## **Supporting information**

## A benzene-degrading nitrate-reducing microbial consortium displays aerobic and anaerobic benzene degradation pathways

Siavash Atashgahi,<sup>1\*#</sup> Bastian Hornung,<sup>2#</sup> Marcelle J van der Waals,<sup>1,3</sup> Ulisses Nunes da Rocha,<sup>4,5</sup> Floor Hugenholtz,<sup>1</sup> Bart Nijsse,<sup>2</sup> Douwe Molenaar,<sup>4</sup> Rob van Spanning,<sup>4</sup> Alfons J.M. Stams,<sup>1,6</sup> Jan Gerritse<sup>3</sup> & Hauke Smidt<sup>1</sup>

 $^{\rm 1}$  Wageningen University & Research, Laboratory of Microbiology, Stippeneng 4, 6708 WE Wageningen, the Netherlands

<sup>2</sup> Wageningen University & Research, Laboratory of Systems and Synthetic Biology, Stippeneng 4, 6708 WE Wageningen, the Netherlands

 $^{\rm 3}$  Deltares, Subsurface and Groundwater Systems, Daltonlaan 600, 3584 BK Utrecht, the Netherlands

 $^4$  Vrije Universiteit Amsterdam, Department of Molecular Cell Biology, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands

<sup>5</sup> Department of Environmental Microbiology, Helmholtz Centre for Environmental Research - UFZ, Leipzig, Germany

<sup>6</sup> Centre of Biological Engineering, University of Minho, Braga, Portugal

\* For correspondence: E-mail: siavash.atashgahi@wur.nl, Tel: +31 317 484683

<sup>#</sup> Equal contribution

## Text mining

All domains derived from InterproScan were matched against the Brenda database with the following procedure. The text mining algorithm included lower casing all characters, removal of non-alphanumerical characters (colons, commas, brackets, apostrophes, dashes, terminal points), removal of partial and generic terms (type, terminal, subunit, domain, enzyme, like, hypothetical, conserved, operon, active site, probably, central, 51 kd, respiratory chain, c terminal, n terminal), manual rejection of too generic final result terms (kinase, cytochrome, protein, methyltransferase) and reduction of certain terms (deletion of PEP/pyruvate binding, removal of "prokaryotic" in "prokaryotic cytidylate kinase"; "family" in "cytidilate kinase family"; "phosphorylating" in "glyceraldehyde phosphate dehydrogenase phosphorylating"; "iron containing" in "iron containing alcohol dehydrogenase"; "zinc containing" in "zinc containing alcohol dehydrogenase"; "manganese containing" in "manganese containing catalase"; "20 kd" in "nadh ubiquinone oxidoreductase 20 kd", replacement of "carboxyltransferase" with "carboxylase" in "pyruvate carboxyltransferase"). Furthermore all terms containing only one character were also removed in case the remaining name contained more than two words.

**Figure S1**. Proposed anaerobic biodegradation of benzene via methylation to toluene mediated by an unknown presumed methylase (shown by a question mark) followed by fumarate addition to form benzylsuccinate that is subsequently metabolized to benzoyl-CoA. The genes encoding different enzymes of this pathway are: *bssABC*, benzylsuccinate synthase; *bbsEF*, succinyl-CoA:(R)-benzylsuccinate CoA-transferase; *bbsG* (R)-benzylsuccinyl-CoA dehydrogenase; *bbsH*, phenylitaconyl-CoA hydratase; *bbsCD*, 2-[hydroxy(phenyl)methyl]-succinyl-CoA dehydrogenase; *bbsAB*, benzoylsuccinyl-CoA thiolase.



**Figure S2**. Putative benzene degradation gene cluster of the iron-reducing culture BF<sup>1</sup> (A) and the nitrate-reducing culture used in this study (B) where Contig-100 is the default IDBA\_UD output for a kmer-run of 100, the following number is the contig number (in this case 0) and the last number is the gene number on that contig (shown above each corresponding gene).



**Figure S3**. Oxygen concentration in the continuous culture. The black line with circles indicates the oxygen concentration (%) in the culture liquid, measured with an oxygen electrode. The red diamonds indicate oxygen in the headspace gas, measured with a GC-TCD. A spike of 0.5 mM nitrate to the continuous culture is indicated by arrow 1. After 2.5 hours of constant oxygen levels, a spike of 1 mM formate (arrow 2) was added, after which the oxygen concentration increased to 2.2% within 1.5 hours.



**Figure S4**. Relative abundances (%) of gene transcripts identified in biofilm samples involved in nitrate metabolism. The bar showing the number of relative abundance was log scaled and 0 values were removed.



**Table S1**. Details of samples used in this study. The total amount of biofilm protein in the culture vessel was assessed by extrapolating the amount of protein released from defined surface areas to the total area of biofilm covered surfaces in the system. Protein content in the liquid (15 mg), white (233 mg) and brown biofilm (2485 mg) was used to calculate the protein content percentage in the liquid and biofilm in the samples. Protein content was analyzed as described <sup>2</sup>.

| #        | Biofilm      | Sampling   | Samples     | Scraped off bio | film area (cm <sup>2</sup> ) | Protein content (%) |         |  |
|----------|--------------|------------|-------------|-----------------|------------------------------|---------------------|---------|--|
|          | morphologies | date       | volume (ml) | White biofilm   | Brown biofilm                | Liquid              | Biofilm |  |
| Sample 1 | White        | 31-10-2014 | 50          | 6.3             | 0                            | 89                  | 11      |  |
| Sample 2 | White        | 31-10-2014 | 50          | 6.3             | 0                            | 89                  | 11      |  |
| Sample 3 | White        | 31-10-2014 | 50          | 6.3             | 0                            | 89                  | 11      |  |
| Sample 4 | White        | 3-11-2014  | 50          | 6.3             | 0                            | 89                  | 11      |  |
| Sample 5 | Brown        | 3-11-2014  | 50          | 22.3            | 4                            | 30                  | 70      |  |
| Sample 6 | Brown        | 3-11-2014  | 50          | 22.3            | 8                            | 0                   | 100     |  |

| Samples  | Read<br>number | Non-rRNA read<br>(%) | Reads that passed<br>PRINSEQ Lite quality<br>filtering (%) | Read mean<br>length (bp) | Percentage of<br>reads passing<br>all quality<br>control | Mapping rate of<br>reads passing<br>quality control to the<br>assembly |
|----------|----------------|----------------------|------------------------------------------------------------|--------------------------|----------------------------------------------------------|------------------------------------------------------------------------|
| Sample 1 | 46403410       | 46282920 (99.7)      | 977319 (2.1)                                               | 97                       | 2.1                                                      | 54.6                                                                   |
| Sample 2 | 6768045        | 6746142 (99.7)       | 367039 (5.4)                                               | 93.22                    | 5.4                                                      | 53.7                                                                   |
| Sample 3 | 12225282       | 11938239 (97.7)      | 3580969 (30)                                               | 97.66                    | 30.0                                                     | 68.3                                                                   |
| Sample 4 | 1169416        | 1089029 (93.1)       | 565017 (51.9)                                              | 126.37                   | 51.9                                                     | 78.3                                                                   |
| Sample 5 | 6015250        | 5694797 (94.7)       | 2267743 (39.8)                                             | 127.87                   | 39.8                                                     | 84.7                                                                   |
| Sample 6 | 11080970       | 10896851 (98.3)      | 1175823 (10.8)                                             | 126.33                   | 10.8                                                     | 81.9                                                                   |

**Table S2**. Sequence information summary for the bioreactor biofilm and effluent samples during growth on benzene and nitrate.

**Table S4**. Summary of transcribed genes involved in nitrogen metabolism. The first column lists the transcribed genes followed by the locus tag of each gene. The third column shows the taxonomy of the locus tag, based on megablast/blastn hits of the whole contig against the NCBI NT database. The fourth column is the relative contribution of this locus tag to this function (e.g. if two genes with equal expression were assigned to one function, both would have 50% contribution to that function). The last four columns show the function of the most similar protein as identified by blastp (based on the locus' protein sequence) in the Uniprot database, followed by the accession number of the hit, the identity on protein level and the taxonomy of this entry, respectively.

| Gene(s)   | Locus tag                      | Taxon of closest match                        | Contribution<br>to function<br>(%) | Best blast hit <sup>a</sup>                             | Accession<br>number of<br>the blast hit | Identity<br>(%) | Taxonomy of the best blast<br>hit                   |
|-----------|--------------------------------|-----------------------------------------------|------------------------------------|---------------------------------------------------------|-----------------------------------------|-----------------|-----------------------------------------------------|
| narB      | Contig-100_6458_1 <sup>b</sup> | <i>Candidatus</i> Kuenenia<br>stuttgartiensis | 60                                 | Similar to FeS molybdopterin<br>oxidorecutcase proteins | Q1PVH1                                  | 94              | <i>Candidatus</i> Kuenenia<br>stuttgartiensis       |
| narG/nxrA | Contig-100_26_5                | unclassified_Bacteria                         | 37                                 | Uncharacterized protein                                 | A0A0B5GVF0                              | 43              | Haloarcula sp. CBA1115                              |
| narG/nxrA | Contig-100_18_5                | Candidatus Kuenenia<br>stuttgartiensis        | 11                                 | Similar to nitrate reductase subunit<br>NarG            | Q1PZD8                                  | 99              | <i>Candidatus</i> Kuenenia<br>stuttgartiensis       |
| narG/nxrA | Contig-100_7_6                 | Unclassified bacteria                         | 8                                  | Uncharacterized protein                                 | A0A0M2U6Y8                              | 71              | Clostridiales bacterium<br>PH28_bin88               |
| narH/nxrB | Contig-100_26_4                | Unclassified bacteria                         | 12                                 | Uncharacterized protein                                 | T0MN75                                  | 53              | Candidate division Zixibacteria bacterium RBG-1     |
| narH/nxrB | Contig-100_18_2                | <i>Candidatus</i> Kuenenia<br>stuttgartiensis | 6                                  | Strongly similar to nitrate reductase<br>(NarH)         | Q1PZD5                                  | 100             | Candidatus Kuenenia<br>stuttgartiensis              |
| narH/nxrB | Contig-100_7_7                 | Unclassified bacteria                         | 7                                  | Chemotaxis protein CheY                                 | A0A0M2U7X6                              | 75              | Clostridiales bacterium<br>PH28_bin88               |
| narI      | Contig-100_51_2                | Unclassified Peptococcaceae                   | 7                                  | Putative iron-sulfur-binding reductase                  | F7NDM4                                  | 64              | Acetonema longum DSM 6540                           |
| nasA      | Contig-100_1580_1              | N/A <sup>c</sup>                              | 100                                | Uncharacterized protein                                 | X0UVK5                                  | 50              | Marine sediment metagenome                          |
| nifD      | Contig-100_75_2                | Desulfitobacterium hafniense                  | 4                                  | Oxidoreductase, nitrogenase component 1                 | G9XNJ1                                  | 74              | <i>Desulfitobacterium hafniense</i><br>DP7          |
| nifH      | Contig-100_0_18                | Unclassified Clostridia                       | 78                                 | Putative multidrug resistance protein                   | D8WWN7                                  | 99              | Clostridia bacterium<br>enrichment culture clone BF |
| nifH      | Contig-100_75_1                | Desulfitobacterium hafniense                  | 15                                 | Putative nitrogenase iron protein                       | G9XNJ2                                  | 77              | <i>Desulfitobacterium hafniense</i><br>DP7          |
| nirK      | Contig-100_276_2               | Desulfomonile tiedjei                         | 91                                 | Uncharacterized protein                                 | A0A0M2U6Z1                              | 68              | Clostridiales bacterium<br>PH28_bin88               |
| norB      | Contig-100_4457_1              | Pontibacter sp. BAB1700                       | 58                                 | Putative nitric oxide reductase                         | F8S994                                  | 74              | Uncultured bacterium                                |
| norB      | Contig-100_865_2               | Formosa sp. AK20                              | 26                                 | Nitric oxide reductase                                  | A0A0F2NRP9                              | 96              | <i>Flavobacteriales</i> bacterium<br>BRH_c54        |
| nrfA      | Contig-100_77_1                | <i>Candidatus</i> Kuenenia<br>stuttgartiensis | 39                                 | Hypothetical (Triheme) protein                          | Q1Q0T9                                  | 99              | <i>Candidatus</i> Kuenenia<br>stuttgartiensis       |
| nrfA      | Contig-100_124_2               | Candidatus Kuenenia<br>stuttgartiensis        | 0                                  | Cytochrome c family protein                             | Q1Q5N8                                  | 97              | <i>Candidatus</i> Kuenenia<br>stuttgartiensis       |
| nrfH      | Contig-100_3851_1              | Thermincola potens                            | 3                                  | NapC/NirT cytochrome c domain-<br>containing protein    | A0A0L6W6D3                              | 67              | Thermincola ferriacetica                            |
| nosZ      | contig-100_430_2               | uncultured bacterium                          | 100                                | Nitrous oxide reductase protein NosZ                    | I6ZZA8                                  | 74              | Melioribacter roseus (strain<br>JCM 17771 / P3M-2)  |
| amoA/pmoA | Contig-100_1144_2              | Unclassified Nitrosomonas                     | 70                                 | AmoA                                                    | E3UMY3                                  | 91              | Uncultured bacterium                                |

| amoB/pmoB | Contig-100_8938_1 | Nitrosomonas eutropha | 18 | Ammonia monooxygenase | A0A0F7KEV5 | 86 | Nitrosomonas communis |
|-----------|-------------------|-----------------------|----|-----------------------|------------|----|-----------------------|

<sup>a</sup> Based on uniprot May 11, 2016
 <sup>b</sup> Contig-100 is the default IDBA\_UD output for a kmer-run of 100, the following number is the contig number and last number is the gene number on that contig
 <sup>c</sup> Not assigned. No taxonomy could be assigned, because either no relevant blast hit was found, or relevant blast hits were to diverse

## Reference

- 1 Abu Laban, N., Selesi, D., Rattei, T., Tischler, P. & Meckenstock, R. U. Identification of enzymes involved in anaerobic benzene degradation by a strictly anaerobic iron-reducing enrichment culture. *Environ. Microbiol.* **12**, 2783-2796 (2010).
- 2 van der Waals, M. J. *et al.* Benzene degradation in a denitrifying biofilm reactor: activity and microbial community composition. *Appl. Microbiol. Biotechnol.* **101**, 5175–5188 (2017).