	RKGTIDYEISV	QMIEIYNEQV	RDLLQ	520			
OsKCH2(289-767)	531 VDGA	NKRLEIRNSSH	V NG L N I P DA N	LVPVKCAQDV	L D L MR V G H R N R	AVGSTALNER	SSRSH	591			
OsKCH1(292-744)	521 -DGG	GNRRLEIRNTPQ	K - G L A V P D A S	IVPVTSTADV	V E L MN Q G Q K N R	AVGSTAINDR	SSRSH	579			
OsKCH2(289-767)	592 SVLT	VHVQGKEIASG	ST LRGCLHLV	DLAGSERVDK	SEAAGERLNEA	KHINKSLSAL	GDVIA	652			
OsKCH1(292-744)	580 SCLS	SVHVQGKYLTSG	AMLRGCMHLV	DLAGSERVDK	SEVVGDRLKEA	QYINKSLSAL	GDVIA	640			
OsKCH2(289-767)	653 ALAC	QKSSHVPYRNSK	LTQVLQDALG	GQAKT LMFVH	MNPEADAFGET	MSTLKFAERV.	ATVEL	713			
OsKCH1(292-744)	641 SLAC	QKNSHVPYRNSK	LTQLLQDSLG	GQAKT LMFVH	VSPELDAVGET	ISTLKFAERV.	ASVEL	701			
OsKCH2(289-767) OsKCH1(292-744)	714 GAAH 702 GAAM	HANKEVGQVKDL (AN <mark>ke</mark> gs <mark>e</mark> vrel	K <mark>EE</mark> IS <mark>K</mark> LKLA K <mark>E</mark> QIATL <mark>K</mark> AA	L <mark>DDKERE</mark> AS <mark>K</mark> LA <mark>KKE</mark> GEPEN	L <mark>RD</mark> IAN <mark>R</mark> VAS <mark>E</mark> IQST	KRNARTRS		767 740			

Supplementary Figure 6: OsKCH2(289-767) and OsKCH1(292-744) differ drastically in the CC2 region. Pairwise protein alignment of OsKCH2(289-767) and OsKCH1(292-744). The neck mimic region is indicated by asterisk (*) and the CC2 region is indicated by the underline. Positively charged residues in the CC2 region are highlighted in blue and negatively charged residues in red.

Supplementary Figure 7: The quadruple mutant GFP-K760A/R761A/R764A/R766A
is a nonprocessive minus-end-directed motor on single microtubules. a.
Schematic diagrams of the full-length OsKCH2, GFP-OsKCH2(289-767) and GFP-

107 K760A/R761A/R764A/R766A. b. Micrograph montage showing that surface-immobilized GFP-K760A/R761A/R764A/R766A molecules drive microtubules to glide with minus-108 end-directed motility. White arrowheads indicate the plus ends of polarity-marked 109 110 microtubules. C. Example kymograph showing that individual GFP-K760A/R761A/R764A/R766A molecules are unable to produce processive motility on a 111 single microtubule. d. Coomassie-stained SDS-PAGE of the microtubule co-112 sedimentation assay for GFP-K760A/R761A/R764A/R766A in BRB80/25 mM KCI. 113 Scale bars: 30 s (vertical) and 5 µm (horizontal). 114 115

- 116
- 117
- 118
- 119
- 120

121

124 Supplementary Figure 8: GFP-OsKCH1/KCH2 exhibits minus-end-directed motility

in the ensemble microtubule-gliding assay. Micrograph montage showing surface-

immobilized GFP-OsKCH1/KCH2 molecules drive microtubules to glide with minus-end-

- 127 directed motility. White arrowheads indicate the plus ends of polarity-marked
- 128 microtubules.

129

131

130 Supplementary References:

- Phillips, R. K., Peter, L. G., Gilbert, S. P. & Rayment, I. Family-specific kinesin structures reveal neck-linker length based on Initiation of the coiled-coil. *J. Biol. Chem.* 291, 20372–20386 (2016).
- Jie, J., Löhr, F. & Barbar, E. Interactions of yeast dynein with dynein light chain and dynactin: General implications for intrinsically disordered duplex scaffolds in multiprotein assemblies. *J. Biol. Chem.* **290**, 23863–23874 (2015).
- 138 3. Delorenzi, M. & Speed, T. An HMM model for coiled-coil domains and a
- comparison with PSSM-based predictions. *Bioinformatics* **18**, 617–625 (2002).
- 140